1
|
Koripella RK, Sharma MR, Risteff P, Keshavan P, Agrawal RK. Structural insights into unique features of the human mitochondrial ribosome recycling. Proc Natl Acad Sci U S A 2019; 116:8283-8288. [PMID: 30962385 PMCID: PMC6486771 DOI: 10.1073/pnas.1815675116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing proteins that are essential for oxidative phosphorylation (ATP generation). Despite their common ancestry with bacteria, the composition and structure of the human mitoribosome and its translational factors are significantly different from those of their bacterial counterparts. The mammalian mitoribosome recycling factor (RRFmt) carries a mito-specific N terminus extension (NTE), which is necessary for the function of RRFmt Here we present a 3.9-Å resolution cryo-electron microscopic (cryo-EM) structure of the human 55S mitoribosome-RRFmt complex, which reveals α-helix and loop structures for the NTE that makes multiple mito-specific interactions with functionally critical regions of the mitoribosome. These include ribosomal RNA segments that constitute the peptidyl transferase center (PTC) and those that connect PTC with the GTPase-associated center and with mitoribosomal proteins L16 and L27. Our structure reveals the presence of a tRNA in the pe/E position and a rotation of the small mitoribosomal subunit on RRFmt binding. In addition, we observe an interaction between the pe/E tRNA and a mito-specific protein, mL64. These findings help understand the unique features of mitoribosome recycling.
Collapse
Affiliation(s)
- Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Paul Risteff
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Pooja Keshavan
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509;
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY
| |
Collapse
|
2
|
Russi S, González A, Kenner LR, Keedy DA, Fraser JS, van den Bedem H. Conformational variation of proteins at room temperature is not dominated by radiation damage. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:73-82. [PMID: 28009548 PMCID: PMC5182021 DOI: 10.1107/s1600577516017343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/28/2016] [Indexed: 05/09/2023]
Abstract
Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 107 Gy at 100 K and 105 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. This analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.
Collapse
Affiliation(s)
- Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ana González
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Lillian R. Kenner
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
| | - Daniel A. Keedy
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
| | - Henry van den Bedem
- Bioscience Department, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
3
|
Ostojić J, Panozzo C, Bourand-Plantefol A, Herbert CJ, Dujardin G, Bonnefoy N. Ribosome recycling defects modify the balance between the synthesis and assembly of specific subunits of the oxidative phosphorylation complexes in yeast mitochondria. Nucleic Acids Res 2016; 44:5785-97. [PMID: 27257059 PMCID: PMC4937339 DOI: 10.1093/nar/gkw490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/20/2016] [Indexed: 01/07/2023] Open
Abstract
Mitochondria have their own translation machinery that produces key subunits of the OXPHOS complexes. This machinery relies on the coordinated action of nuclear-encoded factors of bacterial origin that are well conserved between humans and yeast. In humans, mutations in these factors can cause diseases; in yeast, mutations abolishing mitochondrial translation destabilize the mitochondrial DNA. We show that when the mitochondrial genome contains no introns, the loss of the yeast factors Mif3 and Rrf1 involved in ribosome recycling neither blocks translation nor destabilizes mitochondrial DNA. Rather, the absence of these factors increases the synthesis of the mitochondrially-encoded subunits Cox1, Cytb and Atp9, while strongly impairing the assembly of OXPHOS complexes IV and V. We further show that in the absence of Rrf1, the COX1 specific translation activator Mss51 accumulates in low molecular weight forms, thought to be the source of the translationally-active form, explaining the increased synthesis of Cox1. We propose that Rrf1 takes part in the coordination between translation and OXPHOS assembly in yeast mitochondria. These interactions between general and specific translation factors might reveal an evolutionary adaptation of the bacterial translation machinery to the set of integral membrane proteins that are translated within mitochondria.
