1
|
Kummer D, Dorigatti I, Dunzendorfer-Matt T, Golderer G, Werner ER, Watschinger K. Functional characterization of TMEM86A and TMEM86B mutants by a novel lysoplasmalogenase assay. J Lipid Res 2025; 66:100766. [PMID: 40024572 PMCID: PMC11994398 DOI: 10.1016/j.jlr.2025.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025] Open
Abstract
Plasmalogens are an abundant class of glycero-phospholipids with a characteristic 1-O-alk-1'-enyl double bond. While their synthesis has been extensively investigated, their degradation remains understudied. Plasmalogen deficiencies are associated with severe disorders in humans and interfering with their degradation would be a treatment option, but it remains out of reach due to limited knowledge. The plasmalogen double bond is degraded either directly by a plasmalogenase or by conversion to the 2' lyso forms by phospholipase and subsequent cleavage by lysoplasmalogenase (E.C. 3.3.2.2). Two lysoplasmalogenases are known so far, TMEM86A and TMEM86B. While TMEM86B has been expressed in bacteria, purified, and shown to encode lysoplasmalogenase activity by a coupled optical assay, the closely related protein TMEM86A has not yet been purified, but its activity was shown indirectly by a lipidomics approach. Here, we present a novel assay for lysoplasmalogenase activity based on incubation with lysoplasmenylethanolamine or lysoplasmenylcholine, derivatization of the aldehyde product with dansylhydrazine, and hydrazone quantification by reversed-phase HPLC with fluorescence detection. The method was sensitive enough to robustly detect lysoplasmalogenase activity in human embryonic kidney cells following transient expression of TMEM86A or TMEM86B and also suitable for the determination of lysoplasmalogenase activity in mouse tissues where highest activities were found in liver and duodenum. We introduced point mutations at positions proposed to be catalytically relevant and provided experimental evidence that all but one affected lysoplasmalogenase activity. Our novel assay allows direct and fast measurement of lysoplasmalogenase activity, thereby providing a tool to advance research in the field of plasmalogen degradation.
Collapse
Affiliation(s)
- Denise Kummer
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ilaria Dorigatti
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Georg Golderer
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ernst R Werner
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Vaz FM, Ferdinandusse S, Salomons GS, Wanders RJA. Disorders of fatty acid homeostasis. J Inherit Metab Dis 2025; 48:e12734. [PMID: 38693715 PMCID: PMC11730842 DOI: 10.1002/jimd.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Humans derive fatty acids (FA) from exogenous dietary sources and/or endogenous synthesis from acetyl-CoA, although some FA are solely derived from exogenous sources ("essential FA"). Once inside cells, FA may undergo a wide variety of different modifications, which include their activation to their corresponding CoA ester, the introduction of double bonds, the 2- and ω-hydroxylation and chain elongation, thereby generating a cellular FA pool which can be used for the synthesis of more complex lipids. The biological properties of complex lipids are very much determined by their molecular composition in terms of the FA incorporated into these lipid species. This immediately explains the existence of a range of genetic diseases in man, often with severe clinical consequences caused by variants in one of the many genes coding for enzymes responsible for these FA modifications. It is the purpose of this review to describe the current state of knowledge about FA homeostasis and the genetic diseases involved. This includes the disorders of FA activation, desaturation, 2- and ω-hydroxylation, and chain elongation, but also the disorders of FA breakdown, including disorders of peroxisomal and mitochondrial α- and β-oxidation.
Collapse
Affiliation(s)
- Frédéric M. Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
| | - Gajja S. Salomons
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Ronald J. A. Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
| |
Collapse
|
3
|
Helsley RN, Zelows MM, Noffsinger VP, Anspach GB, Dharanipragada N, Mead AE, Cobo I, Carter A, Wu Q, Shalaurova I, Saito K, Morganti JM, Gordon SM, Graf GA. Hepatic Inactivation of Carnitine Palmitoyltransferase 1a Lowers Apolipoprotein B Containing Lipoproteins in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628437. [PMID: 39763810 PMCID: PMC11702516 DOI: 10.1101/2024.12.13.628437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Genome- and epigenome-wide association studies have associated variants and methylation status of carnitine palmitoyltransferase 1a (CPT1a) to reductions in very low-density lipoprotein (VLDL) cholesterol and triglyceride levels. We report significant associations between the presence of CPT1a SNPs and reductions in plasma cholesterol, as well as positive associations between hepatic Cpt1a expression and plasma cholesterol levels across inbred mouse strains. Mechanistic studies show that both wild type and human apolipoprotein B100 (apoB)-transgenic mice with liver-specific deletion of Cpt1a (LKO) display lower circulating apoB levels consistent with reduced LDL-cholesterol (LDL-C) and LDL particle number. Despite a reduction in steady-state plasma lipids, VLDL-triglyceride (VLDL-TG) and cholesterol (VLDL-C) secretion rates are increased, suggesting accelerated clearance of apoB-containing lipoproteins (apoB-LPs) in LKO mice. Mechanistic approaches show greater peroxisome proliferator activated receptor α (PPARα) signaling which favors enhanced lipoprotein lipase-mediated metabolism of apoB-LPs, including increases in ApoCII and ApoAIV and reductions in ApoCIII & Angptl3. These studies provide mechanistic insight linking genetic variants and methylation status of CPT1a to reductions in circulating apoB-LPs in humans. HIGHLIGHTS Loss-of-function SNPs in CPT1a associate with reductions in plasma cholesterol in humans Hepatic Cpt1a expression positively associates with plasma cholesterol levels across inbred strains of miceLiver-specific Cpt1a deficiency lowers circulating apoB, plasma cholesterol, LDL-C, and LDL particle numberCpt1a ablation activates PPARα and favors clearance of apoB-containing lipoproteins.
