1
|
Ghosh S, Takahashi S, Ohyama T, Liu L, Sugimoto N. Elucidating the Role of Groove Hydration on Stability and Functions of Biased DNA Duplexes in Cell-Like Chemical Environments. J Am Chem Soc 2024; 146:32479-32497. [PMID: 39505325 PMCID: PMC11613987 DOI: 10.1021/jacs.4c09388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Hydration plays a key role in the structure-specific stabilization of biomolecules such as nucleic acids. The hydration patterns of biased DNA sequences in the genome, such as GC-repetitive and AT-repetitive regions, are unique to their duplex grooves. As these regions are crucial for maintaining genomic homeostasis and preventing diseases such as cancer and neurodegenerative disorders, the effects of hydration on their stability and functions must be quantitatively analyzed in chemical environments that resemble intracellular conditions. In this study, we systematically investigated duplex formation of biased sequences in cell-like molecularly crowded environments to quantify the effects of groove hydration on their thermodynamics. The interaction of crowders with water molecules in the grooves was found to provide excess stabilization to biased DNAs than to unbiased DNAs, as estimated from the nearest-neighbor prediction model. These hydration effects are sequence-specific and depend on the cation type and cosolute size. Introduction of the "hydration parameters" into the nearest-neighbor model quantifying the effect of groove hydration remarkably enhanced the prediction accuracy for biased DNA stability in crowded environments. Hydration parameters can aid in elucidating the roles of biased sequences in cells such as cation-dependent quadruplex formation in cancer-related genes and regulation of replication initiation by intracellular crowding fluctuations. Additionally, these parameters can predict the free energy changes during the binding of protein to DNA grooves. Overall, our findings can help in realizing and predicting the functions of biased DNAs in cells controlled by variable chemical environments.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- FIBER
(Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi,
Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- FIBER
(Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi,
Chuo-ku, Kobe 650-0047, Japan
- FIRST
(Graduate School of Frontiers of Innovative Research in Science and
Technology), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tatsuya Ohyama
- FIBER
(Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi,
Chuo-ku, Kobe 650-0047, Japan
| | - Lutan Liu
- FIBER
(Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi,
Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- FIBER
(Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 minatojima-Minamimachi,
Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
2
|
Role of Water in Defining the Structure and Properties of B-Form DNA. CRYSTALS 2022. [DOI: 10.3390/cryst12060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
DNA in the cell is rarely naked but normally protein-bound in nucleosomes. Of special interest is the DNA bound to other factors that control its key functions of transcription, replication, and repair. For these several transactions of DNA, the state of hydration plays an important role in its function, and therefore needs to be defined in as much detail as possible. High-resolution crystallography of short B-form duplexes shows that the mixed polar and apolar surface of the major groove binds water molecules over the broad polar floor of the groove in a sequence-dependent varied manner. In contrast, the narrower minor groove, particularly at AT-rich segments, binds water molecules to the polar groups of the bases in a regular double layer reminiscent of the structure of ice. This review is largely devoted to measurements made in solution, principally calorimetric, that are fully consistent with the location of water molecules seen in crystals, thereby emphasizing the substantial difference between the hydration patterns of the two grooves.
Collapse
|
3
|
Ray S, Tillo D, Assad N, Ufot A, Porollo A, Durell SR, Vinson C. Altering the Double-Stranded DNA Specificity of the bZIP Domain of Zta with Site-Directed Mutagenesis at N182. ACS OMEGA 2022; 7:129-139. [PMID: 35036684 PMCID: PMC8756438 DOI: 10.1021/acsomega.1c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Zta, the Epstein-Barr virus bZIP transcription factor (TF), binds both unmethylated and methylated double-stranded DNA (dsDNA) in a sequence-specific manner. We studied the contribution of a conserved asparagine (N182) to sequence-specific dsDNA binding to four types of dsDNA: (i) dsDNA with cytosine in both strands ((DNA(C|C)), (ii, iii) dsDNA with 5-methylcytosine (5mC, M) or 5-hydroxymethylcytosine (5hmC, H) in one strand and cytosine in the second strand ((DNA(5mC|C) and DNA(5hmC|C)), and (iv) dsDNA with methylated cytosine in both strands in all CG dinucleotides ((DNA(5mCG)). We replaced asparagine with five similarly sized amino acids (glutamine (Q), serine (S), threonine (T), isoleucine (I), or valine (V)) and used protein binding microarrays to evaluate sequence-specific dsDNA binding. Zta preferentially binds the pseudo-palindrome TRE (AP1) motif (T-4G-3A-2G/C 0T2C3A4 ). Zta (N182Q) changes binding to A3 in only one half-site. Zta(N182S) changes binding to G3 in one or both halves of the motif. Zta(N182S) and Zta(N182Q) have 34- and 17-fold weaker median dsDNA binding, respectively. Zta(N182V) and Zta(N182I) have increased binding to dsDNA(5mC|C). Molecular dynamics simulations rationalize some of these results, identifying hydrogen bonds between glutamine and A3 , but do not reveal why serine preferentially binds G3 , suggesting that entropic interactions may mediate this new binding specificity.