Collapse
Affiliation(s)
- Jelena Ostojić
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Cristina Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Alexa Bourand-Plantefol
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Christopher J Herbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Geneviève Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
4
|
Selvaraj M, Govindan A, Seshadri A, Dubey B, Varshney U, Vijayan M. Molecular flexibility of Mycobacterium tuberculosis ribosome recycling factor and its functional consequences: an exploration involving mutants. J Biosci 2014; 38:845-55. [PMID: 24296887 DOI: 10.1007/s12038-013-9381-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Internal mobility of the two domain molecule of ribosome recycling factor (RRF) is known to be important for its action. Mycobacterium tuberculosis RRF does not complement E. coli for its deficiency of RRF (in the presence of E. coli EF-G alone). Crystal structure had revealed higher rigidity of the M. tuberculosis RRF due to the presence of additional salt bridges between domains. Two inter-domain salt bridges and one between the linker region and the domain containing C-terminal residues were disrupted by appropriate mutations. Except for a C-terminal deletion mutant, all mutants showed RRF activity in E. coli when M. tuberculosis EF-G was also co-expressed. The crystal structures of the point mutants, that of the C-terminal deletion mutant and that of the protein grown in the presence of a detergent, were determined. The increased mobility resulting from the disruption of the salt bridge involving the hinge region allows the appropriate mutant to weakly complement E. coli for its deficiency of RRF even in the absence of simultaneous expression of the mycobacterial EF-G. The loss of activity of the C-terminal deletion mutant appears to be partly due to the rigidification of the molecule consequent to changes in the hinge region.
Collapse
Affiliation(s)
- M Selvaraj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | |
Collapse
|
5
|
Shang G, Feng D, Lu F, Zhang H, Cang H, Gao W, Bi R. Purification, crystallization and preliminary crystallographic analysis of a ribosome-recycling factor from Thermoanaerobacter tengcongensis (TteRRF). ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:588-91. [PMID: 24817715 DOI: 10.1107/s2053230x1400507x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/05/2014] [Indexed: 11/10/2022]
Abstract
Ribosome-recycling factor (RRF) plays an essential role in the fourth step of protein synthesis in prokaryotes. RRF combined with elongation factor G (EF-G) disassembles the post-termination ribosome complex and recycles the protein synthesis machine for the next round of translation. A reductive-methylation-modified RRF from Thermoanaerobacter tengcongensis (TteRRF) has been crystallized using the vapour-diffusion method. The crystal grew in a condition consisting of 0.1 M citric acid pH 3.5, 3.0 M NaCl and 50 mg ml(-1) methylated protein solution at 289 K. A complete data set was collected from a crystal to 2.80 Å resolution using synchrotron radiation at 100 K. The crystal belonged to space group P6122/P6522 with unit-cell parameters a = b = 103.26, c = 89.17 Å. The asymmetric unit was estimated to contain one molecule of TteRRF.
Collapse
Affiliation(s)
- Guijun Shang
- College of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People's Republic of China
| | - Duo Feng
- College of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People's Republic of China
| | - Fang Lu
- College of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People's Republic of China
| | - Hongjie Zhang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People's Republic of China
| | - Huaixing Cang
- College of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People's Republic of China
| | - Wei Gao
- College of Science, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing 100083, People's Republic of China
| | - Ruchang Bi
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People's Republic of China
| |
Collapse
|
6
|
Crowding, molecular volume and plasticity: An assessment involving crystallography, NMR and simulations. J Biosci 2012; 37:953-63. [DOI: 10.1007/s12038-012-9276-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Structural insights into initial and intermediate steps of the ribosome-recycling process. EMBO J 2012; 31:1836-46. [PMID: 22388519 DOI: 10.1038/emboj.2012.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/17/2012] [Indexed: 11/08/2022] Open
Abstract
The ribosome-recycling factor (RRF) and elongation factor-G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-electron microscopic structures of the PoTC·RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and protein L11 within the 50S ribosomal subunit. Upon EF-G binding, both RRF and tRNA are driven towards the tRNA-exit (E) site, with a large rotational movement of domain II of RRF towards the 30S ribosomal subunit. During this intermediate step of the recycling process, domain II of RRF and domain IV of EF-G adopt hitherto unknown conformations. Furthermore, binding of EF-G to the PoTC·RRF complex reverts the ribosome from ratcheted to unratcheted state. These results suggest that (i) the ribosomal intersubunit reorganizations upon RRF binding and subsequent EF-G binding could be instrumental in destabilizing the PoTC and (ii) the modes of action of EF-G during tRNA translocation and ribosome-recycling steps are markedly different.
