1
|
SPOP mutation induces replication over-firing by impairing Geminin ubiquitination and triggers replication catastrophe upon ATR inhibition. Nat Commun 2021; 12:5779. [PMID: 34599168 PMCID: PMC8486843 DOI: 10.1038/s41467-021-26049-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Geminin and its binding partner Cdt1 are essential for the regulation of DNA replication. Here we show that the CULLIN3 E3 ubiquitin ligase adaptor protein SPOP binds Geminin at endogenous level and regulates DNA replication. SPOP promotes K27-linked non-degradative poly-ubiquitination of Geminin at lysine residues 100 and 127. This poly-ubiquitination of Geminin prevents DNA replication over-firing by indirectly blocking the association of Cdt1 with the MCM protein complex, an interaction required for DNA unwinding and replication. SPOP is frequently mutated in certain human cancer types and implicated in tumorigenesis. We show that cancer-associated SPOP mutations impair Geminin K27-linked poly-ubiquitination and induce replication origin over-firing and re-replication. The replication stress caused by SPOP mutations triggers replication catastrophe and cell death upon ATR inhibition. Our results reveal a tumor suppressor role of SPOP in preventing DNA replication over-firing and genome instability and suggest that SPOP-mutated tumors may be susceptible to ATR inhibitor therapy. Geminin-Cdt1 plays essential roles in the regulation of DNA replication. Here the authors reveal that the CULLIN3 E3 ubiquitin ligase adaptor protein SPOP prevents DNA replication over-firing and genome instability by affecting Geminin ubiquitination.
Collapse
|
2
|
Turcu DC, Lillehaug JR, Seo HC. SIX3 and SIX6 interact with GEMININ via C-terminal regions. Biochem Biophys Rep 2019; 20:100695. [PMID: 31844685 PMCID: PMC6895700 DOI: 10.1016/j.bbrep.2019.100695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 01/13/2023] Open
Abstract
The histoarchitecture and function of eye and forebrain depend on a well-controlled balance between cell proliferation and differentiation. For example, the binding of the cell cycle regulator GEMININ to CDT1, which is a part of the pre-replication complex, promotes cell differentiation. Homeodomain transcription factors SIX3 and SIX6 also interact with GEMININ of which SIX3-GEMININ interaction promotes cell proliferation, whereas the nature of SIX6-GEMININ interaction has not been studied to date. We investigated SIX3/SIX6 and GEMININ interactions using bimolecular fluorescence complementation, surface plasmon resonance and isothermal titration calorimetry. Interactions between SIX3/SIX6 and GEMININ were detected in mammalian cells in culture. The presence of the C-terminal regions of SIX3 and SIX6 proteins, but not their SIX domains or homeodomains as previously thought, were required for interaction with GEMININ. Interestingly, the disordered C- and N- terminal regions of GEMININ were involved in binding to SIX3/SIX6. The coiled-coil region of GEMININ, which is the known protein-binding domain and also interacts with CDT1, was not involved in GEMININ-SIX3/SIX6 interaction. Using SPR and ITC, SIX3 bound GEMININ with a micromolar affinity and the binding stoichiometry was 1:2 (SIX3 - GEMININ). The present study gives new insights into the binding properties of SIX proteins, especially the role of their variable and disordered C-terminal regions. C-terminal regions of SIX3/SIX6 bind GEMININ. GEMININ coiled-coil region is not involved in SIX3/SIX6 interaction. C- and N-terminal regions of GEMININ bind SIX3/SIX6. SIX3 binds GEMININ with a binding stoichiometry of 1:2.
Collapse
Affiliation(s)
- Diana C Turcu
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Johan R Lillehaug
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Hee-Chan Seo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Zhou XL, Wei Y, Chen XY, Chen P, Tang XF, Zhang Q, Dong ZQ, Pan MH, Lu C. BmGeminin2 interacts with BmRRS1 and regulates Bombyx mori cell proliferation. Cell Cycle 2019; 18:1498-1512. [PMID: 31145019 DOI: 10.1080/15384101.2019.1624109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Geminin is a master regulator of cell-cycle progression that ensures the timely onset of DNA replication and prevents re-replication in vertebrates and invertebrates. Previously, we identified two Geminin genes, BmGeminin1 and BmGeminn2, in the silkworm Bombyx mori, and we found that RNA interference of BmGeminin1 led to re-replication. However, the function of BmGeminin2 remains poorly understood. In this study, we found that knockdown of BmGeminin2 can improve cell proliferation, and upregulated G2/M-associated gene-cyclinB/CDK1 expression. Then, we performed yeast two-hybrid screening to identify interacting proteins. Our results yielded 23 interacting proteins, which are involved in DNA replication, chromosome stabilization, embryonic development, energy, defense, protein processing, or structural protein. Here, we focused on BmRRS1, a chromosome congression-related protein that is closely related to cell cycle G2/M progression. The interaction between BmGeminin2 and BmRRS1 was confirmed by immunofluorescence and immunoprecipitation. Analysis of its expression profile showed that BmRRS1 was related to BmGeminin2. In addition, BmGeminin2 overexpression downregulated the BmRRS1 transcript. Knockdown of BmGeminin2 led to upregulation of the BmRRS1 transcript. Furthermore, overexpression of BmRRS1 can upregulate G2/M-associated gene-cyclinB/CDK1 expression, and improved cell proliferation, consistent with the effects of BmGeminin2 knockout. In addition, BmRRS1 RNA interference can eliminate the impact of BmGem2 knockout on cell proliferation, the ratio of cell cycle stage and the expression of cyclinB/CDK1. These data suggested that the cell proliferation advantage of BmGeminin2 knockout was closely related to BmRRS1. Our findings provide insight into the functions of Geminin and the mechanisms underlying the regulation of the cell cycle in the silkworm.