Collapse
Affiliation(s)
- Sreejana Ray
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, Room 5000, Building 37, Bethesda, Maryland 20892, United States
| | - Desiree Tillo
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, Room 5000, Building 37, Bethesda, Maryland 20892, United States
- Cancer
Genetics Branch, National Cancer Institute,
National Institutes of Health, Building 37, Bethesda, Maryland 20892, United States
| | - Nima Assad
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, Room 5000, Building 37, Bethesda, Maryland 20892, United States
| | - Aniekanabasi Ufot
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, Room 5000, Building 37, Bethesda, Maryland 20892, United States
| | - Aleksey Porollo
- Center
for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, United States
- Department
of Pediatrics, University of Cincinnati
College of Medicine, Cincinnati, Ohio 45267, United States
| | - Stewart R. Durell
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Building 37, Bethesda, Maryland 20892, United States
| | - Charles Vinson
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, Room 5000, Building 37, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
Thermodynamic basis of the α-helix and DNA duplex. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:787-792. [PMID: 33893863 PMCID: PMC8260414 DOI: 10.1007/s00249-021-01520-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/20/2021] [Indexed: 11/30/2022]
Abstract
Analysis of calorimetric and crystallographic information shows that the α-helix is maintained not only by the hydrogen bonds between its polar peptide groups, as originally supposed, but also by van der Waals interactions between tightly packed apolar groups in the interior of the helix. These apolar contacts are responsible for about 60% of the forces stabilizing the folded conformation of the α-helix and their exposure to water on unfolding results in the observed heat capacity increment, i.e. the temperature dependence of the melting enthalpy. The folding process is also favoured by an entropy increase resulting from the release of water from the peptide groups. A similar situation holds for the DNA double helix: calorimetry shows that the hydrogen bonding between conjugate base pairs provides a purely entropic contribution of about 40% to the Gibbs energy while the enthalpic van der Waals interactions between the tightly packed apolar parts of the base pairs provide the remaining 60%. Despite very different structures, the thermodynamic basis of α-helix and B-form duplex stability are strikingly similar. The general conclusion follows that the stability of protein folds is primarily dependent on internal atomic close contacts rather than the hydrogen bonds they contain.
Collapse
|
5
|
Ribeiro JA, Chavez-Pacheco SM, de Oliveira GS, Silva CDS, Giudice JHP, Libreros-Zúñiga GA, Dias MVB. Crystal structures of the closed form of Mycobacterium tuberculosis dihydrofolate reductase in complex with dihydrofolate and antifolates. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:682-693. [PMID: 31282477 DOI: 10.1107/s205979831900901x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Tuberculosis is a disease caused by Mycobacterium tuberculosis and is the leading cause of death from a single infectious pathogen, with a high prevalence in developing countries in Africa and Asia. There still is a need for the development or repurposing of novel therapies to combat this disease owing to the long-term nature of current therapies and because of the number of reported resistant strains. Here, structures of dihydrofolate reductase from M. tuberculosis (MtDHFR), which is a key target of the folate pathway, are reported in complex with four antifolates, pyrimethamine, cycloguanil, diaverdine and pemetrexed, and its substrate dihydrofolate in order to understand their binding modes. The structures of all of these complexes were obtained in the closed-conformation state of the enzyme and a fine structural analysis indicated motion in key regions of the substrate-binding site and different binding modes of the ligands. In addition, the affinities, through Kd measurement, of diaverdine and methotrexate have been determined; MtDHFR has a lower affinity (highest Kd) for diaverdine than pyrimethamine and trimethoprim, and a very high affinity for methotrexate, as expected. The structural comparisons and analysis described in this work provide new information about the plasticity of MtDHFR and the binding effects of different antifolates.
Collapse
Affiliation(s)
- João Augusto Ribeiro
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Sair Maximo Chavez-Pacheco
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Gabriel Stephani de Oliveira
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Catharina Dos Santos Silva
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - João Henrique Pimenta Giudice
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Gerardo Andres Libreros-Zúñiga
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, Brazil
| |
Collapse
|
6
|
Privalov PL, Crane-Robinson C. Forces maintaining the DNA double helix and its complexes with transcription factors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 135:30-48. [DOI: 10.1016/j.pbiomolbio.2018.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
7
|
Nakatani Y, Hisatomi O. Quantitative analyses of the equilibria among DNA complexes of a blue-light-regulated bZIP module, Photozipper. Biophys Physicobiol 2018; 15:8-17. [PMID: 29450110 PMCID: PMC5812316 DOI: 10.2142/biophysico.15.0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/21/2017] [Indexed: 01/28/2023] Open
Abstract
Aureochrome1 is a blue-light-receptor protein identified in a stramenopile alga, Vaucheria frigida. Photozipper (PZ) is an N-terminally truncated, monomeric, V. frigida aureochrome1 fragment containing a basic leucine zipper (bZIP) domain and a light–oxygen–voltage (LOV)-sensing domain. PZ dimerizes upon photoexcitation and consequently increases its affinity for the target sequence. In the present study, to understand the equilibria among DNA complexes of PZ, DNA binding by PZ and mutational variants was quantitatively investigated by electrophoretic-mobility-shift assay and fluorescence-correlation spectroscopy in the dark and light states. DNA binding by PZ was sequence-specific and light-dependent. The half-maximal effective concentration of PZ for binding to the target DNA sequence was ~40 nM in the light, which was >10-fold less than the value in the dark. By contrast, the dimeric PZ-S2C variant (with intermolecular disulfide bonds) had higher affinity for the target sequence, with dissociation constants of ~4 nM, irrespective of the light conditions. Substitutions of Glu159 and Lys164 in the leucine zipper region decreased the affinity of PZ for the target sequence, especially in the light, suggesting that these residues form inter-helical salt bridges between leucine zipper regions, stabilizing the dimer–DNA complex. Our quantitative analyses of the equilibria in PZ–DNA-complex formation suggest that the blue-light-induced dimerization of LOV domains and coiled-coil formation by leucine zipper regions are the primary determinants of the affinity of PZ for the target sequence.
