1
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
2
|
Gregori J, Colomer-Castell S, Campos C, Ibañez-Lligoña M, Garcia-Cehic D, Rando-Segura A, Adombie CM, Pintó R, Guix S, Bosch A, Domingo E, Gallego I, Perales C, Cortese MF, Tabernero D, Buti M, Riveiro-Barciela M, Esteban JI, Rodriguez-Frias F, Quer J. Quasispecies Fitness Partition to Characterize the Molecular Status of a Viral Population. Negative Effect of Early Ribavirin Discontinuation in a Chronically Infected HEV Patient. Int J Mol Sci 2022; 23:14654. [PMID: 36498981 PMCID: PMC9739305 DOI: 10.3390/ijms232314654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.
Collapse
Affiliation(s)
- Josep Gregori
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Sergi Colomer-Castell
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain
| | - Carolina Campos
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain
| | - Marta Ibañez-Lligoña
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Damir Garcia-Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Ariadna Rando-Segura
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Caroline Melanie Adombie
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Institute of Agropastoral Management, University Peleforo Gon Coulibaly, Korhogo BP 1328, Côte d’Ivoire
| | - Rosa Pintó
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, 08028 Barcelona, Spain
| | - Susanna Guix
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, 08028 Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, 08028 Barcelona, Spain
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Celia Perales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM) Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria Francesca Cortese
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Maria Buti
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Mar Riveiro-Barciela
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Juan Ignacio Esteban
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Francisco Rodriguez-Frias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Computational based design and tracking of synthetic variants of Porcine circovirus reveal relations between silent genomic information and viral fitness. Sci Rep 2021; 11:10620. [PMID: 34012100 PMCID: PMC8134455 DOI: 10.1038/s41598-021-89918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Viral genomes not only code the protein content, but also include silent, overlapping codes which are important to the regulation of the viral life cycle and affect its evolution. Due to the high density of these codes, their non-modular nature and the complex intracellular processes they encode, the ability of current approaches to decipher them is very limited. We describe the first computational-experimental pipeline for studying the effects of viral silent and non-silent information on its fitness. The pipeline was implemented to study the Porcine Circovirus type 2 (PCV2), the shortest known eukaryotic virus, and includes the following steps: (1) Based on the analyses of 2100 variants of PCV, suspected silent codes were inferred. (2) Five hundred variants of the PCV2 were designed to include various ‘smart’ silent mutations. (3) Using state of the art synthetic biology approaches, the genomes of these five hundred variants were generated. (4) Competition experiments between the variants were performed in Porcine kidney-15 (PK15) cell-lines. (5) The variant titers were analyzed based on novel next-generation sequencing (NGS) experiments. (6) The features related to the titer of the variants were inferred and their analyses enabled detection of various novel silent functional sequence and structural motifs. Furthermore, we demonstrate that 50 of the silent variants exhibit higher fitness than the wildtype in the analyzed conditions.
Collapse
|
4
|
Correa-Fiz F, Franzo G, Llorens A, Huerta E, Sibila M, Kekarainen T, Segalés J. Porcine circovirus 2 (PCV2) population study in experimentally infected pigs developing PCV2-systemic disease or a subclinical infection. Sci Rep 2020; 10:17747. [PMID: 33082419 PMCID: PMC7576782 DOI: 10.1038/s41598-020-74627-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine circovirus 2 (PCV2) is a single stranded DNA virus with one of the highest mutation rates among DNA viruses. This ability allows it to generate a cloud of mutants constantly providing new opportunities to adapt and evade the immune system. This pig pathogen is associated to many diseases, globally called porcine circovirus diseases (PCVD) and has been a threat to pig industry since its discovery in the early 90's. Although 11 ORFs have been predicted from its genome, only two main proteins have been deeply characterized, i.e. Rep and Cap. The structural Cap protein possesses the majority of the epitopic determinants of this non-enveloped virus. The evolution of PCV2 is affected by both natural and vaccine-induced immune responses, which enhances the genetic variability, especially in the most immunogenic Cap region. Intra-host variability has been also demonstrated in infected animals where long-lasting infections can take place. However, the association between this intra-host variability and pathogenesis has never been studied for this virus. Here, the within-host PCV2 variability was monitored over time by next generation sequencing during an experimental infection, demonstrating the presence of large heterogeneity. Remarkably, the level of quasispecies diversity, affecting particularly the Cap coding region, was statistically different depending on viremia levels and clinical signs detected after infection. Moreover, we proved the existence of hyper mutant subjects harboring a remarkably higher number of genetic variants. Altogether, these results suggest an interaction between genetic diversity, host immune system and disease severity.