Collapse
|
4
|
Hendrix S, Tan JME, Ndoj K, Kingma J, Valiloo M, Zijlstra LF, Ottenhoff R, Seidah NG, Loregger A, Kober DL, Zelcer N. SPRING is a Dedicated Licensing Factor for SREBP-Specific Activation by S1P. Mol Cell Biol 2024; 44:123-137. [PMID: 38747374 PMCID: PMC11110692 DOI: 10.1080/10985549.2024.2348711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
SREBP transcription factors are central regulators of lipid metabolism. Their proteolytic activation requires ER to the Golgi translocation and subsequent cleavage by site-1-protease (S1P). Produced as a proprotein, S1P undergoes autocatalytic cleavage from its precursor S1PA to mature S1PC form. Here, we report that SPRING (previously C12ORF29) and S1P interact through their ectodomains, and that this facilitates the autocatalytic cleavage of S1PA into its mature S1PC form. Reciprocally, we identified a S1P recognition-motif in SPRING and demonstrate that S1P-mediated cleavage leads to secretion of the SPRING ectodomain in cells, and in liver-specific Spring knockout (LKO) mice transduced with AAV-mSpring. By reconstituting SPRING variants into SPRINGKO cells we show that the SPRING ectodomain supports proteolytic maturation of S1P and SREBP signaling, but that S1P-mediated SPRING cleavage is not essential for these processes. Absence of SPRING modestly diminishes proteolytic maturation of S1PA→C and trafficking of S1PC to the Golgi. However, despite reaching the Golgi in SPRINGKO cells, S1PC fails to rescue SREBP signaling. Remarkably, whereas SREBP signaling was severely attenuated in SPRINGKO cells and LKO mice, that of ATF6, another S1P substrate, was unaffected in these models. Collectively, our study positions SPRING as a dedicated licensing factor for SREBP-specific activation by S1P.
Collapse
Affiliation(s)
- Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Josephine M. E. Tan
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Klevis Ndoj
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Jenina Kingma
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Masoud Valiloo
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Lobke F. Zijlstra
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), University of Montreal, Montréal, Québec, Canada
| | - Anke Loregger
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel L. Kober
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Harber KJ, Neele AE, van Roomen CP, Gijbels MJ, Beckers L, Toom MD, Schomakers BV, Heister DA, Willemsen L, Griffith GR, de Goede KE, van Dierendonck XA, Reiche ME, Poli A, L-H Mogensen F, Michelucci A, Verberk SG, de Vries H, van Weeghel M, Van den Bossche J, de Winther MP. Targeting the ACOD1-itaconate axis stabilizes atherosclerotic plaques. Redox Biol 2024; 70:103054. [PMID: 38309122 PMCID: PMC10848031 DOI: 10.1016/j.redox.2024.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024] Open
Abstract
Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis. Ldlr-/- atherogenic mice transplanted with Acod1-/- bone marrow displayed a more stable plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes to the vessel intima. Macrophages from Acod1-/- mice contained more lipids whilst also displaying reduced induction of apoptosis. Using multi-omics approaches, we identify a metabolic shift towards purine metabolism, in addition to an altered glycolytic flux towards production of glycerol for triglyceride synthesis. Overall, our data highlight the potential of therapeutically blocking ACOD1 with the aim of stabilizing atherosclerotic plaques.
Collapse
Affiliation(s)
- Karl J Harber
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Annette E Neele
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands
| | - Cindy Paa van Roomen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Marion Jj Gijbels
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Department of Pathology, CARIM, Cardiovascular Research Institute Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht UMC, University of Maastricht, 6229 HX, Maastricht, the Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Bauke V Schomakers
- Department of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Daan Af Heister
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Lisa Willemsen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands
| | - Guillermo R Griffith
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Kyra E de Goede
- Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, the Netherlands
| | - Xanthe Amh van Dierendonck
- Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, the Netherlands
| | - Myrthe E Reiche
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Department of Medical Cell Biology, Uppsala University, 75236, Uppsala, Sweden
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Frida L-H Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Sanne Gs Verberk
- Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Helga de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Department of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jan Van den Bossche
- Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, the Netherlands.
| | - Menno Pj de Winther
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands.
| |
Collapse
|