1
|
Araújo MRB, Ramos JN, de Oliveira Sant'Anna L, Bokermann S, Santos MBN, Mattos-Guaraldi AL, Azevedo V, Prates FD, Rodrigues DLN, Aburjaile FF, Sacchi CT, Campos KR, Alvim LB, Vieira VV, Camargo CH, Dos Santos LS. Phenotypic and molecular characterization and complete genome sequence of a Corynebacterium diphtheriae strain isolated from cutaneous infection in an immunized individual. Braz J Microbiol 2023; 54:1325-1334. [PMID: 37597133 PMCID: PMC10485220 DOI: 10.1007/s42770-023-01086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023] Open
Abstract
Diphtheria is an infectious disease potentially fatal that constitutes a threat to global health security, with possible local and systemic manifestations that result mainly from the production of diphtheria toxin (DT). In the present work, we report a case of infection by Corynebacterium diphtheriae in a cutaneous lesion of a fully immunized individual and provided an analysis of the complete genome of the isolate. The clinical isolate was first identified by MALDI-TOF Mass Spectrometry. The commercial strip system and mPCR performed phenotypic and genotypic characterization, respectively. The antimicrobial susceptibility profile was determined by the disk diffusion method. Additionally, genomic DNA was sequenced and analyzed for species confirmation and sequence type (ST) determination. Detection of resistance and virulence genes was performed by comparisons against ResFinder and VFDB databases. The isolate was identified as a nontoxigenic C. diphtheriae biovar Gravis strain. Its genome presented a size of 2.46 Mbp and a G + C content of 53.5%. Ribosomal Multilocus Sequence Typing (rMLST) allowed the confirmation of species as C. diphtheriae with 100% identity. DDH in silico corroborated this identification. Moreover, MLST analyses revealed that the isolate belongs to ST-536. No resistance genes were predicted or mutations detected in antimicrobial-related genes. On the other hand, virulence genes, mostly involved in iron uptake and adherence, were found. Presently, we provided sufficient clinical data regarding the C. diphtheriae cutaneous infection in addition to the phenotypic and genomic data of the isolate. Our results indicate a possible circulation of ST-536 in Brazil, causing cutaneous infection. Considering that cases of C. diphtheriae infections, as well as diphtheria outbreaks, have still been reported in several regions of the world, studies focusing on taxonomic analyzes and predictions of resistance genes may help to improve the diagnosis and to monitor the propagation of resistant clones. In addition, they can contribute to understanding the association between variation in genetic factors and resistance to antimicrobials.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus (Microbiology), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Juliana Nunes Ramos
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lincoln de Oliveira Sant'Anna
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, São Paulo, São Paulo, Brazil
| | | | - Ana Luiza Mattos-Guaraldi
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus (Microbiology), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Diego Lucas Neres Rodrigues
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Luige Biciati Alvim
- Operational Technical Nucleus (Research and Development), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Verônica Viana Vieira
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Louisy Sanches Dos Santos
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Saeed M, Shahid MB, Naeem A, Tabassum S, Dave T. Diphtheria in Pakistan post-COVID-19, a potential public health threat: an update. Trop Med Health 2023; 51:24. [PMID: 37165432 PMCID: PMC10172066 DOI: 10.1186/s41182-023-00522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Diphtheria, a vaccine-preventable disease, remains a concern in Pakistan as cases have risen post-COVID-19 pandemic causing more than 45 deaths in Pakistan in the year 2022. The respiratory variant of the disease is more common and can lead to serious complications, such as myocarditis and respiratory insufficiency. Diphtheria has caused havoc in the past killing millions of people worldwide before the development of its vaccine. Although the diphtheria toxoid vaccine is effective against toxigenic strains, there have been cases of treatment-resistant strains, particularly the non-toxigenic strains of C. diphtheriae. Pakistan's economic and health systems have suffered setbacks, which have been exacerbated by the COVID-19 pandemic. The pandemic has disrupted routine vaccination programs, and recent floods have contributed to an increase in diphtheria cases and rendered millions homeless. Poor immunization services, inadequate training of vaccination teams, and wealth inequality have all contributed to unequal vaccination coverage in Pakistan. The rising cases of diphtheria call for prompt action, including booster shots, updating vaccination records and administering immediate doses of the toxoid to close contacts.
