1
|
SnoRNA in Cancer Progression, Metastasis and Immunotherapy Response. BIOLOGY 2021; 10:biology10080809. [PMID: 34440039 PMCID: PMC8389557 DOI: 10.3390/biology10080809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary A much larger number of small nucleolar RNA (snoRNA) have been found encoded within our genomes than we ever expected to see. The activities of the snoRNAs were thought restricted to the nucleolus, where they were first discovered. Now, however, their significant number suggests that their functions are more diverse. Studies in cancers have shown snoRNA levels to associate with different stages of disease progression, including with metastasis. In addition, relationships between snoRNA levels and response to immunotherapies, have been reported. Emerging technologies now allow snoRNA to be targeted directly in cancers, and the therapeutic value of this is being explored. Abstract Small nucleolar RNA (snoRNA) were one of our earliest recognised classes of non-coding RNA, but were largely ignored by cancer investigators due to an assumption that their activities were confined to the nucleolus. However, as full genome sequences have become available, many new snoRNA genes have been identified, and multiple studies have shown their functions to be diverse. The consensus now is that many snoRNA are dysregulated in cancers, are differentially expressed between cancer types, stages and metastases, and they can actively modify disease progression. In addition, the regulation of the snoRNA class is dominated by the cancer-supporting mTOR signalling pathway, and they may have particular significance to immune cell function and anti-tumour immune responses. Given the recent advent of therapeutics that can target RNA molecules, snoRNA have robust potential as drug targets, either solely or in the context of immunotherapies.
Collapse
|
2
|
Persson H, Søkilde R, Häkkinen J, Vallon-Christersson J, Mitelman F, Borg Å, Höglund M, Rovira C. Analysis of fusion transcripts indicates widespread deregulation of snoRNAs and their host genes in breast cancer. Int J Cancer 2020; 146:3343-3353. [PMID: 32067223 DOI: 10.1002/ijc.32927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022]
Abstract
Genomic rearrangements in cancer can join the sequences of two separate genes. Studies of such gene fusion events have mainly focused on identification of fusion proteins from the chimeric transcripts. We have previously investigated how fusions instead can affect the expression of intronic microRNA (miRNA) genes that are encoded within fusion gene partners. Here, we extend our analysis to small nucleolar RNAs (snoRNAs) that also are embedded within protein-coding or noncoding host genes. We found that snoRNA hosts are selectively enriched in fusion transcripts, like miRNA host genes, and that this enrichment is associated with all snoRNA classes. These structural changes may have functional consequences for the cell; proteins involved in the protein translation machinery are overrepresented among snoRNA host genes, a gene architecture assumed to be needed for closely coordinated expression of snoRNAs and host proteins. Our data indicate that this structure is frequently disrupted in cancer. We furthermore observed that snoRNA genes involved in fusions tend to associate with stronger promoters than the natural host, suggesting a mechanism that selects for snoRNA overexpression. In summary, we highlight a previously unexplored frequent structural change in cancer that affects important components of cellular physiology.
Collapse
Affiliation(s)
- Helena Persson
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden
| | - Rolf Søkilde
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Jari Häkkinen
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden
| | | | - Felix Mitelman
- Department of Laboratory Medicine, Clinical Genetics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Åke Borg
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden.,CREATE Health, Strategic Centre for Translational Cancer Research, Lund, Sweden
| | - Mattias Höglund
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Oncology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| |
Collapse
|
3
|
Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing. Nat Commun 2020; 11:168. [PMID: 31924754 PMCID: PMC6954239 DOI: 10.1038/s41467-019-13687-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/19/2019] [Indexed: 12/26/2022] Open
Abstract
Variations in transcription start site (TSS) selection reflect diversity of preinitiation complexes and can impact on post-transcriptional RNA fates. Most metazoan polymerase II-transcribed genes carry canonical initiation with pyrimidine/purine (YR) dinucleotide, while translation machinery-associated genes carry polypyrimidine initiator (5’-TOP or TCT). By addressing the developmental regulation of TSS selection in zebrafish we uncovered a class of dual-initiation promoters in thousands of genes, including snoRNA host genes. 5’-TOP/TCT initiation is intertwined with canonical initiation and used divergently in hundreds of dual-initiation promoters during maternal to zygotic transition. Dual-initiation in snoRNA host genes selectively generates host and snoRNA with often different spatio-temporal expression. Dual-initiation promoters are pervasive in human and fruit fly, reflecting evolutionary conservation. We propose that dual-initiation on shared promoters represents a composite promoter architecture, which can function both coordinately and divergently to diversify RNAs. The functional significance of start site choice in promoter architectures is little understood. Here the authors identify in zebrafish development and mammalian cells a class of dual-initiation promoters, in which non-canonical YC dinucleotides reflecting 5’-TOP/TCT initiation are intertwined with canonical YR-initiation.