Collapse
Affiliation(s)
- Xiao-Lin Zhou
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Yi Wei
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Xiang-Yun Chen
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Peng Chen
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,b Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| | - Xiao-Fang Tang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Qian Zhang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Zhan-Qi Dong
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,b Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| | - Min-Hui Pan
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,b Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| | - Cheng Lu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,b Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| |
Collapse
|
4
|
Arbi M, Pefani DE, Taraviras S, Lygerou Z. Controlling centriole numbers: Geminin family members as master regulators of centriole amplification and multiciliogenesis. Chromosoma 2017; 127:151-174. [PMID: 29243212 DOI: 10.1007/s00412-017-0652-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
Abstract
To ensure that the genetic material is accurately passed down to daughter cells during mitosis, dividing cells must duplicate their chromosomes and centrosomes once and only once per cell cycle. The same key steps-licensing, duplication, and segregation-control both the chromosome and the centrosome cycle, which must occur in concert to safeguard genome integrity. Aberrations in genome content or centrosome numbers lead to genomic instability and are linked to tumorigenesis. Such aberrations, however, can also be part of the normal life cycle of specific cell types. Multiciliated cells best exemplify the deviation from a normal centrosome cycle. They are post-mitotic cells which massively amplify their centrioles, bypassing the rule for once-per-cell-cycle centriole duplication. Hundreds of centrioles dock to the apical cell surface and generate motile cilia, whose concerted movement ensures fluid flow across epithelia. The early steps that control the generation of multiciliated cells have lately started to be elucidated. Geminin and the vertebrate-specific GemC1 and McIdas are distantly related coiled-coil proteins, initially identified as cell cycle regulators associated with the chromosome cycle. Geminin is required to ensure once-per-cell-cycle genome replication, while McIdas and GemC1 bind to Geminin and are implicated in DNA replication control. Recent findings highlight Geminin family members as early regulators of multiciliogenesis. GemC1 and McIdas specify the multiciliate cell fate by forming complexes with the E2F4/5 transcription factors to switch on a gene expression program leading to centriole amplification and cilia formation. Positive and negative interactions among Geminin family members may link cell cycle control to centriole amplification and multiciliogenesis, acting close to the point of transition from proliferation to differentiation. We review key steps of centrosome duplication and amplification, present the role of Geminin family members in the centrosome and chromosome cycle, and discuss links with disease.
Collapse
Affiliation(s)
- Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Dafni-Eleftheria Pefani
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.,CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.
| |
Collapse
|
5
|
Wang Z, Atchley WR. Spectral Analysis of Sequence Variability in Basic-Helix-loop-helix (bHLH) Protein Domains. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors is used as a paradigm to explore structural implications of periodicity patterns in amino acid sequence variability. A Boltzmann-Shannon entropy profile represents site-by-site amino acid variation in the bHLH domain. Spectral analysis of almost 200 bHLH sequences documents the periodic nature of the bHLH sequence variation. Spectral analyses provide strong evidence that the patterns of amino acid variation in large numbers of sequences conform to the classical a-helix three-dimensional structure periodicity of 3.6 amino acids per turn. Multivariate indices of amino acid physiochemical attributes derived from almost 500 amino acid attributes are used to provide information regarding the underlying causal components of the bHLH sequence variability. Five multivariate attribute indices are used that reflect patterns in i) polarity - hydrophobicity - accessibility, ii) propensity for secondary structures, iii) molecular volume, iv) codon composition and v) electrostatic charge. Multiple regression analyses of the entropy values as dependent variables and the factor score means and variances as independent variables are used to partition variation in entropy values into their underlying causal structural components.
Collapse
Affiliation(s)
- Zhi Wang
- Graduate Program In Biomathematics And Bioinformatics, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - William R. Atchley
- Graduate Program In Biomathematics And Bioinformatics, North Carolina State University, Raleigh, NC 27695-7614, USA
- Department Of Genetics and Center For Computational Biology, North Carolina State University, Raleigh, NC 27695-7614, USA
| |
Collapse
|
6
|
You Z, Ode KL, Shindo M, Takisawa H, Masai H. Characterization of conserved arginine residues on Cdt1 that affect licensing activity and interaction with Geminin or Mcm complex. Cell Cycle 2017; 15:1213-26. [PMID: 26940553 DOI: 10.1080/15384101.2015.1106652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2∼7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.