Collapse
Affiliation(s)
| | | | - Aroma Naeem
- King Edward Medical University, Lahore, Pakistan
| | | | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine.
| |
Collapse
|
3
|
Prygiel M, Polak M, Mosiej E, Wdowiak K, Formińska K, Zasada AA. New Corynebacterium Species with the Potential to Produce Diphtheria Toxin. Pathogens 2022; 11:1264. [PMID: 36365015 PMCID: PMC9693595 DOI: 10.3390/pathogens11111264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Only three Corynebacterium species are known to produce a lethal exotoxin called diphtheria toxin. These are C. diphtheriae, C. ulcerans and C. pseudotuberculosis. The diphtheria toxin gene (tox) is carried in a family of closely related corynebacteriophages and therefore the toxin can be produced only through lysogenisation, in which the corynephage encoding tox is stably inserted into the chromosome. However, 'nontoxigenic tox gene-bearing' (NTTB) strains, which are genotypically tox-positive but do not express the protein, have been described. The emergence of NTTB strains was first observed during the 1990s diphtheria epidemic in Eastern Europe and nowadays such isolates have been detected in many countries in the world. Recently, novel species of Corynebacterium genus have been described which might have the potential of producing the diphtheria toxin due to the possession of the diphtheria toxin gene but it has not produced toxin in laboratory tests. The circulation of NTTB strains could be related to the increased risk for diphtheria disease arising from the risk of re-emerging toxin expression. The article presents the mechanism of diphtheria toxin expression and action, recently described novel species of NTTB corynebacteria as well as the taxonomic changes within the C. diphtheriae group.
Collapse
|
4
|
Batista Araújo MR, Bernardes Sousa MÂ, Seabra LF, Caldeira LA, Faria CD, Bokermann S, Sant'Anna LO, Dos Santos LS, Mattos-Guaraldi AL. Cutaneous infection by non-diphtheria-toxin producing and penicillin-resistant Corynebacterium diphtheriae strain in a patient with diabetes mellitus. Access Microbiol 2022; 3:000284. [PMID: 35018328 PMCID: PMC8742586 DOI: 10.1099/acmi.0.000284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Diphtheria is a potentially fatal infection, mostly caused by diphtheria toxin (DT)-producing Corynebacterium diphtheriae strains. During the last decades, the isolation of DT-producing C. diphtheriae strains has been decreasing worldwide. However, non-DT-producing C. diphtheriae strains emerged as causative agents of cutaneous and invasive infections. Although endemic in countries with warm climates, cutaneous diphtheria is rarely reported in Brazil. Presently, an unusual case of skin lesion in a Brazilian elderly diabetic patient infected by a penicillin-resistant non-DT-producing C. diphtheriae strain was reported. Laboratory diagnosis included mass spectrometry and multiplex PCR analyses. Since cutaneous diphtheria lesions are possible sources of secondary diphtheria cases and systemic diseases and considering that penicillin is the first line of antimicrobial agent for the treatment of these infections, the detection of penicillin-resistant strains of diphtheria bacilli should be a matter of concern. Thus, cases similar to the presently reported should be appropriately investigated and treated, particularly in patients with risk factor (s) for the development of C. diphtheriae invasive infections, such as diabetes. Moreover, health professionals must be aware of the presence of C. diphtheriae in cutaneous lesions of lower limbs, a common type of morbidity in diabetic patients, especially in tropical and subtropical countries.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Mireille Ângela Bernardes Sousa
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Luisa Ferreira Seabra
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Letícia Aparecida Caldeira
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Carmem Dolores Faria
- Bacterial and Fungal Diseases Service, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Brazil
| | - Lincoln Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, The Collaborating Center for Reference and Research on Diphtheria, National Health Foundation, Ministry of Health, Rio de Janeiro, Brazil
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, The Collaborating Center for Reference and Research on Diphtheria, National Health Foundation, Ministry of Health, Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, The Collaborating Center for Reference and Research on Diphtheria, National Health Foundation, Ministry of Health, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Marosevic DV, Berger A, Kahlmeter G, Payer SK, Hörmansdorfer S, Sing A. Antimicrobial susceptibility of Corynebacterium diphtheriae and Corynebacterium ulcerans in Germany 2011-17. J Antimicrob Chemother 2021; 75:2885-2893. [PMID: 32747952 DOI: 10.1093/jac/dkaa280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diphtheria is mainly caused by diphtheria-toxin-producing strains of Corynebacterium diphtheriae and Corynebacterium ulcerans. The recommended first-line antibiotic is penicillin or erythromycin, but reliable susceptibility data are scarce. OBJECTIVES To define WT MIC distributions of 12 antimicrobial agents and provide data for the determination of tentative epidemiological cut-off values (TECOFFs) for potentially toxigenic corynebacteria and to evaluate the potential usefulness of a gradient test (Etest) for susceptibility testing of penicillin, erythromycin and clindamycin. METHODS For the 421 human or veterinary isolates from the period 2011-17, MICs of 12 antimicrobial agents were determined. Etest performance was evaluated for penicillin, erythromycin and clindamycin. RESULTS MIC distributions were characterized and TECOFFs could be set for 11 out of 24 antibiotic/species combinations. The current EUCAST clinical breakpoints, predominantly determined for Corynebacterium species other than C. diphtheriae and C. ulcerans, divide the WT MIC distributions of penicillin and clindamycin, thereby making reproducible susceptibility testing of C. diphtheriae and C. ulcerans difficult. For erythromycin, 4% of C. diphtheriae and 2% of C. ulcerans had MICs higher than those for WT isolates. Phenotypically detectable resistance to other antibiotics was rare. Etest underestimated MICs of penicillin and lower concentrations needed to be included for erythromycin, while for clindamycin the Etest was not a good surrogate method. CONCLUSIONS MIC distributions based on reference broth microdilution for potentially toxigenic Corynebacterium spp. were developed. For five and six agents, TECOFFs were suggested for C. diphtheriae and C. ulcerans, respectively, but for Corynebacterium pseudotuberculosis the number of isolates was too low.