Collapse
|
8
|
Arora A, Chandra NR, Das A, Gopal B, Mande SC, Prakash B, Ramachandran R, Sankaranarayanan R, Sekar K, Suguna K, Tyagi AK, Vijayan M. Structural biology of Mycobacterium tuberculosis proteins: The Indian efforts. Tuberculosis (Edinb) 2011; 91:456-68. [DOI: 10.1016/j.tube.2011.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/23/2023]
|
9
|
Chandran AV, Prabu JR, Manjunath GP, Patil KN, Muniyappa K, Vijayan M. Crystallization and preliminary X-ray studies of the C-terminal domain of Mycobacterium tuberculosis LexA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1093-5. [PMID: 20823535 PMCID: PMC2935236 DOI: 10.1107/s174430911003068x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/01/2010] [Indexed: 11/10/2022]
Abstract
The C-terminal domain of Mycobacterium tuberculosis LexA has been crystallized in two different forms. The form 1 and form 2 crystals belonged to space groups P3(1)21 and P3(1), respectively. Form 1 contains one domain in the asymmetric unit, while form 2 contains six crystallographically independent domains. The structures have been solved by molecular replacement.
Collapse
Affiliation(s)
- Anu V. Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - J. Rajan Prabu
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - G. P. Manjunath
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - K. Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Kaushal PS, Talawar RK, Varshney U, Vijayan M. Structure of uracil-DNA glycosylase from Mycobacterium tuberculosis: insights into interactions with ligands. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:887-92. [PMID: 20693660 PMCID: PMC2917283 DOI: 10.1107/s1744309110023043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 06/15/2010] [Indexed: 11/10/2022]
Abstract
Uracil N-glycosylase (Ung) is the most thoroughly studied of the group of uracil DNA-glycosylase (UDG) enzymes that catalyse the first step in the uracil excision-repair pathway. The overall structure of the enzyme from Mycobacterium tuberculosis is essentially the same as that of the enzyme from other sources. However, differences exist in the N- and C-terminal stretches and some catalytic loops. Comparison with appropriate structures indicate that the two-domain enzyme closes slightly when binding to DNA, while it opens slightly when binding to the proteinaceous inhibitor Ugi. The structural changes in the catalytic loops on complexation reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino-acid residues in the catalytic loops. The uracil-binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil, in addition to providing insights into other possible interactions that inhibitors could be involved in.
Collapse
Affiliation(s)
- Prem Singh Kaushal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ramappa K. Talawar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
11
|
Pai RD, Zhang W, Schuwirth BS, Hirokawa G, Kaji H, Kaji A, Cate JHD. Structural Insights into ribosome recycling factor interactions with the 70S ribosome. J Mol Biol 2008; 376:1334-47. [PMID: 18234219 PMCID: PMC2712656 DOI: 10.1016/j.jmb.2007.12.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/11/2007] [Accepted: 12/19/2007] [Indexed: 11/25/2022]
Abstract
At the end of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. In x-ray crystal structures of RRF with the Escherichia coli 70S ribosome, RRF binds to the large ribosomal subunit in the cleft that contains the peptidyl transferase center. Upon binding of either E. coli or Thermus thermophilus RRF to the E. coli ribosome, the tip of ribosomal RNA helix 69 in the large subunit moves away from the small subunit toward RRF by 8 A, thereby disrupting a key contact between the small and large ribosomal subunits termed bridge B2a. In the ribosome crystals, the ability of RRF to destabilize bridge B2a is influenced by crystal packing forces. Movement of helix 69 involves an ordered-to-disordered transition upon binding of RRF to the ribosome. The disruption of bridge B2a upon RRF binding to the ribosome seen in the present structures reveals one of the key roles that RRF plays in ribosome recycling, the dissociation of 70S ribosomes into subunits. The structures also reveal contacts between domain II of RRF and protein S12 in the 30S subunit that may also play a role in ribosome recycling.