Collapse
Affiliation(s)
- Yoichi Nakatani
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Osamu Hisatomi
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:369-379. [DOI: 10.1016/j.jphotobiol.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
9
|
Dragan AI, Read CM, Crane-Robinson C. Enthalpy-entropy compensation: the role of solvation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:301-308. [PMID: 27796417 PMCID: PMC5384952 DOI: 10.1007/s00249-016-1182-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022]
Abstract
Structural modifications to interacting systems frequently lead to changes in both the enthalpy (heat) and entropy of the process that compensate each other, so that the Gibbs free energy is little changed: a major barrier to the development of lead compounds in drug discovery. The conventional explanation for such enthalpy–entropy compensation (EEC) is that tighter contacts lead to a more negative enthalpy but increased molecular constraints, i.e., a compensating conformational entropy reduction. Changes in solvation can also contribute to EEC but this contribution is infrequently discussed. We review long-established and recent cases of EEC and conclude that the large fluctuations in enthalpy and entropy observed are too great to be a result of only conformational changes and must result, to a considerable degree, from variations in the amounts of water immobilized or released on forming complexes. Two systems exhibiting EEC show a correlation between calorimetric entropies and local mobilities, interpreted to mean conformational control of the binding entropy/free energy. However, a substantial contribution from solvation gives the same effect, as a consequence of a structural link between the amount of bound water and the protein flexibility. Only by assuming substantial changes in solvation—an intrinsically compensatory process—can a more complete understanding of EEC be obtained. Faced with such large, and compensating, changes in the enthalpies and entropies of binding, the best approach to engineering elevated affinities must be through the addition of ionic links, as they generate increased entropy without affecting the enthalpy.
Collapse
Affiliation(s)
- Anatoliy I Dragan
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka St., Kiev, 01601, Ukraine.,Institute of Molecular Biology and Genetics, NASU, 150, Zabolotnogo St., Kiev, 03680, Ukraine
| | - Christopher M Read
- Biophysics Laboratories, School of Biology, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Colyn Crane-Robinson
- Biophysics Laboratories, School of Biology, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
10
|
|
11
|
Nakatani Y, Hisatomi O. Molecular Mechanism of Photozipper, a Light-Regulated Dimerizing Module Consisting of the bZIP and LOV Domains of Aureochrome-1. Biochemistry 2015; 54:3302-13. [DOI: 10.1021/acs.biochem.5b00320] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoichi Nakatani
- Department of Earth and Space
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Osamu Hisatomi
- Department of Earth and Space
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
12
|
Khrapunov S, Warren C, Cheng H, Berko E, Greally JM, Brenowitz M. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry 2014; 53:3379-91. [PMID: 24828757 PMCID: PMC4045320 DOI: 10.1021/bi500424z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/08/2014] [Indexed: 02/04/2023]
Abstract
The protein MeCP2 mediates epigenetic regulation by binding methyl-CpG (mCpG) sites on chromatin. MeCP2 consists of six domains of which one, the methyl binding domain (MBD), binds mCpG sites in duplex DNA. We show that solution conditions with physiological or greater salt concentrations or the presence of nonspecific competitor DNA is necessary for the MBD to discriminate mCpG from CpG with high specificity. The specificity for mCpG over CpG is >100-fold under these solution conditions. In contrast, the MBD does not discriminate hydroxymethyl-CpG from CpG. The MBD is unusual among site-specific DNA binding proteins in that (i) specificity is not conferred by the enhanced affinity for the specific site but rather by suppression of its affinity for generic DNA, (ii) its specific binding to mCpG is highly electrostatic, and (iii) it takes up as well as displaces monovalent cations upon DNA binding. The MBD displays an unusually high affinity for single-stranded DNA independent of modification or sequence. In addition, the MBD forms a discrete dimer on DNA via a noncooperative binding pathway. Because the affinity of the second monomer is 1 order of magnitude greater than that of nonspecific binding, the MBD dimer is a unique molecular complex. The significance of these results in the context of neuronal function and development and MeCP2-related developmental disorders such as Rett syndrome is discussed.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Christopher Warren
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Huiyong Cheng
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Esther
R. Berko
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - John M. Greally
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Michael Brenowitz
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| |
Collapse
|
13
|
Reinke AW, Baek J, Ashenberg O, Keating AE. Networks of bZIP protein-protein interactions diversified over a billion years of evolution. Science 2013; 340:730-4. [PMID: 23661758 DOI: 10.1126/science.1233465] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differences in biomolecular sequence and function underlie dramatic ranges of appearance and behavior among species. We studied the basic region-leucine zipper (bZIP) transcription factors and quantified bZIP dimerization networks for five metazoan and two single-cell species, measuring interactions in vitro for 2891 protein pairs. Metazoans have a higher proportion of heteromeric bZIP interactions and more network complexity than the single-cell species. The metazoan bZIP interactomes have broadly similar structures, but there has been extensive rewiring of connections compared to the last common ancestor, and each species network is highly distinct. Many metazoan bZIP orthologs and paralogs have strikingly different interaction specificities, and some differences arise from minor sequence changes. Our data show that a shifting landscape of biochemical functions related to signaling and gene expression contributes to species diversity.
