1
|
Yang YX, Zhou F, Wen T, Li WJ. Deciphering the Enigma of Intramyocardial Hemorrhage Following Reperfusion Therapy in Acute ST-Segment Elevation Myocardial Infarction: A Comprehensive Exploration from Mechanisms to Therapeutic Strategies. Cardiol Rev 2024:00045415-990000000-00274. [PMID: 38780252 DOI: 10.1097/crd.0000000000000721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) is a formidable challenge in cardiovascular medicine, demanding advanced reperfusion strategies such as emergency percutaneous coronary intervention. While successful revascularization is pivotal, the persistent "no-reflow" phenomenon remains a clinical hurdle, often intertwined with microvascular dysfunction. Within this intricate scenario, the emergence of intramyocardial hemorrhage (IMH) has garnered attention as a significant contributor. This review offers a detailed exploration of the multifaceted relationship between IMH and the "no-reflow" phenomenon, delving into the mechanisms governing IMH occurrence, state-of-the-art diagnostic modalities, predictive factors, clinical implications, and the evolving landscape of preventive and therapeutic strategies. The nuanced examination aims to deepen our comprehension of IMH, providing a foundation for the identification of innovative therapeutic avenues and enhanced clinical outcomes for STEMI patients.
Collapse
Affiliation(s)
- Yong Xin Yang
- From the Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, Hubei, China
| | - Fei Zhou
- From the Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, Hubei, China
- Department of Cardiology, Institute of Cardiovascular Disease, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Te Wen
- From the Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, Hubei, China
| | - Wen Jing Li
- From the Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
2
|
Elahimanesh M, Shokri N, Mahdinia E, Mohammadi P, Parvaz N, Najafi M. Differential gene expression patterns in ST-elevation Myocardial Infarction and Non-ST-elevation Myocardial Infarction. Sci Rep 2024; 14:3424. [PMID: 38341440 PMCID: PMC10858964 DOI: 10.1038/s41598-024-54086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
The ST-elevation Myocardial Infarction (STEMI) and Non-ST-elevation Myocardial Infarction (NSTEMI) might occur because of coronary artery stenosis. The gene biomarkers apply to the clinical diagnosis and therapeutic decisions in Myocardial Infarction. The aim of this study was to introduce, enrich and estimate timely the blood gene profiles based on the high-throughput data for the molecular distinction of STEMI and NSTEMI. The text mining data (50 genes) annotated with DisGeNET data (144 genes) were merged with the GEO gene expression data (5 datasets) using R software. Then, the STEMI and NSTEMI networks were primarily created using the STRING server, and improved using the Cytoscape software. The high-score genes were enriched using the KEGG signaling pathways and Gene Ontology (GO). Furthermore, the genes were categorized to determine the NSTEMI and STEMI gene profiles. The time cut-off points were identified statistically by monitoring the gene profiles up to 30 days after Myocardial Infarction (MI). The gene heatmaps were clearly created for the STEMI (high-fold genes 69, low-fold genes 45) and NSTEMI (high-fold genes 68, low-fold genes 36). The STEMI and NSTEMI networks suggested the high-score gene profiles. Furthermore, the gene enrichment suggested the different biological conditions for STEMI and NSTEMI. The time cut-off points for the NSTEMI (4 genes) and STEMI (13 genes) gene profiles were established up to three days after Myocardial Infarction. The study showed the different pathophysiologic conditions for STEMI and NSTEMI. Furthermore, the high-score gene profiles are suggested to measure up to 3 days after MI to distinguish the STEMI and NSTEMI.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Mahdinia
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Parvaz
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|