Collapse
Affiliation(s)
- Durdica V Marosevic
- Public Health Microbiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Anja Berger
- Public Health Microbiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.,Consultant Laboratory for Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Gunnar Kahlmeter
- Clinical Microbiology and the EUCAST Development Laboratory, Central Hospital, Växjö, Sweden
| | - Sarah Katharina Payer
- Public Health Microbiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Stefan Hörmansdorfer
- Public Health Microbiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Andreas Sing
- Public Health Microbiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.,Consultant Laboratory for Diphtheria, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| |
Collapse
|
6
|
Will RC, Ramamurthy T, Sharma NC, Veeraraghavan B, Sangal L, Haldar P, Pragasam AK, Vasudevan K, Kumar D, Das B, Heinz E, Melnikov V, Baker S, Sangal V, Dougan G, Mutreja A. Spatiotemporal persistence of multiple, diverse clades and toxins of Corynebacterium diphtheriae. Nat Commun 2021; 12:1500. [PMID: 33686077 PMCID: PMC7940655 DOI: 10.1038/s41467-021-21870-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/12/2021] [Indexed: 01/22/2023] Open
Abstract
Diphtheria is a respiratory disease caused by the bacterium Corynebacterium diphtheriae. Although the development of a toxin-based vaccine in the 1930s has allowed a high level of control over the disease, cases have increased in recent years. Here, we describe the genomic variation of 502 C. diphtheriae isolates across 16 countries and territories over 122 years. We generate a core gene phylogeny and determine the presence of antimicrobial resistance genes and variation within the tox gene of 291 tox+ isolates. Numerous, highly diverse clusters of C. diphtheriae are observed across the phylogeny, each containing isolates from multiple countries, regions and time of isolation. The number of antimicrobial resistance genes, as well as the breadth of antibiotic resistance, is substantially greater in the last decade than ever before. We identified and analysed 18 tox gene variants, with mutations estimated to be of medium to high structural impact.
Collapse
Affiliation(s)
- Robert C Will
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
| | | | | | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Pradeep Haldar
- Ministry of Health and Family Welfare, Govt. of India, New Delhi, India
| | - Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Dhirendra Kumar
- Translational Health Science and Technology Institute, Faridabad, India
- Maharishi Valmiki Infectious Diseases Hospital, Delhi, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, India
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Stephen Baker
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Gordon Dougan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
| | - Ankur Mutreja
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK.
- Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
7
|
Zou J, Chorlton SD, Romney MG, Payne M, Lawson T, Wong A, Champagne S, Ritchie G, Lowe CF. Phenotypic and Genotypic Correlates of Penicillin Susceptibility in Nontoxigenic Corynebacterium diphtheriae, British Columbia, Canada, 2015-2018. Emerg Infect Dis 2021; 26:97-103. [PMID: 31855139 PMCID: PMC6924910 DOI: 10.3201/eid2601.191241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In 2015, the Clinical and Laboratory Standards Institute (CLSI) updated its breakpoints for penicillin susceptibility in Corynebacterium species from <1 mg/L to <0.12 mg/L. We assessed the effect of this change on C. diphtheriae susceptibility reported at an inner city, tertiary care center in Vancouver, British Columbia, Canada, during 2015–2018 and performed whole-genome sequencing to investigate phenotypic and genotypic resistance to penicillin. We identified 44/45 isolates that were intermediately susceptible to penicillin by the 2015 breakpoint, despite meeting previous CLSI criteria for susceptibility. Sequencing did not reveal β-lactam resistance genes. Multilocus sequence typing revealed a notable predominance of sequence type 76. Overall, we saw no evidence of penicillin nonsusceptibility at the phenotypic or genotypic level in C. diphtheriae isolates from our institution. The 2015 CLSI breakpoint change could cause misclassification of penicillin susceptibility in C. diphtheriae isolates, potentially leading to suboptimal antimicrobial treatment selection.
Collapse
|
8
|
Bokhary H, Pangesti KNA, Rashid H, Abd El Ghany M, Hill-Cawthorne GA. Travel-Related Antimicrobial Resistance: A Systematic Review. Trop Med Infect Dis 2021; 6:11. [PMID: 33467065 PMCID: PMC7838817 DOI: 10.3390/tropicalmed6010011] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence that human movement facilitates the global spread of resistant bacteria and antimicrobial resistance (AMR) genes. We systematically reviewed the literature on the impact of travel on the dissemination of AMR. We searched the databases Medline, EMBASE and SCOPUS from database inception until the end of June 2019. Of the 3052 titles identified, 2253 articles passed the initial screening, of which 238 met the inclusion criteria. The studies covered 30,060 drug-resistant isolates from 26 identified bacterial species. Most were enteric, accounting for 65% of the identified species and 92% of all documented isolates. High-income countries were more likely to be recipient nations for AMR originating from middle- and low-income countries. The most common origin of travellers with resistant bacteria was Asia, covering 36% of the total isolates. Beta-lactams and quinolones were the most documented drug-resistant organisms, accounting for 35% and 31% of the overall drug resistance, respectively. Medical tourism was twice as likely to be associated with multidrug-resistant organisms than general travel. International travel is a vehicle for the transmission of antimicrobial resistance globally. Health systems should identify recent travellers to ensure that adequate precautions are taken.