Collapse
Affiliation(s)
- Zhiying You
- a Department of Genome Medicine , Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Koji L Ode
- b Department of Biological Sciences , Graduate School of Science, Osaka University , Toyonaka , Osaka , Japan
| | - Mayumi Shindo
- c Laboratory of Protein Analysis, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Haruhiko Takisawa
- b Department of Biological Sciences , Graduate School of Science, Osaka University , Toyonaka , Osaka , Japan
| | - Hisao Masai
- a Department of Genome Medicine , Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| |
Collapse
|
7
|
Tang XF, Chen XY, Zhang CD, Li YF, Liu TH, Zhou XL, Wang L, Zhang Q, Chen P, Lu C, Pan MH. Two Geminin homologs regulate DNA replication in silkworm, Bombyx mori. Cell Cycle 2017; 16:830-840. [PMID: 28379781 DOI: 10.1080/15384101.2017.1282582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA replication is rigorously controlled in cells to ensure that the genome duplicates exactly once per cell cycle. Geminin is a small nucleoprotein, which prevents DNA rereplication by directly binding to and inhibiting the DNA replication licensing factor, Cdt1. In this study, we have identified 2 Geminin genes, BmGeminin1 and BmGeminn2, in silkworm, Bombyx mori. These genes contain the Geminin conserved coiled-coil domain and are periodically localized in the nucleus during the S-G2 phase but are degraded at anaphase in mitosis. Both BmGeminin1 and BmGeminin2 are able to homodimerize and interact with BmCdt1 in cells. In addition, BmGeminin1 and BmGeminin2 can interact with each other. Overexpression of BmGeminin1 affects cell cycle progression: cell cycle is arrested in S phase, and RNA interference of BmGeminin1 leads to rereplication. In contrast, overexpression or knockdown of BmGeminin2 with RNAi did not significantly affect cell cycle, while more rereplication occurred when BmGeminin1 and BmGeminin2 together were knocked down in cells than when only BmGeminin1 was knocked down. These data suggest that both BmGeminin1 and BmGeminin2 are involved in the regulation of DNA replication. These findings provide insight into the function of Geminin and contribute to our understanding of the regulation mechanism of cell cycle in silkworm.
Collapse
Affiliation(s)
- Xiao-Fang Tang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Xiang-Yun Chen
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,b Basic Medical School , Guiyang College of Traditional Chinese Medicine , Guiyang , China
| | - Chun-Dong Zhang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,c Department of Biochemistry and Molecular Biology , Chongqing Medical University , Chongqing , China
| | - Yao-Feng Li
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,b Basic Medical School , Guiyang College of Traditional Chinese Medicine , Guiyang , China
| | - Tai-Hang Liu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Xiao-Lin Zhou
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - La Wang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Qian Zhang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Peng Chen
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,d Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| | - Cheng Lu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,d Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| | - Min-Hui Pan
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,d Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| |
Collapse
|
8
|
Randino R, Grimaldi M, Persico M, De Santis A, Cini E, Cabri W, Riva A, D’Errico G, Fattorusso C, D’Ursi AM, Rodriquez M. Investigating the Neuroprotective Effects of Turmeric Extract: Structural Interactions of β-Amyloid Peptide with Single Curcuminoids. Sci Rep 2016; 6:38846. [PMID: 28004737 PMCID: PMC5177957 DOI: 10.1038/srep38846] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/15/2016] [Indexed: 02/04/2023] Open
Abstract
A broad biophysical analysis was performed to investigate the molecular basis of the neuroprotective action of Curcuma longa extracts in Alzheimer's disease. By combining circular dichroism and electron paramagnetic resonance experiments with molecular modeling calculations, the minor components of Curcuma longa extracts, such as demethoxycurcumin (2, DMC), bisdemethoxycurcumin (3, BDMC) and cyclocurcumin (4, CYC), were analyzed in a membrane environment mimicking the phospholipid bilayer. Our study provides the first evidence on the relative role of single curcuminoids interacting with Aβ-peptide. When the CYC and curcumin metabolite tetrahydrocurcumin (5, THC) were inserted into an anionic lipid solution, a significant modification of the Aβ CD curves was detected. These data were implemented by EPR experiments, demonstrating that CYC reaches the inner part of the bilayer, while the other curcuminoids are localized close to the membrane interface. Computational studies provided a model for the curcuminoid-Aβ interaction, highlighting the importance of a constrained "semi-folded" conformation to interact with Aβ analogously to the pattern observed in α-helical coiled-coil peptide structures. This combined approach led to a better understanding of the intriguing in vitro and in vivo activity of curcuminoids as anti-Alzheimer agents, paving a new path for the rational design of optimized druggable analogues.
Collapse
Affiliation(s)
- Rosario Randino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084-Fisciano-Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084-Fisciano-Italy
| | - Marco Persico
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131-Naples-Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia, 80126-Naples-Italy
| | - Elena Cini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100-Siena-Italy
| | - Walter Cabri
- R&D Department, Indena, Viale Ortles, 12, 20139-Milan-Italy
- Innovation & Development Fresenius-Kabi, Piazza Maestri del Lavoro, 7, 20063-Cernusco sul Naviglio Milan-Italy
| | - Antonella Riva
- R&D Department, Indena, Viale Ortles, 12, 20139-Milan-Italy
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia, 80126-Naples-Italy
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131-Naples-Italy
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084-Fisciano-Italy
| | - Manuela Rodriquez
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084-Fisciano-Italy
| |
Collapse
|
9
|
Kushwaha PP, Rapalli KC, Kumar S. Geminin a multi task protein involved in cancer pathophysiology and developmental process: A review. Biochimie 2016; 131:115-127. [PMID: 27702582 DOI: 10.1016/j.biochi.2016.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023]
Abstract
DNA replicates in a timely manner with each cell division. Multiple proteins and factors are involved in the initiation of DNA replication including a dynamic interaction between Cdc10-dependent transcript (Cdt1) and Geminin (GMNN). A conformational change between GMNN-Cdt1 heterotrimer and heterohexamer complex is responsible for licensing or inhibition of the DNA replication. This molecular switch ensures a faithful DNA replication during each S phase of cell cycle. GMNN inhibits Cdt1-mediated minichromosome maintenance helicases (MCM) loading onto the chromatin-bound origin recognition complex (ORC) which results in the inhibition of pre-replication complex assembly. GMNN modulates DNA replication by direct binding to Cdt1, and thereby alters its stability and activity. GMNN is involved in various stages of development such as pre-implantation, germ layer formation, cell commitment and specification, maintenance of genome integrity at mid blastula transition, epithelial to mesenchymal transition during gastrulation, neural development, organogenesis and axis patterning. GMNN interacts with different proteins resulting in enhanced hematopoietic stem cell activity thereby activating the development-associated genes' transcription. GMNN expression is also associated with cancer pathophysiology and development. In this review we discussed the structure and function of GMNN in detail. Inhibitors of GMNN and their role in DNA replication, repair, cell cycle and apoptosis are reviewed. Further, we also discussed the role of GMNN in virus infected host cells.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- School of Basic and Applied Sciences, Centre for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Krishna Chaitanya Rapalli
- School of Basic and Applied Sciences, Centre for Animal Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Shashank Kumar
- School of Basic and Applied Sciences, Centre for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
10
|
Caillat C, Fish A, Pefani DE, Taraviras S, Lygerou Z, Perrakis A. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2278-86. [PMID: 26527144 PMCID: PMC4631479 DOI: 10.1107/s1399004715016892] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/09/2015] [Indexed: 12/14/2022]
Abstract
GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin-Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.