Collapse
Affiliation(s)
- Aaron W Reinke
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
14
|
De Jong AT. Effect of flanking bases on the DNA specificity of EmBP-1. Biochemistry 2013; 52:786-94. [PMID: 23305409 DOI: 10.1021/bi301404h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
EmBP-1 is a basic region leucine zipper (bZIP) protein found in many types of plants. In general, plant bZIP proteins bind selectively to DNA sequences containing ACGT core sequences with different immediate flanking nucleotides preferred by different proteins. I report that the distant flanking sequence also has a strong effect on the preference of EmBP-1 for internal bases and determine the residue governing this effect. EmBP-1 binds selectively to the 10 bp gcG-box palindrome GCCACGTGGC 18-fold more tightly than the gcC-box GTGACGTCAC, but when the outer flanking G/C residues were changed to A/T (i.e., ACCACGTGGT and ATGACGTCAT), an only 1.2-fold preference for G-box binding was observed. Analysis of a series of single-residue alanine mutants of EmBP-1 revealed that this effect is mediated by arginine 10. Mutation of this residue to alanine greatly reduces the affinity for the gcG-box while leaving the affinity for other sequences relatively unchanged. Partial retention of G-box specificity upon mutation of R10 to lysine indicates that the effect is reliant on the basic nature of the residue. Additional studies with other EmBP-1 protein mutants and with oligonucleotides containing the T/A and C/G flanking sequences demonstrate the complexity of the protein-DNA interaction and demonstrate that the mechanism of sequence selective DNA binding is highly dependent on the flanking sequence.
Collapse
Affiliation(s)
- Antonia T De Jong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Wilson TJ, Crystal MA, Rohrbaugh MC, Sokolowsky KP, Gindt YM. Evidence from thermodynamics that DNA photolyase recognizes a solvent-exposed CPD lesion. J Phys Chem B 2011; 115:13746-54. [PMID: 22017645 DOI: 10.1021/jp208129a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Binding of a cis,syn-cyclobutane pyrimidine dimer (CPD) to Escherichia coli DNA photolyase was examined as a function of temperature, enzyme oxidation state, salt, and substrate conformation using isothermal titration calorimetry. While the overall ΔG° of binding was relatively insensitive to most of the conditions examined, the enthalpic and entropic terms that make up the free energy of binding are sensitive to the conditions of the experiment. Substrate binding to DNA photolyase is generally driven by a negative change in enthalpy. Electrostatic interactions and protonation are affected by the oxidation state of the required FAD cofactor and substrate conformation. The fully reduced enzyme appears to bind approximately two additional water molecules as part of substrate binding. More significantly, the experimental change in heat capacity strongly suggests that the CPD lesion must be flipped out of the intrahelical base stacking prior to binding to the protein; the DNA repair enzyme appears to recognize a solvent-exposed CPD as part of its damage recognition mechanism.
Collapse
Affiliation(s)
- Thomas J Wilson
- Department of Chemistry, Hugel Science Center, Lafayette College, Easton, Pennsylvania 18042, USA
| | | | | | | | | |
Collapse
|
16
|
Seldeen KL, Deegan BJ, Bhat V, Mikles DC, McDonald CB, Farooq A. Energetic coupling along an allosteric communication channel drives the binding of Jun-Fos heterodimeric transcription factor to DNA. FEBS J 2011; 278:2090-104. [PMID: 21496208 DOI: 10.1111/j.1742-4658.2011.08124.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although allostery plays a central role in driving protein-DNA interactions, the physical basis of such cooperative behavior remains poorly understood. In the present study, using isothermal titration calorimetry in conjunction with site-directed mutagenesis, we provide evidence that an intricate network of energetically-coupled residues within the basic regions of the Jun-Fos heterodimeric transcription factor accounts for its allosteric binding to DNA. Remarkably, energetic coupling is prevalent in residues that are both close in space, as well as residues distant in space, implicating the role of both short- and long-range cooperative interactions in driving the assembly of this key protein-DNA interaction. Unexpectedly, many of the energetically-coupled residues involved in orchestrating such a cooperative network of interactions are poorly conserved across other members of the basic zipper family, emphasizing the importance of basic residues in dictating the specificity of basic zipper-DNA interactions. Collectively, our thermodynamic analysis maps an allosteric communication channel driving a key protein-DNA interaction central to cellular functions in health and disease.
Collapse
Affiliation(s)
- Kenneth L Seldeen
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
17
|
Privalov PL, Dragan AI, Crane-Robinson C. Interpreting protein/DNA interactions: distinguishing specific from non-specific and electrostatic from non-electrostatic components. Nucleic Acids Res 2010; 39:2483-91. [PMID: 21071403 PMCID: PMC3074165 DOI: 10.1093/nar/gkq984] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We discuss the effectiveness of existing methods for understanding the forces driving the formation of specific protein-DNA complexes. Theoretical approaches using the Poisson-Boltzmann (PB) equation to analyse interactions between these highly charged macromolecules to form known structures are contrasted with an empirical approach that analyses the effects of salt on the stability of these complexes and assumes that release of counter-ions associated with the free DNA plays the dominant role in their formation. According to this counter-ion condensation (CC) concept, the salt-dependent part of the Gibbs energy of binding, which is defined as the electrostatic component, is fully entropic and its dependence on the salt concentration represents the number of ionic contacts present in the complex. It is shown that although this electrostatic component provides the majority of the Gibbs energy of complex formation and does not depend on the DNA sequence, the salt-independent part of the Gibbs energy--usually regarded as non-electrostatic--is sequence specific. The CC approach thus has considerable practical value for studying protein/DNA complexes, while practical applications of PB analysis have yet to demonstrate their merit.