Collapse
|
4
|
Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv 2019; 2:151-163. [PMID: 29365324 DOI: 10.1182/bloodadvances.2017006668] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are noncoding RNAs that contribute to ribosome biogenesis and RNA splicing by modifying ribosomal RNA and spliceosome RNAs, respectively. We optimized a next-generation sequencing approach and a custom analysis pipeline to identify and quantify expression of snoRNAs in acute myeloid leukemia (AML) and normal hematopoietic cell populations. We show that snoRNAs are expressed in a lineage- and development-specific fashion during hematopoiesis. The most striking examples involve snoRNAs located in 2 imprinted loci, which are highly expressed in hematopoietic progenitors and downregulated during myeloid differentiation. Although most snoRNAs are expressed at similar levels in AML cells compared with CD34+, a subset of snoRNAs showed consistent differential expression, with the great majority of these being decreased in the AML samples. Analysis of host gene expression, splicing patterns, and whole-genome sequence data for mutational events did not identify transcriptional patterns or genetic alterations that account for these expression differences. These data provide a comprehensive analysis of the snoRNA transcriptome in normal and leukemic cells and should be helpful in the design of studies to define the contribution of snoRNAs to normal and malignant hematopoiesis.
Collapse
|
5
|
Patel NA, Moss LD, Lee JY, Tajiri N, Acosta S, Hudson C, Parag S, Cooper DR, Borlongan CV, Bickford PC. Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. J Neuroinflammation 2018; 15:204. [PMID: 30001722 PMCID: PMC6044101 DOI: 10.1186/s12974-018-1240-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Neuroinflammation is a common therapeutic target for traumatic brain injury (TBI) due to its contribution to delayed secondary cell death and has the potential to occur for years after the initial insult. Exosomes from adipose-derived stem cells (hASCs) containing the long noncoding RNA MALAT1 are a novel, cell-free regenerative approach to long-term recovery after traumatic brain injury (TBI) that have the potential to modulate inflammation at the genomic level. The long noncoding RNA MALAT1 has been shown to be an important component of the secretome of hASCs. METHODS We isolated exosomes from hASC containing or depleted of MALAT1. The hASC-derived exosomes were then administered intravenously to rats following a mild controlled cortical impact (CCI). We followed the rats with behavior, in vivo imaging, histology, and RNA sequencing (RNA Seq). RESULTS Using in vivo imaging, we show that exosomes migrate into the spleen within 1 h following administration and enter the brain several hours later following TBI. Significant recovery of function on motor behavior as well as a reduction in cortical brain injury was observed after TBI in rats treated with exosomes. Treatment with either exosomes depleted of MALAT1 or conditioned media depleted of exosomes showed limited regenerative effects, demonstrating the importance of MALAT1 in exosome-mediated recovery. Analysis of the brain and spleen transcriptome using RNA Seq showed MALAT1-dependent modulation of inflammation-related pathways, cell cycle, cell death, and regenerative molecular pathways. Importantly, our data demonstrates that MALAT1 regulates expression of other noncoding RNAs including snoRNAs. CONCLUSION We demonstrate that MALAT1 in hASC-derived exosomes modulates multiple therapeutic targets, including inflammation, and has tremendous therapeutic potential for treatment of TBI.