Collapse
Affiliation(s)
- Christophe Caillat
- Department of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Alexander Fish
- Department of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Anastassis Perrakis
- Department of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
11
|
Rämisch S, Lizatović R, André I. Automatedde novophasing and model building of coiled-coil proteins. ACTA ACUST UNITED AC 2015; 71:606-14. [DOI: 10.1107/s1399004714028247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/30/2014] [Indexed: 11/10/2022]
Abstract
Models generated byde novostructure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein–protein complexes andde novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential ofde novomodels of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71–103% of the residues present in the deposited structures, had the correct sequence and had freeRvalues that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, namedCCsolve, combines methods forde novostructure prediction, initial phase estimation and automated model building into one pipeline.CCsolveis robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility ofde novophasing of protein–protein complexes, an approach that could also be employed for other small systems beyond coiled coils.
Collapse
|
12
|
Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair. Nat Struct Mol Biol 2015; 22:158-66. [PMID: 25580577 PMCID: PMC4318798 DOI: 10.1038/nsmb.2945] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/04/2014] [Indexed: 01/07/2023]
Abstract
Ctp1 (also known as CtIP or Sae2) collaborates with Mre11-Rad50-Nbs1 to initiate repair of DNA double-strand breaks (DSBs), but its functions remain enigmatic. We report that tetrameric Schizosaccharomyces pombe Ctp1 contains multivalent DNA-binding and DNA-bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer, we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal 'RHR' DNA-interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA-bridging activity in vitro, and both the THDD and RHR are required for efficient DSB repair in S. pombe. Our results establish non-nucleolytic roles of Ctp1 in binding and coordination of DSB-repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CtIP-linked Seckel and Jawad syndromes.
Collapse
|
13
|
Blanchard Z, Mullins N, Ellipeddi P, Lage JM, McKinney S, El-Etriby R, Zhang X, Isokpehi R, Hernandez B, ElShamy WM. Geminin overexpression promotes imatinib sensitive breast cancer: a novel treatment approach for aggressive breast cancers, including a subset of triple negative. PLoS One 2014; 9:e95663. [PMID: 24789045 PMCID: PMC4005756 DOI: 10.1371/journal.pone.0095663] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 03/28/2014] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women. Triple negative breast cancer (TNBC) is an aggressive subtype that affects 10–25% mostly African American women. TNBC has the poorest prognosis of all subtypes with rapid progression leading to mortality in younger patients. So far, there is no targeted treatment for TNBC. To that end, here we show that c-Abl is one of several tyrosine kinases that phosphorylate and activate geminin’s ability to promote TNBC. Analysis of >800 breast tumor samples showed that geminin is overexpressed in ∼50% of all tumors. Although c-Abl is overexpressed in ∼90% of all tumors, it is only nuclear in geminin overexpressing tumors. In geminin-negative tumors, c-Abl is only cytoplasmic. Inhibiting c-Abl expression or activity (using imatinib or nilotinib) prevented geminin Y150 phosphorylation, inactivated the protein, and most importantly converted overexpressed geminin from an oncogene to an apoptosis inducer. In pre-clinical orthotopic breast tumor models, geminin-overexpressing cells developed aneuploid and invasive tumors, which were suppressed when c-Abl expression was blocked. Moreover, established geminin overexpressing orthotopic tumors regressed when treated with imatinib or nilotinib. Our studies support imatinib/nilotonib as a novel treatment option for patients with aggressive breast cancer (including a subset of TNBCs)-overexpressing geminin and nuclear c-Abl.