Collapse
Affiliation(s)
- Peter L Privalov
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
18
|
Kuo D, Licon K, Bandyopadhyay S, Chuang R, Luo C, Catalana J, Ravasi T, Tan K, Ideker T. Coevolution within a transcriptional network by compensatory trans and cis mutations. Genome Res 2010; 20:1672-8. [PMID: 20978140 DOI: 10.1101/gr.111765.110] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcriptional networks have been shown to evolve very rapidly, prompting questions as to how such changes arise and are tolerated. Recent comparisons of transcriptional networks across species have implicated variations in the cis-acting DNA sequences near genes as the main cause of divergence. What is less clear is how these changes interact with trans-acting changes occurring elsewhere in the genetic circuit. Here, we report the discovery of a system of compensatory trans and cis mutations in the yeast AP-1 transcriptional network that allows for conserved transcriptional regulation despite continued genetic change. We pinpoint a single species, the fungal pathogen Candida glabrata, in which a trans mutation has occurred very recently in a single AP-1 family member, distinguishing it from its Saccharomyces ortholog. Comparison of chromatin immunoprecipitation profiles between Candida and Saccharomyces shows that, despite their different DNA-binding domains, the AP-1 orthologs regulate a conserved block of genes. This conservation is enabled by concomitant changes in the cis-regulatory motifs upstream of each gene. Thus, both trans and cis mutations have perturbed the yeast AP-1 regulatory system in such a way as to compensate for one another. This demonstrates an example of "coevolution" between a DNA-binding transcription factor and its cis-regulatory site, reminiscent of the coevolution of protein binding partners.
Collapse
Affiliation(s)
- Dwight Kuo
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Carrillo R, Privalov P. Unfolding of bZIP dimers formed by the ATF-2 and c-Jun transcription factors is not a simple two-state transition. Biophys Chem 2010; 151:149-54. [DOI: 10.1016/j.bpc.2010.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/10/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
|
20
|
Morgan SA, Al-Abdul-Wahid S, Woolley GA. Structure-based design of a photocontrolled DNA binding protein. J Mol Biol 2010; 399:94-112. [PMID: 20363227 DOI: 10.1016/j.jmb.2010.03.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 01/27/2023]
Abstract
Photocontrolled transcription factors could be powerful tools for probing the role of transcriptional processes in settings that are spatially or temporally complex. We report the structure-based design of a photocontrolled bZIP-type DNA binding protein that is a hybrid of the prototypical homodimeric bZIP protein GCN4 and photoactive yellow protein (PYP), a blue-light-sensitive protein from Halorhodospira halophila. A fusion of the C-terminal zipper region of GCN4-bZIP with the N-terminal cap of PYP was designed based on examination of available crystal structure data, analysis of amino acid preference rules for leucine zippers, and mutational and amino acid conservation data for PYP, together with Rosetta-guided structural modeling. The designed fusion protein GCN4Delta25PYP-v2 is monomeric in the dark; fluorescence, circular dichroism, NMR, and analytical ultracentrifugation data indicate that the zipper domain is hidden. DNA binding in the dark causes substantial structural reorganization of GCN4Delta25PYP-v2 with concomitant slowing of the photocycle, consistent with conformational coupling of the DNA binding domain and the light-sensitive domain of the protein. Consistent with this finding, blue-light irradiation causes a 2-fold increase in specific DNA binding affinity that reverses in the dark. The structure-based approach suggests strategies for enhancing this activity and for producing a family of related photocontrolled proteins for manipulating bZIP activity.
Collapse
Affiliation(s)
- Stacy-Anne Morgan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | | | | |
Collapse
|
21
|
Stability and DNA-Binding Ability of the bZIP Dimers Formed by the ATF-2 and c-Jun Transcription Factors. J Mol Biol 2010; 396:431-40. [DOI: 10.1016/j.jmb.2009.11.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 11/23/2022]
|
22
|
Sperber BLHM, Cohen Stuart MA, Schols HA, Voragen AGJ, Norde W. Binding of β-Lactolobulin to Pectins Varying in their Overall and Local Charge Density. Biomacromolecules 2009; 10:3246-52. [DOI: 10.1021/bm900812x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bram L. H. M. Sperber
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Martien A. Cohen Stuart
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alphons G. J. Voragen
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Willem Norde
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
23
|
Privalov PL, Dragan AI, Crane-Robinson C. The cost of DNA bending. Trends Biochem Sci 2009; 34:464-70. [PMID: 19726198 DOI: 10.1016/j.tibs.2009.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022]
Abstract
Experimental data on protein-DNA interactions highlight a surprising peculiarity of protein binding to the minor groove: in contrast to major groove binding, which proceeds with heat release and does not induce substantial deformation of DNA, minor groove binding takes place at AT-rich sites, proceeds with heat absorption and results in significant DNA bending. By forming a highly ordered and dense spine in the minor groove of AT-rich DNA, water plays an essential role in defining the energetic signature of protein-minor groove binding. Removal of this water requires minimal work and results in significant loss of rigidity in the DNA, which can then easily acquire the conformation imposed by the bound protein. Therefore the introduction of substantial bends into the DNA is not energetically expensive.
Collapse
Affiliation(s)
- Peter L Privalov
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
24
|
Favicchio R, Dragan AI, Kneale GG, Read CM. Fluorescence spectroscopy and anisotropy in the analysis of DNA-protein interactions. Methods Mol Biol 2009; 543:589-611. [PMID: 19378154 DOI: 10.1007/978-1-60327-015-1_35] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Fluorescence spectroscopy can be used as a sensitive non-destructive technique for the characterisation of protein-DNA interactions. A comparison of the intrinsic emission spectra obtained for a protein-DNA complex and for free protein can be informative about the environment of tryptophan and tyrosine residues in the two states. Often there is quenching of the fluorescence intensity of an intrinsic emission spectrum and/or a shift in the wavelength maximum on protein binding to DNA. A step-by-step protocol describes the determination of a DNA-binding curve by measurement of the quenching of the intrinsic protein fluorescence.Fluorescence anisotropy can also be used to obtain a DNA-binding curve if the molecular size of the protein-DNA complex is sufficiently different from the free fluorescing component. Typically an extrinsic fluorophore attached to one or both 5' ends of single-stranded or duplex DNA is used, for this increases the sensitivity of measurement.Fitting of the binding curves, assuming a model, can often yield the stoichiometry and association constant of the interaction. The approach is illustrated using the interaction of the DNA-binding domains (HMG boxes) of mouse Sox-5 and mammalian HMGB1 with short DNA duplexes.