Collapse
Affiliation(s)
- Hamid Bokhary
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
- University Medical Center, Umm Al-Qura University, Al Jamiah, Makkah, Makkah Region 24243, Saudi Arabia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Krisna N. A. Pangesti
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Harunor Rashid
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- National Centre for Immunisation Research and Surveillance (NCIRS), Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Moataz Abd El Ghany
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Grant A. Hill-Cawthorne
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
| |
Collapse
|
9
|
Xiaoli L, Benoliel E, Peng Y, Aneke J, Cassiday PK, Kay M, McKeirnan S, Duchin JS, Kawakami V, Lindquist S, Acosta AM, DeBolt C, Tondella ML, Weigand MR. Genomic epidemiology of nontoxigenic Corynebacterium diphtheriae from King County, Washington State, USA between July 2018 and May 2019. Microb Genom 2020; 6. [PMID: 33275088 PMCID: PMC8116682 DOI: 10.1099/mgen.0.000467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Between July 2018 and May 2019, Corynebacterium diphtheriae was isolated from eight patients with non-respiratory infections, seven of whom experienced homelessness and had stayed at shelters in King County, WA, USA. All isolates were microbiologically identified as nontoxigenic C. diphtheriae biovar mitis. Whole-genome sequencing confirmed that all case isolates were genetically related, associated with sequence type 445 and differing by fewer than 24 single-nucleotide polymorphisms (SNPs). Compared to publicly available C. diphtheriae genomic data, these WA isolates formed a discrete cluster with SNP variation consistent with previously reported outbreaks. Virulence-related gene content variation within the highly related WA cluster isolates was also observed. These results indicated that genome characterization can readily support epidemiology of nontoxigenic C. diphtheriae.
Collapse
Affiliation(s)
| | | | - Yanhui Peng
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Pamela K Cassiday
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meagan Kay
- Public Health Seattle and King County, Seattle, WA, USA
| | | | | | | | | | - Anna M Acosta
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chas DeBolt
- Washington State Department of Health, Shoreline, WA, USA
| | - Maria Lucia Tondella
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael R Weigand
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
10
|
Borisova O, Chaplin A, Gadua N, Pimenova A, Alexeeva I, Rakitsky G, Afanas'ev S, Donskikh E, Kafarskaya L. Characterization of the genotype and the phenotype of nontoxigenic strains of Corynebacterium diphtheriae subsp. lausannense isolated in Russian residents. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 2018, a few sequencing studies were published revealing the existence of two monophyletic clusters within the C. diphtheriae species, meaning that this species can be divided into two subspecies: C. diphtheriae subsp. diphtheriae and C. diphtheriae subsp. lausannense. The objective of our study was to describe the genotype and the phenotype of 2 nontoxigenic C. diphtheriae strains isolated in Russia in 2017–2018, which were classified by us as C. diphtheriae subsp. lausannense based on the aggregated data yielded by a variety of techniques, including microbiological and molecular genetic techniques, as well as a bioinformatic search for subspecies-specific genes in the publicly available genomes of C. diphtheriae. The isolated strains had morphological and biochemical characteristics of C. diphtheriae. The strains were assigned to the MLST type ST199 included in the clonal complex associated with subsp. lausannense. PCR revealed that both analyzed strains of C. diphtheriae subsp. lausannense carried the ptsI gene encoding phosphoenolpyruvate-protein phosphotransferase and did not carry the narG gene encoding the synthesis of nitrate reductase subunits, whereas the strains of C. diphtheriae subsp. diphtheriae had the narG gene and did not have ptsI. We experimentally proved the ability of lausannense strains to ferment N-acetylglucosamine. Our findings expand the knowledge of the biological diversity of C. diphtheriae and indicate the need for estimating the spread of these microorganisms in Russia, as well as their pathogenic potential.