Collapse
Affiliation(s)
- Niketa A. Patel
- 0000 0001 0624 9286grid.281075.9James A Haley Veterans Hospital, Research Service, Tampa, FL USA ,0000 0001 2353 285Xgrid.170693.aDepartment of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Lauren Daly Moss
- 0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA
| | - Jea-Young Lee
- 0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA
| | - Naoki Tajiri
- 0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA ,0000 0001 0728 1069grid.260433.0Present address: Department of Neurophysiology & Brain Science, Graduate School of Medical Sciences & Medical School, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601 Japan
| | - Sandra Acosta
- 0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA
| | - Charles Hudson
- 0000 0001 0624 9286grid.281075.9James A Haley Veterans Hospital, Research Service, Tampa, FL USA
| | - Sajan Parag
- 0000 0001 2353 285Xgrid.170693.aDepartment of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Denise R. Cooper
- 0000 0001 0624 9286grid.281075.9James A Haley Veterans Hospital, Research Service, Tampa, FL USA ,0000 0001 2353 285Xgrid.170693.aDepartment of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Cesario V. Borlongan
- 0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA ,0000 0001 2353 285Xgrid.170693.aUSF Health Center of Excellence for Aging and Brain Repair MDC-78, 12901 Bruce B Downs, Blvd, Tampa, FL 33612 USA
| | - Paula C. Bickford
- 0000 0001 0624 9286grid.281075.9James A Haley Veterans Hospital, Research Service, Tampa, FL USA ,0000 0001 2353 285Xgrid.170693.aDepartment of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL USA ,0000 0001 2353 285Xgrid.170693.aUSF Health Center of Excellence for Aging and Brain Repair MDC-78, 12901 Bruce B Downs, Blvd, Tampa, FL 33612 USA
| |
Collapse
|
6
|
Nabissi M, Morelli MB, Arcella A, Cardinali C, Santoni M, Bernardini G, Santoni A, Santoni G, Amantini C. Post-transcriptional regulation of 5'-untranslated regions of human Transient Receptor Potential Vanilloid type-1 (TRPV-1) channels: role in the survival of glioma patients. Oncotarget 2018; 7:81541-81554. [PMID: 27829230 PMCID: PMC5348411 DOI: 10.18632/oncotarget.13132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/14/2016] [Indexed: 01/02/2023] Open
Abstract
The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel is a non-selective cation channel belonging to the Transient Receptor Potential family; variation of its expression has been correlated to glioma progression. In human, TRPV1 transcripts display a remarkable homogeneity differing only for the 5'-untranslated region (5'UTR) sequence that generates four variants encoding the same protein. Herein, we investigated the role of the 5'UTR sequences in TRPV1 transcripts stability, regulation of translation, expression in glioma cells and tissues. In addition, the expression of 5'UTR TRPV1 variants as prognostic factor in the survival of glioblastoma patients was evaluated. The expression level for each 5'UTR and their stability was evaluated by RT-PCR analysis. The effect of rapamycin and interferon-gamma in 5'UTR-regulating TRPV1 translation was determined by western blot analysis in glioma cell lines. We demonstrated that the 5'UTR influences the stability and translation efficacy of TRPV1 transcripts, and that TRPV1 variant three (TRPV1v3) was the most stable and the only variant expressed in GBM samples and in glioma stem-like cells. Furthermore, we found that TRPV1v3 expression levels correlate with patient's survival, suggesting that it may represent a potential prognostic marker for patients with glioma.
Collapse
Affiliation(s)
- Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino (MC), Italy
| | | | | | - Claudio Cardinali
- Department of Molecular Medicine, Sapienza University, Rome (RM), Italy
| | - Matteo Santoni
- Department of Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, Ancona (AN), Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University, Rome (RM), Italy.,I.N.M. Neuromed, Pozzilli, Isernia (IS), Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome (RM), Italy.,I.N.M. Neuromed, Pozzilli, Isernia (IS), Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino (MC), Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
7
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
8
|
MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J Biomed Biotechnol 2009; 2009:594678. [PMID: 19606257 PMCID: PMC2709726 DOI: 10.1155/2009/594678] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/18/2009] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are often hosted in introns of protein-coding genes. Given that the same transcriptional unit can potentially give rise to both miRNA and mRNA transcripts raises the intriguing question of the level of interaction between these processes. Recent studies from transcription, pre-mRNA splicing, and miRNA-processing perspectives have investigated these relationships and yielded interesting, yet somewhat controversial findings. Here we discuss major studies in the field.
Collapse
|
9
|
Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 2009; 94:83-8. [PMID: 19446021 DOI: 10.1016/j.ygeno.2009.05.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/30/2009] [Accepted: 05/07/2009] [Indexed: 11/26/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Parma, Italy.
| | | | | |
Collapse
|
10
|
Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 2009; 15:902-9. [PMID: 19172742 DOI: 10.1038/nsmb.1475] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
microRNAs (miRNAs) are generated from long primary (pri-) RNA polymerase II (Pol II)-derived transcripts by two RNase III processing reactions: Drosha cleavage of nuclear pri-miRNAs and Dicer cleavage of cytoplasmic pre-miRNAs. Here we show that Drosha cleavage occurs during transcription acting on both independently transcribed and intron-encoded miRNAs. We also show that both 5'-3' and 3'-5' exonucleases associate with the sites where co-transcriptional Drosha cleavage occurs, promoting intron degradation before splicing. We finally demonstrate that miRNAs can also derive from 3' flanking transcripts of Pol II genes. Our results demonstrate that multiple miRNA-containing transcripts are co-transcriptionally cleaved during their synthesis and suggest that exonucleolytic degradation from Drosha cleavage sites in pre-mRNAs may influence the splicing and maturation of numerous mRNAs.