Collapse
Affiliation(s)
- Rosy Favicchio
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
25
|
Dosanjh NS, West AL, Michel SLJ. Helicobacter pylori NikR's interaction with DNA: a two-tiered mode of recognition. Biochemistry 2009; 48:527-36. [PMID: 19119856 DOI: 10.1021/bi801481j] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HPNikR is a prokaryotic nickel binding transcription factor found in the virulent bacterium Helicobacter pylori. HPNikR regulates the expression of multiple genes as an activator or repressor, including those involved in nickel ion homeostasis, acid adaptation, and iron uptake. The target operator sequences of the genes regulated by HPNikR do not contain identifiable symmetrical recognition sites, and the mechanism by which HPNikR distinguishes between the genes it regulates is not understood. Using competitive fluorescence anisotropy (FA) and electrophoretic gel mobility shift (EMSA) assays, the interactions between HPNikR and the target operator sequences of the genes directly regulated (ureA, NixA, NikR, Fur OPI, Fur OPII, Frpb4, FecA3, and exbB) were characterized. These studies revealed that HPNikR utilizes a two-tiered mode of DNA recognition by binding to some genes with high affinity and others with low affinity. The genes that are tightly regulated by HPNikR encode proteins that utilize nickel, while those that are less tightly regulated encode other types of proteins. The affinities of low-affinity metal ions for a second metal binding site were determined to be in the micromolar regime, and a contribution of electrostatics to the HPNikR-DNA binding event was determined. Detailed studies of the role of sequence length and identity for the interaction between HPNikR and ureA revealed a specific length requirement for DNA binding.
Collapse
Affiliation(s)
- Nuvjeevan S Dosanjh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, USA
| | | | | |
Collapse
|
26
|
Abstract
Ultrasensitive microcalorimetric techniques for measuring the heat capacities of proteins in dilute solutions over a broad temperature range (DSC) and the heats of protein reactions at fixed temperatures (ITC) are described and the methods of working with these instruments are considered. Particular attention is paid to analyzing the thermal properties of individual proteins, their stability, the energetics of their folding, and their association with specific macromolecular partners. Use of these calorimetric methods is illustrated with examples of small compact globular proteins, small proteins having loose noncompact structure, multidomain proteins, and protein complexes, particularly with DNA.
Collapse
Affiliation(s)
- Peter L Privalov
- Department of Biology, John Hopkins University, Baltimore, MD, USA
| |
Collapse
|
27
|
Thibodeaux GN, Cowmeadow R, Umeda A, Zhang Z. A tetracycline repressor-based mammalian two-hybrid system to detect protein-protein interactions in vivo. Anal Biochem 2008; 386:129-31. [PMID: 19111517 DOI: 10.1016/j.ab.2008.11.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/26/2008] [Indexed: 11/20/2022]
Abstract
A mammalian two-hybrid system (termed as trM2H) was developed to detect protein-protein interactions in vivo, based on the reconstitution of the functions the of tetracycline repressor (TetR). The system is sensitive enough to detect protein-protein interactions with K(d) up to 55microM in mammalian cells, and the system can be regulated by small molecules. This system can be used as an efficient genetic selection system to map protein-protein interactions in mammalian cells.
Collapse
|
28
|
Dragan A, Carrillo R, Gerasimova T, Privalov P. Assembling the Human IFN-β Enhanceosome in Solution. J Mol Biol 2008; 384:335-48. [DOI: 10.1016/j.jmb.2008.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/28/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
|
29
|
Coupling of folding and DNA-binding in the bZIP domains of Jun-Fos heterodimeric transcription factor. Arch Biochem Biophys 2008; 473:48-60. [PMID: 18316037 DOI: 10.1016/j.abb.2008.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/18/2008] [Accepted: 02/19/2008] [Indexed: 01/06/2023]
Abstract
In response to mitogenic stimuli, the heterodimeric transcription factor Jun-Fos binds to the promoters of a diverse array of genes involved in critical cellular responses such as cell growth and proliferation, cell cycle regulation, embryogenic development and cancer. In so doing, Jun-Fos heterodimer regulates gene expression central to physiology and pathology of the cell in a specific and timely manner. Here, using the technique of isothermal titration calorimetry (ITC), we report detailed thermodynamics of the bZIP domains of Jun-Fos heterodimer to synthetic dsDNA oligos containing the TRE and CRE consensus promoter elements. Our data suggest that binding of the bZIP domains to both TRE and CRE is under enthalpic control and accompanied by entropic penalty at physiological temperatures. Although the bZIP domains bind to both TRE and CRE with very similar affinities, the enthalpic contributions to the free energy of binding to CRE are more favorable than TRE, while the entropic penalty to the free energy of binding to TRE is smaller than CRE. Despite such differences in their thermodynamic signatures, enthalpy and entropy of binding of the bZIP domains to both TRE and CRE are highly temperature-dependent and largely compensate each other resulting in negligible effect of temperature on the free energy of binding. From the plot of enthalpy change versus temperature, the magnitude of heat capacity change determined is much larger than that expected from the direct association of bZIP domains with DNA. This observation is interpreted to suggest that the basic regions in the bZIP domains are largely unstructured in the absence of DNA and only become structured upon interaction with DNA in a coupled folding and binding manner. Our new findings are rationalized in the context of 3D structural models of bZIP domains of Jun-Fos heterodimer in complex with dsDNA oligos containing the TRE and CRE consensus sequences. Taken together, our study demonstrates that enthalpy is the major driving force for a key protein-DNA interaction pertinent to cellular signaling and that protein-DNA interactions with similar binding affinities may be accompanied by differential thermodynamic signatures. Our data corroborate the notion that the DNA-induced protein structural changes are a general feature of the bZIP family of transcription factors.