Collapse
Affiliation(s)
- O.Yu. Borisova
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - A.V. Chaplin
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - N.T. Gadua
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - A.S. Pimenova
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - I.N. Alexeeva
- Regional Clinical Psychiatric Hospital, Khabarovsk, Russia
| | - G.F. Rakitsky
- Regional Clinical Psychiatric Hospital, Khabarovsk, Russia
| | - S.S. Afanas'ev
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - E.E. Donskikh
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - L.I. Kafarskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
11
|
Dragomirescu CC, Lixandru BE, Coldea IL, Corneli ON, Pana M, Palade AM, Cristea VC, Suciu I, Suciu G, Manolescu LSC, Popa LG, Popa MI. Antimicrobial Susceptibility Testing for Corynebacterium Species Isolated from Clinical Samples in Romania. Antibiotics (Basel) 2020; 9:antibiotics9010031. [PMID: 31963167 PMCID: PMC7168242 DOI: 10.3390/antibiotics9010031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is one of the most important public health issues. Besides classical multidrug resistance species associated with medical care involved in superficial or invasive infections, there are strains less commonly associated with hospital or outpatient setting’s infections. Non-diphtheria Corynebacterium spp. could produce infections in patients with or without immune-compromised status. The aim of our study was to determine the susceptibility to antimicrobial agents to Corynebacterium spp. from clinical samples collected from Romanian hospitalized individuals and outpatients. Twenty Corynebacterium strains were isolated and identified as Corynebacterium striatum (n = 7), Corynebacterium amycolatum (n = 7), C. urealyticum (n = 3), Corynebacterium afermentans (n = 2), and Corynebacterium pseudodiphtheriticum (n = 1). All isolates have been tested for antibiotic susceptibility by standardized disc diffusion method and minimal inhibitory concentration (MIC) tests. Seventeen isolates demonstrated multidrug resistance phenotypes. The molecular support responsible for high resistance to quinolones for ten of these strains was determined by the detection of point mutation in the gene sequence gyrA.
Collapse
Affiliation(s)
- Cristiana Cerasella Dragomirescu
- “Cantacuzino” National Medico Military Institute for Research and Development, 050096 Bucharest, Romania; (C.C.D.); (B.E.L.); (I.L.C.); (O.N.C.); (M.P.); (A.M.P.); (M.I.P.)
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Brandusa Elena Lixandru
- “Cantacuzino” National Medico Military Institute for Research and Development, 050096 Bucharest, Romania; (C.C.D.); (B.E.L.); (I.L.C.); (O.N.C.); (M.P.); (A.M.P.); (M.I.P.)
| | - Ileana Luminita Coldea
- “Cantacuzino” National Medico Military Institute for Research and Development, 050096 Bucharest, Romania; (C.C.D.); (B.E.L.); (I.L.C.); (O.N.C.); (M.P.); (A.M.P.); (M.I.P.)
| | - Olguta Nicoleta Corneli
- “Cantacuzino” National Medico Military Institute for Research and Development, 050096 Bucharest, Romania; (C.C.D.); (B.E.L.); (I.L.C.); (O.N.C.); (M.P.); (A.M.P.); (M.I.P.)
| | - Marina Pana
- “Cantacuzino” National Medico Military Institute for Research and Development, 050096 Bucharest, Romania; (C.C.D.); (B.E.L.); (I.L.C.); (O.N.C.); (M.P.); (A.M.P.); (M.I.P.)
| | - Andi Marian Palade
- “Cantacuzino” National Medico Military Institute for Research and Development, 050096 Bucharest, Romania; (C.C.D.); (B.E.L.); (I.L.C.); (O.N.C.); (M.P.); (A.M.P.); (M.I.P.)
| | | | - Ioana Suciu
- BEIA Consult International, Peroni 16, 041386 Bucharest, Romania; (I.S.); (G.S.)
| | - George Suciu
- BEIA Consult International, Peroni 16, 041386 Bucharest, Romania; (I.S.); (G.S.)
| | | | - Loredana Gabriela Popa
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Colentina Clinical Hospital (CDPC), 020125 Bucharest, Romania
| | - Mircea Ioan Popa
- “Cantacuzino” National Medico Military Institute for Research and Development, 050096 Bucharest, Romania; (C.C.D.); (B.E.L.); (I.L.C.); (O.N.C.); (M.P.); (A.M.P.); (M.I.P.)
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
12
|
Sharma NC, Efstratiou A, Mokrousov I, Mutreja A, Das B, Ramamurthy T. Diphtheria. Nat Rev Dis Primers 2019; 5:81. [PMID: 31804499 DOI: 10.1038/s41572-019-0131-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 01/09/2023]
Abstract
Diphtheria is a potentially fatal infection mostly caused by toxigenic Corynebacterium diphtheriae strains and occasionally by toxigenic C. ulcerans and C. pseudotuberculosis strains. Diphtheria is generally an acute respiratory infection, characterized by the formation of a pseudomembrane in the throat, but cutaneous infections are possible. Systemic effects, such as myocarditis and neuropathy, which are associated with increased fatality risk, are due to diphtheria toxin, an exotoxin produced by the pathogen that inhibits protein synthesis and causes cell death. Clinical diagnosis is confirmed by the isolation and identification of the causative Corynebacterium spp., usually by bacterial culture followed by enzymatic and toxin detection tests. Diphtheria can be treated with the timely administration of diphtheria antitoxin and antimicrobial therapy. Although effective vaccines are available, this disease has the potential to re-emerge in countries where the recommended vaccination programmes are not sustained, and increasing proportions of adults are becoming susceptible to diphtheria. Thousands of diphtheria cases are still reported annually from several countries in Asia and Africa, along with many outbreaks. Changes in the epidemiology of diphtheria have been reported worldwide. The prevalence of toxigenic Corynebacterium spp. highlights the need for proper clinical and epidemiological investigations to quickly identify and treat affected individuals, along with public health measures to prevent and contain the spread of this disease.