Collapse
Affiliation(s)
- Zannel Blanchard
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Nicole Mullins
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Pavani Ellipeddi
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Janice M. Lage
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Shawn McKinney
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Rana El-Etriby
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Xu Zhang
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Raphael Isokpehi
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, Mississippi, United States of America
| | - Brenda Hernandez
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Wael M. ElShamy
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
14
|
Caillat C, Pefani DE, Gillespie PJ, Taraviras S, Blow JJ, Lygerou Z, Perrakis A. The Geminin and Idas coiled coils preferentially form a heterodimer that inhibits Geminin function in DNA replication licensing. J Biol Chem 2013; 288:31624-34. [PMID: 24064211 PMCID: PMC3814758 DOI: 10.1074/jbc.m113.491928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/28/2013] [Indexed: 01/03/2023] Open
Abstract
Geminin is an important regulator of proliferation and differentiation in metazoans, which predominantly inhibits the DNA replication licensing factor Cdt1, preventing genome over-replication. We show that Geminin preferentially forms stable coiled-coil heterodimers with its homologue, Idas. In contrast to Idas-Geminin heterodimers, Idas homodimers are thermodynamically unstable and are unlikely to exist as a stable macromolecule under physiological conditions. The crystal structure of the homology regions of Idas in complex with Geminin showed a tight head-to-head heterodimeric coiled-coil. This Idas-Geminin heterodimer binds Cdt1 less strongly than Geminin-Geminin, still with high affinity (∼30 nm), but with notably different thermodynamic properties. Consistently, in Xenopus egg extracts, Idas-Geminin is less active in licensing inhibition compared with a Geminin-Geminin homodimer. In human cultured cells, ectopic expression of Idas leads to limited over-replication, which is counteracted by Geminin co-expression. The properties of the Idas-Geminin complex suggest it as the functional form of Idas and provide a possible mechanism to modulate Geminin activity.
Collapse
Affiliation(s)
- Christophe Caillat
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Anastassis Perrakis
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
15
|
Mcm10 self-association is mediated by an N-terminal coiled-coil domain. PLoS One 2013; 8:e70518. [PMID: 23894664 PMCID: PMC3720919 DOI: 10.1371/journal.pone.0070518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/11/2013] [Indexed: 01/13/2023] Open
Abstract
Minichromosome maintenance protein 10 (Mcm10) is an essential eukaryotic DNA-binding replication factor thought to serve as a scaffold to coordinate enzymatic activities within the replisome. Mcm10 appears to function as an oligomer rather than in its monomeric form (or rather than as a monomer). However, various orthologs have been found to contain 1, 2, 3, 4, or 6 subunits and thus, this issue has remained controversial. Here, we show that self-association of Xenopus laevis Mcm10 is mediated by a conserved coiled-coil (CC) motif within the N-terminal domain (NTD). Crystallographic analysis of the CC at 2.4 Å resolution revealed a three-helix bundle, consistent with the formation of both dimeric and trimeric Mcm10 CCs in solution. Mutation of the side chains at the subunit interface disrupted in vitro dimerization of both the CC and the NTD as monitored by analytical ultracentrifugation. In addition, the same mutations also impeded self-interaction of the full-length protein in vivo, as measured by yeast-two hybrid assays. We conclude that Mcm10 likely forms dimers or trimers to promote its diverse functions during DNA replication.
Collapse
|
16
|
Abstract
One of the mechanisms controlling the initiation of DNA replication is the dynamic interaction between Cdt1, which promotes assembly of the pre-replication license complex, and Geminin, which inhibits it. Specifically, Cdt1 cooperates with the cell cycle protein Cdc6 to promote loading of the minichromosome maintenance helicases (MCM) onto the chromatin-bound origin recognition complex (ORC), by directly interacting with the MCM complex, and by modulating histone acetylation and inducing chromatin unfolding. Geminin, on the other hand, prevents the loading of the MCM onto the ORC both by directly binding to Cdt1, and by modulating Cdt1 stability and activity. Protein levels of Geminin and Cdt1 are tightly regulated through the cell cycle, and the Cdt1-Geminin complex likely acts as a molecular switch that can enable or disable the firing of each origin of replication. In this review we summarize structural studies of Cdt1 and Geminin and subsequent insights into how this molecular switch may function to ensure DNA is faithfully replicated only once during S phase of each cell cycle.
Collapse
Affiliation(s)
- Christophe Caillat
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Ode KL, Fujimoto K, Kubota Y, Takisawa H. Inter-origin cooperativity of geminin action establishes an all-or-none switch for replication origin licensing. Genes Cells 2011; 16:380-96. [PMID: 21426446 DOI: 10.1111/j.1365-2443.2011.01501.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In metazoans, geminin functions as a molecular switch for preventing re-replication of chromosomal DNA. Geminin binds to and inhibits Cdt1, which is required for replication origin licensing, but little is known about the mechanisms underlying geminin's all-or-none action in licensing inhibition. Using Xenopus egg extract, we found that the all-or-none activity correlated with the formation of Cdt1 foci on chromatin, suggesting that multiple Cdt1-geminin complexes on origins cooperatively inhibit licensing. Based on experimental identification of licensing intermediates targeted by geminin and Cdt1, we developed a mathematical model of the licensing process. The model involves positive feedback owing to the cooperative action of geminin at neighboring origins and accurately accounts for the licensing activity mediated by geminin and Cdt1 in the extracts. The model also predicts that such cooperativity leads to clustering of licensing-inhibited origins, an idea that is supported by the experimentally measured distribution of inter-origin distances. We propose that geminin inhibits licensing through an inter-origin interaction, ensuring strict and coordinated control of multiple replication origins on chromosomes.