Collapse
Affiliation(s)
- Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, PD, Italy
| | - Anna Llorens
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Eva Huerta
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,Kuopio Center for Gene and Cell Therapy, Microkatu 1, Kuopio, Finland
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain
| |
Collapse
|
5
|
Fish I, Stenfeldt C, Palinski RM, Pauszek SJ, Arzt J. Into the Deep (Sequence) of the Foot-and-Mouth Disease Virus Gene Pool: Bottlenecks and Adaptation during Infection in Naïve and Vaccinated Cattle. Pathogens 2020; 9:pathogens9030208. [PMID: 32178297 PMCID: PMC7157448 DOI: 10.3390/pathogens9030208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) infects hosts as a population of closely related viruses referred to as a quasispecies. The behavior of this quasispecies has not been described in detail in natural host species. In this study, virus samples collected from vaccinated and non-vaccinated cattle up to 35 days post-experimental infection with FMDV A24-Cruzeiro were analyzed by deep-sequencing. Vaccination induced significant differences compared to viruses from non-vaccinated cattle in substitution rates, entropy, and evidence for adaptation. Genomic variation detected during early infection reflected the diversity inherited from the source virus (inoculum), whereas by 12 days post infection, dominant viruses were defined by newly acquired mutations. Mutations conferring recognized fitness gain occurred and were associated with selective sweeps. Persistent infections always included multiple FMDV subpopulations, suggesting distinct foci of infection within the nasopharyngeal mucosa. Subclinical infection in vaccinated cattle included very early bottlenecks associated with reduced diversity within virus populations. Viruses from both animal cohorts contained putative antigenic escape mutations. However, these mutations occurred during later stages of infection, at which time transmission is less likely to occur. This study improves upon previously published work by analyzing deep sequences of samples, allowing for detailed characterization of FMDV populations over time within multiple hosts.
Collapse
Affiliation(s)
- Ian Fish
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37830, USA
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M. Palinski
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Steven J. Pauszek
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Correspondence:
| |
Collapse
|
6
|
Domingo E. Virus population dynamics examined with experimental model systems. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153323 DOI: 10.1016/b978-0-12-816331-3.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimens. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
7
|
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimes. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
8
|
Abstract
The family Arenaviridae currently comprises over 20 viral species, each of them associated with a main rodent species as the natural reservoir and in one case possibly phyllostomid bats. Moreover, recent findings have documented a divergent group of arenaviruses in captive alethinophidian snakes. Human infections occur through mucosal exposure to aerosols or by direct contact of abraded skin with infectious materials. Arenaviruses merit interest both as highly tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa and Argentine hemorrhagic fevers (AHFs), respectively, for which there are no FDA-licensed vaccines, and current therapy is limited to an off-label use of ribavirin (Rib) that has significant limitations. Arenaviruses are enveloped viruses with a bi-segmented negative strand (NS) RNA genome. Each genome segment, L (ca 7.3 kb) and S (ca 3.5 kb), uses an ambisense coding strategy to direct the synthesis of two polypeptides in opposite orientation, separated by a noncoding intergenic region (IGR). The S genomic RNA encodes the virus nucleoprotein (NP) and the precursor (GPC) of the virus surface glycoprotein that mediates virus receptor recognition and cell entry via endocytosis. The L genome RNA encodes the viral RNA-dependent RNA polymerase (RdRp, or L polymerase) and the small (ca 11 kDa) RING finger protein Z that has functions of a bona fide matrix protein including directing virus budding. Arenaviruses were thought to be relatively stable genetically with intra- and interspecies amino acid sequence identities of 90-95 % and 44-63 %, respectively. However, recent evidence has documented extensive arenavirus genetic variability in the field. Moreover, dramatic phenotypic differences have been documented among closely related LCMV isolates. These data provide strong evidence of viral quasispecies involvement in arenavirus adaptability and pathogenesis. Here, we will review several aspects of the molecular biology of arenaviruses, phylogeny and evolution, and quasispecies dynamics of arenavirus populations for a better understanding of arenavirus pathogenesis, as well as for the development of novel antiviral strategies to combat arenavirus infections.