Collapse
Affiliation(s)
- Naresh Chand Sharma
- Laboratory Department, Maharishi Valmiki Infectious Diseases Hospital, Delhi, India
| | - Androulla Efstratiou
- WHO Collaborating Centre for Diphtheria and Streptococcal Infections, Reference Microbiology Division, Public Health England, London, UK
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Ankur Mutreja
- Global Health-Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bhabatosh Das
- Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Thandavarayan Ramamurthy
- Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
13
|
Abstract
Background Increasingly, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) has been used to provide rapid, inexpensive and precise identification of bacteria, including Corynebacterium species. Only three Corynebacterium species are able to produce diphtheria toxin (DT), and strains recovered may be either toxin-producing or non-toxin-producing. It appears the more precise bacterial identification provided by MALDI-TOF systems has led to an increase in requests submitted to the National Microbiology Laboratory (NML) for toxin testing. Objective To describe the number of isolates identified as C. diphtheriae, C. ulcerans and C. pseudotuberculosis, submitted to the NML between January 2006 and July 30, 2019, including their geographic area, source, and whether they produce DT. Methods Referrals to the NML of human or animal isolates that were identified as any of those three Corynebacterium species were studied with respect to province, source and toxigenicity. Species identification was confirmed and then specimens were tested by polymerase chain reaction for the presence of tox genes and, if positive, for expression of DT by the modified Elek method. Analysis was descriptive. Results Over the study period, 639 isolates were identified as C. diphtheriae, 22 isolates as C. ulcerans; no isolates were identified as C. pseudotuberculosis. There was an increase in C. diphtheriae referrals for DT testing: from eight per year in 2006 to an average of 15 per month in 2019, or a 1,200% increase over the 13.6-year period. The referrals were primarily from western Canada (n=609/639; 95%). Most (638/639, 99%) were human isolates and most were obtained from cutaneous sites. Of those isolates, 87/639 (13.6%) were found to be toxigenic and 552/639 (86.4%) non-toxigenic. Among C. ulcerans referrals, 17/22 (77%) were from humans and five (23%) were from animals, with 10/22 (45%) being toxigenic. Conclusion There has been a marked increase in referrals to the NML for DT testing of Corynebacterium species. This could be due to the enhanced ability to identify these bacteria using MALDI-TOF systems. Ongoing monitoring will help to assess whether the increase is due solely to increased precision of diagnosis or whether these are emerging cutaneous pathogens.
Collapse
|
14
|
Sutton-Fitzpatrick U, Grant C, Nashev D, Fleming C. Corynebacterium diphtheriae bloodstream infection: the role of antitoxin. BMJ Case Rep 2019; 12:12/11/e231914. [PMID: 31678926 DOI: 10.1136/bcr-2019-231914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 65-year-old male patient presented with fever, fast atrial fibrillation and frank haematuria on return to Ireland from travel in East Africa. He had a systolic murmur leading to a clinical suspicion of endocarditis. He had no specific clinical features of diphtheria. Blood cultures were taken and empiric therapy commenced with benzylpenicillin, vancomycin and gentamicin. Corynebacterium diphtheriae was detected on blood culture. The isolate was submitted to a reference laboratory for evaluation of toxigenicity. While initially there was concern regarding the possibility of myocarditis, a clinical decision was made not to administer diphtheria antitoxin in the absence of clinical features of respiratory diphtheria, in the presence of invasive infection and with presumptive previous immunisation. There is no specific guidance on the role of antitoxin in this setting. The issue is not generally addressed in previous reports of C. diphtheriae blood stream infection.