Collapse
Affiliation(s)
- Koji L Ode
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | |
Collapse
|
18
|
Gardner L, Malik R, Shimizu Y, Mullins N, ElShamy WM. Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation, leading to aneuploidy in human mammary epithelial cells. Breast Cancer Res 2011; 13:R53. [PMID: 21595939 PMCID: PMC3218940 DOI: 10.1186/bcr2884] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/16/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The nuclear enzyme topoisomerase IIα (TopoIIα) is able to cleave DNA in a reversible manner, making it a valuable target for agents such as etoposide that trap the enzyme in a covalent bond with the 5' DNA end to which it cleaves. This prevents DNA religation and triggers cell death in cancer cells. However, development of resistance to these agents limits their therapeutic use. In this study, we examined the therapeutic targeting of geminin for improving the therapeutic potential of TopoIIα agents. METHODS Human mammary epithelial (HME) cells and several breast cancer cell lines were used in this study. Geminin, TopoIIα and cell division cycle 7 (Cdc7) silencing were done using specific small interfering RNA. Transit or stable inducible overexpression of these proteins and casein kinase Iε (CKIε) were also used, as well as several pharmacological inhibitors that target TopoIIα, Cdc7 or CKIε. We manipulated HME cells that expressed H2B-GFP, or did not, to detect chromosome bridges. Immunoprecipitation and direct Western blot analysis were used to detect interactions between these proteins and their total expression, respectively, whereas interactions on chromosomal arms were detected using a trapped in agarose DNA immunostaining assay. TopoIIα phosphorylation by Cdc7 or CKIε was done using an in vitro kinase assay. The TopoGen decatenation kit was used to measure TopoIIα decatenation activity. Finally, a comet assay and metaphase chromosome spread were used to detect chromosome breakage and changes in chromosome condensation or numbers, respectively. RESULTS We found that geminin and TopoIIα interact primarily in G2/M/early G1 cells on chromosomes, that geminin recruits TopoIIα to chromosomal decatenation sites or vice versa and that geminin silencing in HME cells triggers the formation of chromosome bridges by suppressing TopoIIα access to chromosomal arms. CKIε kinase phosphorylates and positively regulates TopoIIα chromosome localization and function. CKIε kinase overexpression or Cdc7 kinase silencing, which we show phosphorylates TopoIIα in vitro, restored DNA decatenation and chromosome segregation in geminin-silenced cells before triggering cell death. In vivo, at normal concentration, geminin recruits the deSUMOylating sentrin-specific proteases SENP1 and SENP2 enzymes to deSUMOylate chromosome-bound TopoIIα and promote its release from chromosomes following completion of DNA decatenation. In cells overexpressing geminin, premature departure of TopoIIα from chromosomes is thought to be due to the fact that geminin recruits more of these deSUMOylating enzymes, or recruits them earlier, to bound TopoIIα. This triggers premature release of TopoIIα from chromosomes, which we propose induces aneuploidy in HME cells, since chromosome breakage generated through this mechanism were not sensed and/or repaired and the cell cycle was not arrested. Expression of mitosis-inducing proteins such as cyclin A and cell division kinase 1 was also increased in these cells because of the overexpression of geminin. CONCLUSIONS TopoIIα recruitment and its chromosome decatenation function require a normal level of geminin. Geminin silencing induces a cytokinetic checkpoint in which Cdc7 phosphorylates TopoIIα and inhibits its chromosomal recruitment and decatenation and/or segregation function. Geminin overexpression prematurely deSUMOylates TopoIIα, triggering its premature departure from chromosomes and leading to chromosomal abnormalities and the formation of aneuploid, drug-resistant cancer cells. On the basis of our findings, we propose that therapeutic targeting of geminin is essential for improving the therapeutic potential of TopoIIα agents.
Collapse
Affiliation(s)
- Lauren Gardner
- Cancer Institute, Department of Biochemistry, University of Mississippi Medical Center, Jackson, 39216, USA
| | | | | | | | | |
Collapse
|
19
|
Pefani DE, Dimaki M, Spella M, Karantzelis N, Mitsiki E, Kyrousi C, Symeonidou IE, Perrakis A, Taraviras S, Lygerou Z. Idas, a novel phylogenetically conserved geminin-related protein, binds to geminin and is required for cell cycle progression. J Biol Chem 2011; 286:23234-46. [PMID: 21543332 DOI: 10.1074/jbc.m110.207688] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Development and homeostasis of multicellular organisms relies on an intricate balance between cell proliferation and differentiation. Geminin regulates the cell cycle by directly binding and inhibiting the DNA replication licensing factor Cdt1. Geminin also interacts with transcriptional regulators of differentiation and chromatin remodelling factors, and its balanced interactions are implicated in proliferation-differentiation decisions during development. Here, we describe Idas (Idas being a cousin of the Gemini in Ancient Greek Mythology), a previously uncharacterised coiled-coil protein related to Geminin. We show that human Idas localizes to the nucleus, forms a complex with Geminin both in cells and in vitro through coiled-coil mediated interactions, and can change Geminin subcellular localization. Idas does not associate with Cdt1 and prevents Geminin from binding to Cdt1 in vitro. Idas depletion from cells affects cell cycle progression; cells accumulate in S phase and are unable to efficiently progress to mitosis. Idas protein levels decrease in anaphase, whereas its overexpression causes mitotic defects. During development, we show that Idas exhibits high level expression in the choroid plexus and the cortical hem of the mouse telencephalon. Our data highlight Idas as a novel Geminin binding partner, implicated in cell cycle progression, and a putative regulator of proliferation-differentiation decisions during development.