Collapse
Affiliation(s)
- Raj D Pai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Gao N, Zavialov AV, Ehrenberg M, Frank J. Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J Mol Biol 2007; 374:1345-58. [PMID: 17996252 DOI: 10.1016/j.jmb.2007.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/24/2007] [Accepted: 10/10/2007] [Indexed: 11/24/2022]
Abstract
After termination of protein synthesis, the bacterial ribosome is split into its 30S and 50S subunits by the action of ribosome recycling factor (RRF) and elongation factor G (EF-G) in a guanosine 5'-triphosphate (GTP)-hydrolysis-dependent manner. Based on a previous cryo-electron microscopy study of ribosomal complexes, we have proposed that the binding of EF-G to an RRF-containing posttermination ribosome triggers an interdomain rotation of RRF, which destabilizes two strong intersubunit bridges (B2a and B3) and, ultimately, separates the two subunits. Here, we present a 9-A (Fourier shell correlation cutoff of 0.5) cryo-electron microscopy map of a 50S x EF-G x guanosine 5'-[(betagamma)-imido]triphosphate x RRF complex and a quasi-atomic model derived from it, showing the interaction between EF-G and RRF on the 50S subunit in the presence of the noncleavable GTP analogue guanosine 5'-[(betagamma)-imido]triphosphate. The detailed information in this model and a comparative analysis of EF-G structures in various nucleotide- and ribosome-bound states show how rotation of the RRF head domain may be triggered by various domains of EF-G. For validation of our structural model, all known mutations in EF-G and RRF that relate to ribosome recycling have been taken into account. More importantly, our results indicate a substantial conformational change in the Switch I region of EF-G, suggesting that a conformational signal transduction mechanism, similar to that employed in transfer RNA translocation on the ribosome by EF-G, translates a large-scale movement of EF-G's domain IV, induced by GTP hydrolysis, into the domain rotation of RRF that eventually splits the ribosome into subunits.
Collapse
Affiliation(s)
- Ning Gao
- Howard Hughes Medical Institute, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
13
|
Zhang LQ, Zhang HJ, Guo P, Xue P, Xie ZS, Chen Z, Jing GZ. C-terminal effect of Thermoanaerobacter tengcongensis ribosome recycling factor on its activity and conformation changes. Arch Biochem Biophys 2007; 466:211-20. [PMID: 17697668 DOI: 10.1016/j.abb.2007.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/22/2007] [Accepted: 06/27/2007] [Indexed: 11/24/2022]
Abstract
The in vivo activities and conformational changes of ribosome recycling factor from Thermoanaerobacter tengcongensis (TteRRF) with 12 successive C-terminal deletions were compared. The results showed that TteRRF mutants lacking one to four amino acid residues are inactive, those lacking five to nine are reactivated to a similar or a little higher level than wild-type TteRRF, and those lacking ten to twelve are inactivated again gradually. Conformational studies indicated that only the ANS binding fluorescence change is correlated well with the RRF in vivo activity change, while the secondary structure and local structure at the aromatic residues are not changed significantly. Trypsin cleavage site identification and protein stability measurement suggested that mutation only induced subtle conformation change and increased flexibility of the protein. Our results indicated that the ANS-detected local conformation changes of TteRRF and mutants are one verified direct reason of the in vivo inactivation and reactivation in Escherichia coli.
Collapse
Affiliation(s)
- Li-Qiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Barat C, Datta PP, Raj VS, Sharma MR, Kaji H, Kaji A, Agrawal RK. Progression of the Ribosome Recycling Factor through the Ribosome Dissociates the Two Ribosomal Subunits. Mol Cell 2007; 27:250-261. [PMID: 17643374 DOI: 10.1016/j.molcel.2007.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/18/2007] [Accepted: 06/05/2007] [Indexed: 11/23/2022]
Abstract
After the termination step of translation, the posttermination complex (PoTC), composed of the ribosome, mRNA, and a deacylated tRNA, is processed by the concerted action of the ribosome-recycling factor (RRF), elongation factor G (EF-G), and GTP to prepare the ribosome for a fresh round of protein synthesis. However, the sequential steps of dissociation of the ribosomal subunits, and release of mRNA and deacylated tRNA from the PoTC, are unclear. Using three-dimensional cryo-electron microscopy, in conjunction with undecagold-labeled RRF, we show that RRF is capable of spontaneously moving from its initial binding site on the 70S Escherichia coli ribosome to a site exclusively on the large 50S ribosomal subunit. This movement leads to disruption of crucial intersubunit bridges and thereby to the dissociation of the two ribosomal subunits, the central event in ribosome recycling. Results of this study allow us to propose a model of ribosome recycling.