Collapse
Affiliation(s)
| | - Conor Grant
- Infectious Diseases, Galway University Hospitals, Galway, Ireland
| | - Dimitar Nashev
- Clinical Microbiology, Galway University Hospitals, Galway, Ireland
| | | |
Collapse
|
15
|
Seth-Smith HMB, Egli A. Whole Genome Sequencing for Surveillance of Diphtheria in Low Incidence Settings. Front Public Health 2019; 7:235. [PMID: 31497588 PMCID: PMC6713046 DOI: 10.3389/fpubh.2019.00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Corynebacterium diphtheriae (C. diphtheriae) is a relatively rare pathogen in most Western countries. While toxin producing strains can cause pharyngeal diphtheria with potentially fatal outcomes, the more common presentation is wound infections. The diphtheria toxin is encoded on a prophage and can also be carried by Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Currently, across Europe, infections are mainly diagnosed in travelers and refugees from regions where diphtheria is more endemic, patients from urban areas with poor hygiene, and intravenous drug users. About half of the cases are non-toxin producing isolates. Rapid identification of the bacterial pathogen and toxin production is a critical element of patient and outbreak management. Beside the immediate clinical management of the patient, public health agencies should be informed of toxigenic C. diphtheriae diagnoses as soon as possible. The collection of case-related epidemiological data from the patient is often challenging due to language barriers and social circumstances. However, information on patient contacts, vaccine status and travel/refugee route, where appropriate, is critical, and should be documented. In addition, isolates should be characterized using high resolution typing, in order to identify transmissions and outbreaks. In recent years, whole genome sequencing (WGS) has become the gold standard of high-resolution typing methods, allowing detailed investigations of pathogen transmissions. De-centralized sequencing strategies with redundancy in sequencing capacities, followed by data exchange may be a valuable future option, especially since WGS becomes more available and portable. In this context, the sharing of sequence data, using public available platforms, is essential. A close interaction between microbiology laboratories, treating physicians, refugee centers, social workers, and public health officials is a key element in successful management of suspected outbreaks. Analyzing bacterial isolates at reference centers may further help to provide more specialized microbiological techniques and to standardize information, but this is also more time consuming during an outbreak. Centralized communication strategies between public health agencies and laboratories helps considerably in establishing and coordinating effective surveillance and infection control. We review the current literature on high-resolution typing of C. diphtheriae and share our own experience with the coordination of a Swiss-German outbreak.
Collapse
Affiliation(s)
- Helena M. B. Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Kombade S, Bansal Y, Nag V, Patro S. Case of Ludwig's angina due to Corynebacterium diphtheriae from western Rajasthan, India-A case report of an uncommon presentation. J Family Med Prim Care 2019; 8:3061-3063. [PMID: 31681698 PMCID: PMC6820376 DOI: 10.4103/jfmpc.jfmpc_684_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 08/24/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Corynebacterium diphtheriae is a toxin producing, classically noninvasive bacteria that causes diphtheria a vaccine-preventable disease mainly in children. With increasing vaccine cover, new spectrum of infections is increasingly seen involving invasive infections and nontoxigenic strains of C. diphtheriae. Here, we present a case of Ludwig's angina caused by C. diphtheriae in a 45-year-old female. Only Corynebacterium spp. have been previously reported in Ludwig's angina patients.
Collapse
|
17
|
Timms VJ, Nguyen T, Crighton T, Yuen M, Sintchenko V. Genome-wide comparison of Corynebacterium diphtheriae isolates from Australia identifies differences in the Pan-genomes between respiratory and cutaneous strains. BMC Genomics 2018; 19:869. [PMID: 30509172 PMCID: PMC6278121 DOI: 10.1186/s12864-018-5147-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/08/2018] [Indexed: 11/22/2022] Open
Abstract
Background Corynebacterium diphtheriae is the main etiological agent of diphtheria, a global disease causing life-threatening infections, particularly in infants and children. Vaccination with diphtheria toxoid protects against infection with potent toxin producing strains. However a growing number of apparently non-toxigenic but potentially invasive C. diphtheriae strains are identified in countries with low prevalence of diphtheria, raising key questions about genomic structures and population dynamics of the species. This study examined genomic diversity among 48 C. diphtheriae isolates collected in Australia over a 12-year period using whole genome sequencing. Phylogeny was determined using SNP-based mapping and genome wide analysis. Results C. diphtheriae sequence type (ST) 32, a non-toxigenic clone with evidence of enhanced virulence that has been also circulating in Europe, appears to be endemic in Australia. Isolates from temporospatially related patients displayed the same ST and similarity in their core genomes. The genome-wide analysis highlighted a role of pilins, adhesion factors and iron utilization in infections caused by non-toxigenic strains. Conclusions The genomic diversity of toxigenic and non-toxigenic strains of C. diphtheriae in Australia suggests multiple sources of infection and colonisation. Genomic surveillance of co-circulating toxigenic and non-toxigenic C. diphtheriae offer new insights into the evolution and virulence of pathogenic clones and can inform targeted public health actions and policy. The genomes presented in this investigation will contribute to the global surveillance of C. diphtheriae both for the monitoring of antibiotic resistance genes and virulent strains such as those belonging to ST32. Electronic supplementary material The online version of this article (10.1186/s12864-018-5147-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Verlaine J Timms
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, PO Box 533, Wentworthville, NSW, 2145, Australia.