Collapse
|
11
|
He H, Cai L, Skogerbø G, Deng W, Liu T, Zhu X, Wang Y, Jia D, Zhang Z, Tao Y, Zeng H, Aftab MN, Cui Y, Liu G, Chen R. Profiling Caenorhabditis elegans non-coding RNA expression with a combined microarray. Nucleic Acids Res 2006; 34:2976-83. [PMID: 16738136 PMCID: PMC1474057 DOI: 10.1093/nar/gkl371] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small non-coding RNAs (ncRNAs) are encoded by genes that function at the RNA level, and several hundred ncRNAs have been identified in various organisms. Here we describe an analysis of the small non-coding transcriptome of Caenorhabditis elegans, microRNAs excepted. As a substantial fraction of the ncRNAs is located in introns of protein-coding genes in C.elegans, we also analysed the relationship between ncRNA and host gene expression. To this end, we designed a combined microarray, which included probes against ncRNA as well as host gene mRNA transcripts. The microarray revealed pronounced differences in expression profiles, even among ncRNAs with housekeeping functions (e.g. snRNAs and snoRNAs), indicating distinct developmental regulation and stage-specific functions of a number of novel transcripts. Analysis of ncRNA–host mRNA relations showed that the expression of intronic ncRNA loci with conserved upstream motifs was not correlated to (and much higher than) expression levels of their host genes. Even promoter-less intronic ncRNA loci, though showing a clear correlation to host gene expression, appeared to have a surprising amount of ‘expressional freedom’, depending on host gene function. Taken together, our microarray analysis presents a more complete and detailed picture of a non-coding transcriptome than hitherto has been presented for any other multicellular organism.
Collapse
Affiliation(s)
- Housheng He
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Lun Cai
- Computational Biology Research Group, Division of Intelligent Software Systems, Institute of Computing Technology, Chinese Academy of SciencesBeijing 100080, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Geir Skogerbø
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
| | - Wei Deng
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
| | - Tao Liu
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Xiaopeng Zhu
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Yudong Wang
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
| | - Dong Jia
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
| | - Zhihua Zhang
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Yong Tao
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
- Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Haipan Zeng
- Beijing Genomics Institute, Chinese Academy of SciencesBeijing 101300, China
| | - Muhammad Nauman Aftab
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Graduate School of the Chinese Academy of SciencesBeijing 100080, China
| | - Yan Cui
- Department of Molecular Sciences/Center of Genomics and Bioinformatics, University of Tennessee Health Science CenterMemphis, TN 38163, USA
| | - Guozhen Liu
- Beijing Genomics Institute, Chinese Academy of SciencesBeijing 101300, China
| | - Runsheng Chen
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- Computational Biology Research Group, Division of Intelligent Software Systems, Institute of Computing Technology, Chinese Academy of SciencesBeijing 100080, China
- Chinese National Human Genome CenterBeijing 100176, China
- To whom correspondence should be addressed at Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. Tel: +86 10 64888543; Fax: +86 10 64889892;
| |
Collapse
|
12
|
Deng W, Zhu X, Skogerbø G, Zhao Y, Fu Z, Wang Y, He H, Cai L, Sun H, Liu C, Li B, Bai B, Wang J, Jia D, Sun S, He H, Cui Y, Wang Y, Bu D, Chen R. Organization of the Caenorhabditis elegans small non-coding transcriptome: genomic features, biogenesis, and expression. Genes Dev 2006; 16:20-9. [PMID: 16344563 PMCID: PMC1356125 DOI: 10.1101/gr.4139206] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Accepted: 08/22/2005] [Indexed: 01/14/2023]
Abstract
Recent evidence points to considerable transcription occurring in non-protein-coding regions of eukaryote genomes. However, their lack of conservation and demonstrated function have created controversy over whether these transcripts are functional. Applying a novel cloning strategy, we have cloned 100 novel and 61 known or predicted Caenorhabditis elegans full-length ncRNAs. Studying the genomic environment and transcriptional characteristics have shown that two-thirds of all ncRNAs, including many intronic snoRNAs, are independently transcribed under the control of ncRNA-specific upstream promoter elements. Furthermore, the transcription levels of at least 60% of the ncRNAs vary with developmental stages. We identified two new classes of ncRNAs, stem-bulge RNAs (sbRNAs) and snRNA-like RNAs (snlRNAs), both featuring distinct internal motifs, secondary structures, upstream elements, and high and developmentally variable expression. Most of the novel ncRNAs are conserved in Caenorhabditis briggsae, but only one homolog was found outside the nematodes. Preliminary estimates indicate that the C. elegans transcriptome contains approximately 2700 small non-coding RNAs, potentially acting as regulatory elements in nematode development.
Collapse
Affiliation(s)
- Wei Deng
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|