Collapse
Affiliation(s)
- Chandana Barat
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA
| | - Partha P Datta
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA
| | - V Samuel Raj
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manjuli R Sharma
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Akira Kaji
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajendra K Agrawal
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA.
| |
Collapse
|
15
|
Selvaraj M, Roy S, Singh NS, Sangeetha R, Varshney U, Vijayan M. Structural plasticity and enzyme action: crystal structures of mycobacterium tuberculosis peptidyl-tRNA hydrolase. J Mol Biol 2007; 372:186-93. [PMID: 17619020 DOI: 10.1016/j.jmb.2007.06.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/02/2007] [Accepted: 06/18/2007] [Indexed: 11/20/2022]
Abstract
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacterium tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme from Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body of the molecule and a polypeptide stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule.
Collapse
Affiliation(s)
- M Selvaraj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | |
Collapse
|
16
|
Kiel MC, Kaji H, Kaji A. Ribosome recycling: An essential process of protein synthesis. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 35:40-44. [PMID: 21591054 DOI: 10.1002/bmb.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A preponderance of textbooks outlines cellular protein synthesis (translation) in three basic steps: initiation, elongation, and termination. However, researchers in the field of translation accept that a vital fourth step exists; this fourth step is called ribosome recycling. Ribosome recycling occurs after the nascent polypeptide has been released during the termination step. Despite the release of the polypeptide, ribosomes remain bound to the mRNA and tRNA. It is only during the fourth step of translation that ribosomes are ultimately released from the mRNA, split into subunits, and are free to bind new mRNA, thus the term "ribosome recycling." This step is essential to the viability of cells. In bacteria, it is catalyzed by two proteins, elongation factor G and ribosome recycling factor, a near perfect structural mimic of tRNA. Eukaryotic organelles such as mitochondria and chloroplasts possess ribosome recycling factor and elongation factor G homologues, but the nature of ribosome recycling in eukaryotic cytoplasm is still under investigation. In this review, the discovery of ribosome recycling and the basic mechanisms involved are discussed so that textbook writers and teachers can include this vital step, which is just as important as the three conventional steps, in sections dealing with protein synthesis.
Collapse
Affiliation(s)
- Michael C Kiel
- Science Department, Marywood University, Scranton, Pennsylvania 18509.
| | | | | |
Collapse
|
17
|
Natchiar SK, Suguna K, Surolia A, Vijayan M. Peanut agglutinin, a lectin with an unusual quaternary structure and interesting ligand binding properties. CRYSTALLOGR REV 2007. [DOI: 10.1080/08893110701382087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Singh P, Talawar RK, Krishna PDV, Varshney U, Vijayan M. Overexpression, purification, crystallization and preliminary X-ray analysis of uracil N-glycosylase from Mycobacterium tuberculosis in complex with a proteinaceous inhibitor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1231-4. [PMID: 17142904 PMCID: PMC2225355 DOI: 10.1107/s1744309106045805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 10/31/2006] [Indexed: 11/11/2022]
Abstract
Uracil N-glycosylase is an enzyme which initiates the pathway of uracil-excision repair of DNA. The enzyme from Mycobacterium tuberculosis was co-expressed with a proteinaceous inhibitor from Bacillus subtilis phage and was crystallized in monoclinic space group C2, with unit-cell parameters a = 201.14, b = 64.27, c = 203.68 A, beta = 109.7 degrees. X-ray data from the crystal have been collected for structure analysis.