Collapse
|
20
|
De Marco V, Gillespie PJ, Li A, Karantzelis N, Christodoulou E, Klompmaker R, van Gerwen S, Fish A, Petoukhov MV, Iliou MS, Lygerou Z, Medema RH, Blow JJ, Svergun DI, Taraviras S, Perrakis A. Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing. Proc Natl Acad Sci U S A 2009; 106:19807-12. [PMID: 19906994 PMCID: PMC2775996 DOI: 10.1073/pnas.0905281106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Indexed: 01/12/2023] Open
Abstract
All organisms need to ensure that no DNA segments are rereplicated in a single cell cycle. Eukaryotes achieve this through a process called origin licensing, which involves tight spatiotemporal control of the assembly of prereplicative complexes (pre-RCs) onto chromatin. Cdt1 is a key component and crucial regulator of pre-RC assembly. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent DNA rereplication. Here, we address the mechanism of DNA licensing inhibition by Geminin, by combining X-ray crystallography, small-angle X-ray scattering, and functional studies in Xenopus and mammalian cells. Our findings show that the Cdt1:Geminin complex can exist in two distinct forms, a "permissive" heterotrimer and an "inhibitory" heterohexamer. Specific Cdt1 residues, buried in the heterohexamer, are important for licensing. We postulate that the transition between the heterotrimer and the heterohexamer represents a molecular switch between licensing-competent and licensing-defective states.
Collapse
Affiliation(s)
- V. De Marco
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - P. J. Gillespie
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - A. Li
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | - E. Christodoulou
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - R. Klompmaker
- Department of Medical Oncology and Cancer Genomics Center, Laboratory of Experimental Oncology, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; and
| | - S. van Gerwen
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - A. Fish
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - M. V. Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | - M. S. Iliou
- Biology, Medical School, University of Patras, 26500 Rio, Patras, Greece
| | - Z. Lygerou
- Biology, Medical School, University of Patras, 26500 Rio, Patras, Greece
| | - R. H. Medema
- Department of Medical Oncology and Cancer Genomics Center, Laboratory of Experimental Oncology, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; and
| | - J. J. Blow
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - D. I. Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | - A. Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
21
|
Auziol C, Méchali M, Maiorano D. Geminin is cleaved by caspase-3 during apoptosis in Xenopus egg extracts. Biochem Biophys Res Commun 2007; 361:276-80. [PMID: 17651691 DOI: 10.1016/j.bbrc.2007.06.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 06/16/2007] [Indexed: 10/23/2022]
Abstract
Geminin is an important cell cycle regulator having a dual role in cell proliferation and differentiation. During proliferation, Geminin controls DNA synthesis by interacting with the licensing factor Cdt1 and interferes with the onset of differentiation by inhibiting the activity of transcription factors such as Hox and Six3. During early development Geminin also functions as neural inducer. Thus differential interaction of Geminin with Cdt1 or development-specific transcription factors influence the balance between proliferation and differentiation. Here, we report an additional feature of Geminin showing that it is a novel substrate of caspase-3 during apoptosis in in vitro Xenopus egg extracts. We also show that cleavage of Geminin occurs both in solution and on chromatin with distinct kinetics. In addition we show that cleavage of Geminin by caspase-3 is not relevant to its function as regulator of DNA synthesis, suggesting that its cleavage may be relevant to its role in differentiation.
Collapse
Affiliation(s)
- Camille Auziol
- Institute of Human Genetics, CNRS-UPR14142, Montpellier, France
| | | | | |
Collapse
|
22
|
Luo L, Uerlings Y, Happel N, Asli NS, Knoetgen H, Kessel M. Regulation of geminin functions by cell cycle-dependent nuclear-cytoplasmic shuttling. Mol Cell Biol 2007; 27:4737-44. [PMID: 17470552 PMCID: PMC1951490 DOI: 10.1128/mcb.00123-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/27/2007] [Accepted: 04/18/2007] [Indexed: 12/24/2022] Open
Abstract
The geminin protein functions both as a DNA rereplication inhibitor through association with Cdt1 and as a repressor of Hox gene transcription through the polycomb pathway. Here, we report that the functions of avian geminin are coordinated with and regulated by cell cycle-dependent nuclear-cytoplasmic shuttling. In S phase, geminin enters nuclei and inhibits both loading of the minichromosome maintenance (MCM) complex onto chromatin and Hox gene transcription. At the end of mitosis, geminin is exported from nuclei by the exportin protein Crm1 and is unavailable in the nucleus during the next G(1) phase, thus ensuring proper chromatin loading of the MCM complex and Hox gene transcription. This mechanism for regulating the functions of geminin adds to distinct mechanisms, such as protein degradation and ubiquitination, applied in other vertebrates.
Collapse
Affiliation(s)
- Lingfei Luo
- Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Lutzmann M, Maiorano D, Méchali M. A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J 2006; 25:5764-74. [PMID: 17124498 PMCID: PMC1698883 DOI: 10.1038/sj.emboj.7601436] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 10/06/2006] [Indexed: 12/20/2022] Open
Abstract
Initiation of DNA synthesis involves the loading of the MCM2-7 helicase onto chromatin by Cdt1 (origin licensing). Geminin is thought to prevent relicensing by binding and inhibiting Cdt1. Here we show, using Xenopus egg extracts, that geminin binding to Cdt1 is not sufficient to block its activity and that a Cdt1-geminin complex licenses chromatin, but prevents rereplication, working as a molecular switch at replication origins. We demonstrate that geminin is recruited to chromatin already during licensing, while bulk geminin is recruited at the onset of S phase. A recombinant Cdt1-geminin complex binds chromatin, interacts with the MCM2-7 complex and licenses chromatin once per cell cycle. Accordingly, while recombinant Cdt1 induces rereplication in G1 or G2 and activates an ATM/ATR-dependent checkpoint, the Cdt1-geminin complex does not. We further demonstrate that the stoichiometry of the Cdt1-geminin complex regulates its activity. Our results suggest a model in which the MCM2-7 helicase is loaded onto chromatin by a Cdt1-geminin complex, which is inactivated upon origin firing by binding additional geminin. This origin inactivation reaction does not occur if only free Cdt1 is present on chromatin.