| | - Trang Nguyen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Sydney, Australia
| | - Taryn Crighton
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Sydney, Australia
| | - Marion Yuen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Sydney, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, PO Box 533, Wentworthville, NSW, 2145, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Sydney, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Tagini F, Pillonel T, Croxatto A, Bertelli C, Koutsokera A, Lovis A, Greub G. Distinct Genomic Features Characterize Two Clades of Corynebacterium diphtheriae: Proposal of Corynebacterium diphtheriae Subsp. diphtheriae Subsp. nov. and Corynebacterium diphtheriae Subsp. lausannense Subsp. nov. Front Microbiol 2018; 9:1743. [PMID: 30174653 PMCID: PMC6108181 DOI: 10.3389/fmicb.2018.01743] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/12/2018] [Indexed: 12/25/2022] Open
Abstract
Corynebacterium diphtheriae is the etiological agent of diphtheria, a disease caused by the presence of the diphtheria toxin. However, an increasing number of records report non-toxigenic C. diphtheriae infections. Here, a C. diphtheriae strain was recovered from a patient with a past history of bronchiectasis who developed a severe tracheo-bronchitis with multiple whitish lesions of the distal trachea and the mainstem bronchi. Whole-genome sequencing (WGS), performed in parallel with PCR targeting the toxin gene and the Elek test, provided clinically relevant results in a short turnaround time, showing that the isolate was non-toxigenic. A comparative genomic analysis of the new strain (CHUV2995) with 56 other publicly available genomes of C. diphtheriae revealed that the strains CHUV2995, CCUG 5865 and CMCNS703 share a lower average nucleotide identity (ANI) (95.24 to 95.39%) with the C. diphtheriae NCTC 11397T reference genome than all other C. diphtheriae genomes (>98.15%). Core genome phylogeny confirmed the presence of two monophyletic clades. Based on these findings, we propose here two new C. diphtheriae subspecies to replace the lineage denomination used in previous multilocus sequence typing studies: C. diphtheriae subsp. lausannense subsp. nov. (instead of lineage-2), regrouping strains CHUV2995, CCUG 5865, and CMCNS703, and C. diphtheriae subsp. diphtheriae subsp. nov, regrouping all other C. diphtheriae in the dataset (instead of lineage-1). Interestingly, members of subspecies lausannense displayed a larger genome size than subspecies diphtheriae and were enriched in COG categories related to transport and metabolism of lipids (I) and inorganic ion (P). Conversely, they lacked all genes involved in the synthesis of pili (SpaA-type, SpaD-type and SpaH-type), molybdenum cofactor and of the nitrate reductase. Finally, the CHUV2995 genome is particularly enriched in mobility genes and harbors several prophages. The genome encodes a type II-C CRISPR-Cas locus with 2 spacers that lacks csn2 or cas4, which could hamper the acquisition of new spacers and render strain CHUV2995 more susceptible to bacteriophage infections and gene acquisition through various mechanisms of horizontal gene transfer.
Collapse
Affiliation(s)
- Florian Tagini
- Institute of Microbiology, Department of Laboratory Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, Department of Laboratory Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | - Antony Croxatto
- Institute of Microbiology, Department of Laboratory Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, Department of Laboratory Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | - Angela Koutsokera
- Division of Pulmonology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Alban Lovis
- Division of Pulmonology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Department of Laboratory Medicine, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
19
|
Rajamani Sekar S, Veeraraghavan B, Anandan S, Devanga Ragupathi N, Sangal L, Joshi S. Strengthening the laboratory diagnosis of pathogenicCorynebacteriumspecies in the Vaccine era. Lett Appl Microbiol 2017; 65:354-365. [DOI: 10.1111/lam.12781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/06/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023]
Affiliation(s)
- S.K. Rajamani Sekar
- Department of Clinical Microbiology; Christian Medical College; Vellore India
| | - B. Veeraraghavan
- Department of Clinical Microbiology; Christian Medical College; Vellore India
| | - S. Anandan
- Department of Clinical Microbiology; Christian Medical College; Vellore India
| | | | - L. Sangal
- World Health Organization (WHO) Country Office; New Delhi India
| | - S. Joshi
- World Health Organization (WHO) Country Office; New Delhi India
| |
Collapse
|
20
|
Sangal V, Hoskisson PA. Evolution, epidemiology and diversity of Corynebacterium diphtheriae: New perspectives on an old foe. INFECTION GENETICS AND EVOLUTION 2016; 43:364-70. [PMID: 27291708 DOI: 10.1016/j.meegid.2016.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022]
Abstract
Diphtheria is a debilitating disease caused by toxigenic Corynebacterium diphtheriae strains and has been effectively controlled by the toxoid vaccine, yet several recent outbreaks have been reported across the globe. Moreover, non-toxigenic C. diphtheriae strains are emerging as a major global health concern by causing severe pharyngitis and tonsillitis, endocarditis, septic arthritis and osteomyelitis. Molecular epidemiological investigations suggest the existence of outbreak-associated clones with multiple genotypes circulating around the world. Evolution and pathogenesis appears to be driven by recombination as major virulence factors, including the tox gene and pilus gene clusters, are found within genomic islands that appear to be mobile between strains. The number of pilus gene clusters and variation introduced by gain or loss of gene function correlate with the variable adhesive and invasive properties of C. diphtheriae strains. Genomic variation does not support the separation of C. diphtheriae strains into biovars which correlates well with findings of studies based on multilocus sequence typing. Genomic analyses of a relatively small number of strains also revealed a recombination driven diversification of strains within a sequence type and indicate a wider diversity among C. diphtheriae strains than previously appreciated. This suggests that there is a need for increased effort from the scientific community to study C. diphtheriae to help understand the genomic diversity and pathogenicity within the population of this important human pathogen.
Collapse
Affiliation(s)
- Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|