Collapse
Affiliation(s)
- Prem Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ramappa K. Talawar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - P. D. V. Krishna
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
19
|
Selvaraj M, Singh NS, Roy S, Sangeetha R, Varshney U, Vijayan M. Cloning, expression, purification, crystallization and preliminary X-ray analysis of peptidyl-tRNA hydrolase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:913-5. [PMID: 16946478 PMCID: PMC2242860 DOI: 10.1107/s1744309106031125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/08/2006] [Indexed: 11/11/2022]
Abstract
Peptidyl-tRNA hydrolase catalyses the cleavage of the ester link between the peptide and the tRNA in peptidyl-tRNAs that, for various reasons, have dropped off the translating ribosomes. This enzyme from Mycobacterium tuberculosis has been crystallized in three related but distinct forms: P2(1)2(1)2(1), unit-cell parameters a = 36.30, b = 61.85, c = 73.97 A, P2(1), a = 35.83, b = 73.79, c = 59.79 A, beta = 92.3 degrees , and P2(1)2(1)2(1), a = 35.84, b = 57.06, c = 72.59 A. X-ray data have been collected from all three forms.
Collapse
Affiliation(s)
- M. Selvaraj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - N. S. Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Siddhartha Roy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - R. Sangeetha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
20
|
Prabu JR, Thamotharan S, Khanduja JS, Alipio EZ, Kim CY, Waldo GS, Terwilliger TC, Segelke B, Lekin T, Toppani D, Hung LW, Yu M, Bursey E, Muniyappa K, Chandra NR, Vijayan M. Structure of Mycobacterium tuberculosis RuvA, a protein involved in recombination. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:731-4. [PMID: 16880543 PMCID: PMC2242936 DOI: 10.1107/s1744309106024791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 06/27/2006] [Indexed: 11/10/2022]
Abstract
The process of recombinational repair is crucial for maintaining genomic integrity and generating biological diversity. In association with RuvB and RuvC, RuvA plays a central role in processing and resolving Holliday junctions, which are a critical intermediate in homologous recombination. Here, the cloning, purification and structure determination of the RuvA protein from Mycobacterium tuberculosis (MtRuvA) are reported. Analysis of the structure and comparison with other known RuvA proteins reveal an octameric state with conserved subunit-subunit interaction surfaces, indicating the requirement of octamer formation for biological activity. A detailed analysis of plasticity in the RuvA molecules has led to insights into the invariant and variable regions, thus providing a framework for understanding regional flexibility in various aspects of RuvA function.
Collapse
Affiliation(s)
- J. Rajan Prabu
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - S. Thamotharan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | - Chang-Yub Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, USA
| | - Geoffrey S. Waldo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, USA
| | | | - Brent Segelke
- Biology and Biotechnology Program, Lawrence Livermore National Laboratory, Livermore, USA
| | - Tim Lekin
- Biology and Biotechnology Program, Lawrence Livermore National Laboratory, Livermore, USA
| | - Dominique Toppani
- Biology and Biotechnology Program, Lawrence Livermore National Laboratory, Livermore, USA
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Los Alamos, USA
| | - Minmin Yu
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Evan Bursey
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - K. Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Nagasuma R. Chandra
- Bioinformatics Centre and Super Computer Education and Research Centre, Indian Institute of Science, Bangalore, India
- Correspondence e-mail: ,
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Correspondence e-mail: ,
| |
Collapse
|
21
|
|
22
|
Seshadri A, Varshney U. Mechanism of recycling of post-termination ribosomal complexes in eubacteria: A new role of initiation factor 3. J Biosci 2006; 31:281-9. [PMID: 16809861 DOI: 10.1007/bf02703921] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosome recycling is a process which dissociates the post-termination complexes (post-TC) consisting of mRNA-bound ribosomes harbouring deacylated tRNA(s). Ribosome recycling factor (RRF), and elongation factor G (EFG) participate in this crucial process to free the ribosomal subunits for a new round of translation. We discuss the over-all pathway of ribosome recycling in eubacteria with especial reference to the important role of the initiation factor 3 (IF3) in this process. Depending on the step(s) at which IF3 function is implicated, three models have been proposed. In model 1, RRF and EFG dissociate the post-TCs into the 50S and 30S subunits, mRNA and tRNA(s). In this model, IF3, which binds to the 30S subunit, merely keeps the dissociated subunits apart by its anti-association activity. In model 2, RRF and EFG separate the 50S subunit from the post-TC. IF3 then dissociates the remaining complex of mRNA, tRNA and the 30S subunit, and keeps the ribosomal subunits apart from each other. However, in model 3, both the genetic and biochemical evidence support a more active role for IF3 even at the step of dissociation of the post-TC by RRF and EFG into the 50S and 30S subunits.