Collapse
Affiliation(s)
| | | | - Marcel Méchali
- Institute of Human Genetics, CNRS, Montpellier, France
- Institute of Human Genetics, CNRS, Genome Dynamics and Development, 141, rue de la Cardonille, Montpellier 34396, France. Tel.: +33 499 619 917; Fax: +33 499 619 920; E-mail:
| |
Collapse
|
24
|
Boos A, Lee A, Thompson DM, Kroll KL. Subcellular translocation signals regulate Geminin activity during embryonic development. Biol Cell 2006; 98:363-75. [PMID: 16464175 DOI: 10.1042/bc20060007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND INFORMATION Geminin (Gem) is a protein with roles in regulating both the fidelity of DNA replication and cell fate during embryonic development. The distribution of Gem is predominantly nuclear in cells undergoing the cell cycle. Previous studies have demonstrated that Gem performs multiple activities in the nucleus and that regulation of Gem activation requires nuclear import in at least one context. In the present study, we defined structural and mechanistic features underlying subcellular localization of Gem and tested whether regulation of the subcellular localization of Gem has an impact on its activity in cell fate specification during embryonic development. RESULTS We determined that nuclear localization of Gem is dependent on a bipartite NLS (nuclear localization signal) in the N-terminus of Xenopus Gem protein. This bipartite motif mapped to a Gem N-terminal region previously shown to regulate neural cell fate acquisition. Microinjection into Xenopus embryos demonstrated that import-deficient Gem was incapable of modulating ectodermal cell fate, but that this activity was rescued by fusion to a heterologous NLS. Cross-species comparison of Gem protein sequences revealed that the Xenopus bipartite signal is conserved in many non-mammalian vertebrates, but not in mammalian species assessed. Instead, we found that human Gem employs an alternative N-terminal motif to regulate the protein's nuclear localization. Finally, we found that additional mechanisms contributed to regulating the subcellular localization of Gem. These included a link to Crm1-dependent nuclear export and the observation that Cdt1, a protein in the pre-replication complex, could also mediate nuclear import of Gem. CONCLUSIONS We have defined new structural and regulatory features of Gem, and showed that the activity of Gem in regulating cell fate, in addition to its cell-cycle-regulatory activity, requires control of its subcellular localization. Our data suggest that rather than being constitutively nuclear, Gem may undergo nucleocytoplasmic shuttling through several mechanisms involving distinct protein motifs. The use of multiple mechanisms for modulating Gem subcellular localization is congruent with observations that Gem levels and activity must be stringently controlled during cell-cycle progression and embryonic development.
Collapse
Affiliation(s)
- Aline Boos
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
25
|
Abstract
To ensure its duplication, chromosomal DNA must be precisely duplicated in each cell cycle, with no sections left unreplicated, and no sections replicated more than once. Eukaryotic cells achieve this by dividing replication into two non-overlapping phases. During late mitosis and G1, replication origins are 'licensed' for replication by loading the minichromosome maintenance (Mcm) 2-7 proteins to form a pre-replicative complex. Mcm2-7 proteins are then essential for initiating and elongating replication forks during S phase. Recent data have provided biochemical and structural insight into the process of replication licensing and the mechanisms that regulate it during the cell cycle.
Collapse
Affiliation(s)
- J Julian Blow
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
26
|
Ferenbach A, Li A, Brito-Martins M, Blow JJ. Functional domains of the Xenopus replication licensing factor Cdt1. Nucleic Acids Res 2005; 33:316-24. [PMID: 15653632 PMCID: PMC546161 DOI: 10.1093/nar/gki176] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 12/20/2004] [Accepted: 12/20/2004] [Indexed: 12/21/2022] Open
Abstract
During late mitosis and early G1, replication origins are licensed for subsequent replication by loading heterohexamers of the mini-chromosome maintenance proteins (Mcm2-7). To prevent re-replication of DNA, the licensing system is down-regulated at other cell cycle stages. A small protein called geminin plays an important role in this down-regulation by binding and inhibiting the Cdt1 component of the licensing system. We examine here the organization of Xenopus Cdt1, delimiting regions of Cdt1 required for licensing and regions required for geminin interaction. The C-terminal 377 residues of Cdt1 are required for licensing and the extreme C-terminus contains a domain that interacts with an Mcm(2,4,6,7) complex. Two regions of Cdt1 interact with geminin: one at the N-terminus, and one in the centre of the protein. Only the central region binds geminin tightly enough to successfully compete with full-length Cdt1 for geminin binding. This interaction requires a predicted coiled-coil domain that is conserved amongst metazoan Cdt1 homologues. Geminin forms a homodimer, with each dimer binding one molecule of Cdt1. Separation of the domains necessary for licensing activity from domains required for a strong interaction with geminin generated a construct, whose licensing activity was partially insensitive to geminin inhibition.
Collapse
Affiliation(s)
- Andrew Ferenbach
- Wellcome Trust Biocentre, University of Dundee Dow Street, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|