Collapse
|
30
|
Dragan AI, Privalov PL. Use of fluorescence resonance energy transfer (FRET) in studying protein-induced DNA bending. Methods Enzymol 2008; 450:185-99. [PMID: 19152861 DOI: 10.1016/s0076-6879(08)03409-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The specific association of many DNA-binding proteins with DNA frequently results in significant deformation of the DNA. Protein-induced DNA bends depend on the protein, the DNA sequence, the environmental conditions, and in some cases are very substantial, implying that DNA bending has important functional significance. The precise determination of the DNA deformation caused by proteins under various conditions is therefore of importance for understanding the biological role of the association. This review considers methods for the investigation of protein-induced DNA bending by measuring the change in fluorescence resonance energy transfer (FRET) between fluorophores placed at the ends of the target DNA duplex. This FRET technique is particularly efficient when the protein-induced bend in the DNA is considerable and results in a significant decrease in the distance between the DNA ends bearing the fluorophores. However, in the case of small bends the change of distance between the ends of short DNA duplexes, as typically used in protein binding experiments (about 16-20 bp), is too small to be detected accurately by FRET. In such cases the change of the distance between the fluorophores can be increased by using levers attached to the binding site, that is, using two bulges to construct a U-shaped DNA in which the central part contains the protein-binding site and the fluorophores are attached to the ends of the perpendicularly directed arms.
Collapse
Affiliation(s)
- Anatoly I Dragan
- Institute of Fluorescence, University of Maryland Biotechnology Institute, Columbus Center, Baltimore, Maryland, USA
| | | |
Collapse
|
31
|
Atf2 transcription factor binds to the APP1 promoter in Cryptococcus neoformans: stimulatory effect of diacylglycerol. EUKARYOTIC CELL 2007; 7:294-301. [PMID: 18083832 DOI: 10.1128/ec.00315-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The fungus Cryptococcus neoformans is an environmental human pathogen which enters the lung via the respiratory tract and produces a unique protein, called antiphagocytic protein 1 (App1), that protects it from phagocytosis by macrophages. In previous studies, we proposed genetic evidences that transcription of APP1 is controlled by the enzymatic reaction catalyzed by inositol phosphorylceramide synthase 1 (Ipc1) via the production of diacylglycerol through the activating transcription factor 2 (Atf2). We investigated here the mechanism by which Atf2 binds to the APP1 promoter in vitro and in vivo. To this end, we produced Atf2 recombinant proteins (rAtf2) and found that rAtf2 binds to ATF cis-acting element present in the APP1 promoter. Indeed, mutation of two key nucleotides in the ATF consensus sequence abolishes the binding of rAtf2 to the APP1 promoter. Next, we produced C. neoformans strains with a hemagglutinin-tagged ATF2 gene and showed that endogenous Atf2 binds to APP1 promoter in vivo. Finally, by a novel DNA protein-binding precipitation assay, we showed that treatment with 1,2-dioctanoylglycerol positively increases binding of Atf2-APP1 promoter in vivo. These studies provide new insights into the molecular mechanism by which Atf2 regulates APP1 transcription in vivo with important implications for a better understanding of how C. neoformans escapes the phagocytic process.
Collapse
|
32
|
Balakrishnan G, Hu Y, Case MA, Spiro TG. Microsecond melting of a folding intermediate in a coiled-coil peptide, monitored by T-jump/UV Raman spectroscopy. J Phys Chem B 2007; 110:19877-83. [PMID: 17020373 DOI: 10.1021/jp061987f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A truncated version of the GCN4 coiled-coil peptide has been studied by ultraviolet resonance Raman (UVRR) spectroscopy with 197 nm excitation, where amide modes are optimally enhanced. Although the CD melting curve could be satisfactorily described with a two-state transition having Tm = 30 degrees C, singular value decomposition of the UVRR data yielded three principal components, whose temperature dependence implicates an intermediate form between the folded and unfolded forms, with formation and melting temperatures of 10 and 40 degrees C. Two alpha-helical amide III bands, at 1340 and 1300 cm(-1), melted out selectively at 10 and 40 degrees C, respectively, and are assigned to hydrated and unhydrated helical regions. The hydrated regions are proposed to be melted in the intermediate form, while the unhydrated regions are intact. Time-resolved UVRR spectra following laser-induced temperature jumps revealed two relaxations, with time constants of 0.2 and 15 mus. These are suggested to reflect the melting times of hydrated and unhydrated helices. The unhydrated helical region may be associated with a 14-residue "trigger" sequence that has been identified in the C-terminal half of GCN4. Dehydration of helices may be a key step in the folding of coiled-coils.