Collapse
Affiliation(s)
- Anuradha Seshadri
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
23
|
Zhang L, Guo P, Zhang H, Jing G. Cooperative unfolding of Escherichia coli ribosome recycling factor originating from its domain-domain interaction and its implication for function. Arch Biochem Biophys 2006; 450:191-202. [PMID: 16684502 DOI: 10.1016/j.abb.2006.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 11/27/2022]
Abstract
Cooperative unfolding of Escherichia coli ribosome recycling factor (RRF) and its implication for function were investigated by comparing the in vitro unfolding and the in vivo activity of wild-type E. coli RRF and its temperature-sensitive mutant RRF(V117D). The experiments show that mutation V117D at domain I could perturb the domain II structure as evidenced in the near-UV CD and tyrosine fluorescence spectra though no significant globular conformation change occurred. Both equilibrium unfolding induced by heat or denaturant and kinetic unfolding induced by denaturant obey the two-state transition model, indicating V117D mutation does not perturb the efficient interdomain interaction, which results in cooperative unfolding of the RRF protein. However, the mutation significantly destabilizes the E. coli RRF protein, moving the thermal unfolding transition temperature range from 50-65 to 35-50 degrees C, which spans the non-permissive temperature for the growth of E. coli LJ14 strain (frr(ts)). The in vivo activity assays showed that although V117D mutation results in a temperature sensitive phenotype of E. coli LJ14 strain (frr(ts)), over-expression of mutant RRF(V117D) can eliminate the temperature sensitive phenotype at the non-permissive temperature (42 degrees C). Taking all the results into consideration, it can be suggested that the mechanism of the temperature sensitive phenotype of the E. coli LJ14 cells is due to inactivation of mutant RRF(V117D) caused by unfolding at the non-permissive temperatures.
Collapse
Affiliation(s)
- Liqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, China
| | | | | | | |
Collapse
|
24
|
Guo P, Zhang L, Zhang H, Feng Y, Jing G. Domain II plays a crucial role in the function of ribosome recycling factor. Biochem J 2006; 393:767-77. [PMID: 16262604 PMCID: PMC1360730 DOI: 10.1042/bj20050780] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RRF (ribosome recycling factor) consists of two domains, and in concert with EF-G (elongation factor-G), triggers dissociation of the post-termination ribosomal complex. However, the function of the individual domains of RRF remains unclear. To clarify this, two RRF chimaeras, EcoDI/TteDII and TteDI/EcoDII, were created by domain swaps between the proteins from Escherichia coli and Thermoanaerobacter tengcongensis. The ribosome recycling activity of the RRF chimaeras was compared with their wild-type RRFs by using in vivo and in vitro activity assays. Like wild-type TteRRF (T. tengcongensis RRF), the EcoDI/TteDII chimaera is non-functional in E. coli, but both wild-type TteRRF, and EcoDI/TteDII can be activated by coexpression of T. tengcongensis EF-G in E. coli. By contrast, like wild-type E. coli RRF (EcoRRF), TteDI/EcoDII is fully functional in E. coli. These findings suggest that domain II of RRF plays a crucial role in the concerted action of RRF and EF-G for the post-termination complex disassembly, and the specific interaction between RRF and EF-G on ribosomes mainly depends on the interaction between domain II of RRF and EF-G. This study provides direct genetic and biochemical evidence for the function of the individual domains of RRF.
Collapse
Affiliation(s)
- Peng Guo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd., Chaoyang District, Beijing 100101, China
| | - Liqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd., Chaoyang District, Beijing 100101, China
| | - Hongjie Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd., Chaoyang District, Beijing 100101, China
| | - Yanming Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd., Chaoyang District, Beijing 100101, China
| | - Guozhong Jing
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd., Chaoyang District, Beijing 100101, China
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Singh NS, Das G, Seshadri A, Sangeetha R, Varshney U. Evidence for a role of initiation factor 3 in recycling of ribosomal complexes stalled on mRNAs in Escherichia coli. Nucleic Acids Res 2005; 33:5591-601. [PMID: 16199751 PMCID: PMC1240113 DOI: 10.1093/nar/gki864] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific interactions between ribosome recycling factor (RRF) and elongation factor-G (EFG) mediate disassembly of post-termination ribosomal complexes for new rounds of initiation. The interactions between RRF and EFG are also important in peptidyl-tRNA release from stalled pre-termination complexes. Unlike the post-termination complexes (harboring deacylated tRNA), the pre-termination complexes (harboring peptidyl-tRNA) are not recycled by RRF and EFG in vitro, suggesting participation of additional factor(s) in the process. Using a combination of biochemical and genetic approaches, we show that, (i) Inclusion of IF3 with RRF and EFG results in recycling of the pre-termination complexes; (ii) IF3 overexpression in Escherichia coli LJ14 rescues its temperature sensitive phenotype for RRF; (iii) Transduction of infC135 (which encodes a functionally compromised IF3) in E.coli LJ14 generates a ‘synthetic severe’ phenotype; (iv) The infC135 and frr1 (containing an insertion in the RRF gene promoter) alleles synergistically rescue a temperature sensitive mutation in peptidyl-tRNA hydrolase in E.coli; and (v) IF3 facilitates ribosome recycling by Thermus thermophilus RRF and E.coli EFG in vivo and in vitro. These lines of evidence clearly demonstrate the physiological importance of IF3 in the overall mechanism of ribosome recycling in E.coli.
Collapse
Affiliation(s)
| | | | | | | | - U. Varshney
- To whom correspondence should be addressed. Tel: +91 80 2293 2686; Fax: +91 80 2360 2697;
| |
Collapse
|
26
|
Abstract
As part of an international effort and a national programme, structural analysis of mycobacterial proteins involved in recombination and repair, stringent response and protein synthesis has been undertaken, and work on proteins in a couple of metabolic pathways has been initiated. Already X-ray analysed are Mycobacterium tuberculosis and Mycobacterium smegmatis RecA and their nucleotide complexes, and different crystal forms of M. tuberculosis single-stranded DNA binding protein, M. smegmatis DNA binding protein from stationary phase cells and M. tuberculosis ribosome recycling factor. A comparative study involving these structures and those of similar proteins from other sources brings out the special features of the mycobacterial proteins, which are likely to be useful in selective inhibitor design. The structures provide insights into the plasticity of the molecules and its biological implications, and yield valuable information on their assembly and quaternary structure. They also provide leads for further structural investigations.
Collapse
Affiliation(s)
- M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
27
|
Gao N, Zavialov AV, Li W, Sengupta J, Valle M, Gursky RP, Ehrenberg M, Frank J. Mechanism for the Disassembly of the Posttermination Complex Inferred from Cryo-EM Studies. Mol Cell 2005; 18:663-74. [PMID: 15949441 DOI: 10.1016/j.molcel.2005.05.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/13/2005] [Accepted: 05/09/2005] [Indexed: 11/22/2022]
Abstract
Ribosome recycling, the disassembly of the posttermination complex after each round of protein synthesis, is an essential step in mRNA translation, but its mechanism has remained obscure. In eubacteria, recycling is catalyzed by RRF (ribosome recycling factor) and EF-G (elongation factor G). By using cryo-electron microscopy, we have obtained two density maps, one of the RRF bound posttermination complex and one of the 50S subunit bound with both EF-G and RRF. Comparing the two maps, we found domain I of RRF to be in the same orientation, while domain II in the EF-G-containing 50S subunit is extensively rotated (approximately 60 degrees) compared to its orientation in the 70S complex. Mapping the 50S conformation of RRF onto the 70S posttermination complex suggests that it can disrupt the intersubunit bridges B2a and B3, and thus effect a separation of the two subunits. These observations provide the structural basis for the mechanism by which the posttermination complex is split into subunits by the joint action of RRF and EF-G.
Collapse
Affiliation(s)
- Ning Gao
- Wadsworth Center, State University of New York at Albany, Empire State Plaza, Albany, New York 12201, USA
| | | | | | | | | | | | | | | |
Collapse
|