Collapse
|
33
|
Privalov PL, Dragan AI. Microcalorimetry of biological macromolecules. Biophys Chem 2007; 126:16-24. [PMID: 16781052 DOI: 10.1016/j.bpc.2006.05.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
The capabilities of contemporary differential scanning and isothermal titration microcalorimetry for studying the thermodynamics of protein unfolding/refolding and their association with partners, particularly target DNA duplexes, are considered. It is shown that the predenaturational changes of proteins must not be ignored in studying the thermodynamics of formation of their native structure and their complexes with partners, particularly their cognate DNA duplexes.
Collapse
|
34
|
Privalov PL, Dragan AI, Crane-Robinson C, Breslauer KJ, Remeta DP, Minetti CASA. What drives proteins into the major or minor grooves of DNA? J Mol Biol 2006; 365:1-9. [PMID: 17055530 PMCID: PMC1934558 DOI: 10.1016/j.jmb.2006.09.059] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/21/2006] [Accepted: 09/22/2006] [Indexed: 01/22/2023]
Abstract
The energetic profiles of a significant number of protein-DNA systems at 20 degrees C reveal that, despite comparable Gibbs free energies, association with the major groove is primarily an enthalpy-driven process, whereas binding to the minor groove is characterized by an unfavorable enthalpy that is compensated by favorable entropic contributions. These distinct energetic signatures for major versus minor groove binding are irrespective of the magnitude of DNA bending and/or the extent of binding-induced protein refolding. The primary determinants of their different energetic profiles appear to be the distinct hydration properties of the major and minor grooves; namely, that the water in the A+T-rich minor groove is in a highly ordered state and its removal results in a substantial positive contribution to the binding entropy. Since the entropic forces driving protein binding into the minor groove are a consequence of displacing water ordered by the regular arrangement of polar contacts, they cannot be regarded as hydrophobic.
Collapse
Affiliation(s)
- Peter L Privalov
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Vinson C, Acharya A, Taparowsky EJ. Deciphering B-ZIP transcription factor interactions in vitro and in vivo. ACTA ACUST UNITED AC 2006; 1759:4-12. [PMID: 16580748 DOI: 10.1016/j.bbaexp.2005.12.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 12/22/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
Over the last 15 years, numerous studies have addressed the structural rules that regulate dimerization stability and dimerization specificity of the leucine zipper, a dimeric parallel coiled-coil domain that can either homodimerize or heterodimerize. Initially, these studies were performed with a limited set of B-ZIP proteins, sequence-specific DNA binding proteins that dimerize using the leucine zipper domain to bind DNA. A global analysis of B-ZIP leucine zipper dimerization properties can be rationalized using a limited number of structural rules [J.R. Newman, A.E. Keating, Comprehensive identification of human bZIP interactions with coiled-coil arrays, Science 300 (2003) 2097-2101]. Today, however, access to the genomic sequences of many different organisms has made possible the annotation of all B-ZIP proteins from several species and has generated a bank of data that can be used to refine, and potentially expand, these rules. Already, a comparative analysis of the B-ZIP proteins from Arabidopsis thaliana and Homo sapiens has revealed that the same amino acids are used in different patterns to generate diverse B-ZIP dimerization patterns [C.D. Deppmann, A. Acharya, V. Rishi, B. Wobbes, S. Smeekens, E.J. Taparowsky, C. Vinson, Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs, Nucleic Acids Res. 32 (2004) 3435-3445]. The challenge ahead is to investigate the biological significance of different B-ZIP protein-protein interactions. Gaining insight at this level will rely on ongoing investigations to (a) define the role of target DNA on modulating B-ZIP dimerization partners, (b) characterize the B-ZIP transcriptome in various cells and tissues through mRNA microarray analysis, (c) identify the genomic localization of B-ZIP binding at a genomic level using the chromatin immunoprecipitation assay, and (d) develop more sophisticated imaging technologies to visualize dimer dynamics in single cells and whole organisms. Studies of B-ZIP family leucine zipper dimerization and the regulatory mechanisms that control their biological activities could serve as a paradigm for deciphering the biophysical and biological parameters governing other well-characterized protein-protein interaction motifs. This review will focus on the dimerization specificity of coiled-coil proteins, particularly the human B-ZIP transcription family that consists of 53 proteins that use the leucine zipper coiled-coil as a dimerization motif.
Collapse
Affiliation(s)
- Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Jenifer K Lum
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
37
|
Dragan AI, Liu Y, Makeyeva EN, Privalov PL. DNA-binding domain of GCN4 induces bending of both the ATF/CREB and AP-1 binding sites of DNA. Nucleic Acids Res 2004; 32:5192-7. [PMID: 15459288 PMCID: PMC521666 DOI: 10.1093/nar/gkh854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interaction of proteins with DNA results, in some cases, in DNA bending, and this might have functional importance. However, when the protein-induced bending of DNA is small, its measurement presents a problem. It is shown that the fluorescence resonance energy transfer between fluorophores placed on the ends of the specially designed U-shaped DNA, which contains the DNA-binding sites at its central part, can be successfully used for this purpose. The lever effect of the arms of such U-shaped DNA ensures that the distance between the fluorophores is very sensitive to bending of the central part. Using this technique, it was shown that (i) the AP-1 and ATF/CREB binding sites of GCN4 transcription factor are pre-bent to the same extent (approximately 12 degrees toward the major groove) and (ii) binding of the GCN4 DNA-binding domain (GCN4-bZIP) results in additional bending of both these target sites but to a greater extent at the ATF/CREB site. In total, in the complex with GCN4-bZIP, the ATF/CREB site is bent by (25 +/- 2) degrees and the AP-1 site by (20 +/- 2) degrees toward the minor groove.
Collapse
Affiliation(s)
- Anatoly I Dragan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|