Collapse
Affiliation(s)
- Esteban Domingo
- Campus de Cantoblanco, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Peter Schuster
- The Santa Fe Institute, Santa Fe, NM, USA and Institut f. Theoretische Chemie, Universität Wien, Vienna, Austria
| |
Collapse
|
9
|
Hepatitis A virus adaptation to cellular shutoff is driven by dynamic adjustments of codon usage and results in the selection of populations with altered capsids. J Virol 2014; 88:5029-41. [PMID: 24554668 DOI: 10.1128/jvi.00087-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Hepatitis A virus (HAV) has a highly biased and deoptimized codon usage compared to the host cell and fails to inhibit host protein synthesis. It has been proposed that an optimal combination of abundant and rare codons controls the translation speed required for the correct capsid folding. The artificial shutoff host protein synthesis results in the selection of variants containing mutations in the HAV capsid coding region critical for folding, stability, and function. Here, we show that these capsid mutations resulted in changes in their antigenicity; in a reduced stability to high temperature, low pH, and biliary salts; and in an increased efficacy of cell entry. In conclusion, the adaptation to cellular shutoff resulted in the selection of large-plaque-producing virus populations. IMPORTANCE HAV has a naturally deoptimized codon usage with respect to that of its cell host and is unable to shut down the cellular translation. This fact contributes to the low replication rate of the virus, in addition to other factors such as the highly inefficient internal ribosome entry site (IRES), and explains the outstanding physical stability of this pathogen in the environment mediated by a folding-dependent highly cohesive capsid. Adaptation to artificially induced cellular transcription shutoff resulted in a redeoptimization of its capsid codon usage, instead of an optimization. These genomic changes are related to an overall change of capsid folding, which in turn induces changes in the cell entry process. Remarkably, the adaptation to cellular shutoff allowed the virus to significantly increase its RNA uncoating efficiency, resulting in the selection of large-plaque-producing populations. However, these populations produced much-debilitated virions.
Collapse
|
10
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
11
|
Quasispecies as a matter of fact: viruses and beyond. Virus Res 2011; 162:203-15. [PMID: 21945638 PMCID: PMC7172439 DOI: 10.1016/j.virusres.2011.09.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 12/13/2022]
Abstract
We review the origins of the quasispecies concept and its relevance for RNA virus evolution, viral pathogenesis and antiviral treatment strategies. We emphasize a critical point of quasispecies that refers to genome collectivities as the unit of selection, and establish parallels between RNA viruses and some cellular systems such as bacteria and tumor cells. We refer also to tantalizing new observations that suggest quasispecies behavior in prions, perhaps as a result of the same quantum-mechanical indeterminations that underlie protein conformation and error-prone replication in genetic systems. If substantiated, these observations with prions could lead to new research on the structure-function relationship of non-nucleic acid biological molecules.
Collapse
|
12
|
Ojosnegros S, Beerenwinkel N, Domingo E. Competition-colonization dynamics: An ecology approach to quasispecies dynamics and virulence evolution in RNA viruses. Commun Integr Biol 2011; 3:333-6. [PMID: 20798818 DOI: 10.4161/cib.3.4.11658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 11/19/2022] Open
Abstract
A single and purified clone of foot-and-mouth disease virus diversified in cell culture into two subpopulations that were genetically distinct. The subpopulation with higher virulence was a minority and was suppressed by the dominant but less virulent one. These two populations follow the competitioncolonization dynamics described in ecology. Virulent viruses can be regarded as colonizers because they killed the cells faster and they spread faster. The attenuated subpopulation resembles competitors because of its higher replication efficiency in coinfected cells. Our results suggest a new model for the evolution of virulence which is based on interactions between components of the quasispecies. Competition between viral mutants takes place at two levels, intracellular competition and competition for new cells. The two strategies are subjected to densitydependent selection.
Collapse
|
13
|
Perales C, Lorenzo-Redondo R, López-Galíndez C, Martínez MA, Domingo E. Mutant spectra in virus behavior. Future Virol 2010. [DOI: 10.2217/fvl.10.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA viruses replicate as complex mutant spectra, also termed ‘mutant clouds’, known as viral quasispecies. While this is a widely observed viral population structure, it is less known that a number of biologically relevant features of this important group of viral pathogens depend on (or are strongly influenced by) the complexity and composition of mutant spectra. Among them, fitness increase or decrease depending on intrapopulation complementation or interference, selection triggered by memory genomes, pathogenic potential of viruses, disease evolution and the response to antiviral treatments. Quasispecies represent the recognition of complex behavior in viruses, and it is an oversimplification to equate such a population structure with the classic polymorphism of population biology. Darwinian principles acting on genome collectivities that replicate with high error rates provide a unique population structure prone to flexible and largely unpredictable behavior.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Ramón Lorenzo-Redondo
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Cecilio López-Galíndez
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | | | | |
Collapse
|
14
|
Aguirre J, Lázaro E, Manrubia SC. A trade-off between neutrality and adaptability limits the optimization of viral quasispecies. J Theor Biol 2009; 261:148-55. [DOI: 10.1016/j.jtbi.2009.07.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 07/02/2009] [Accepted: 07/28/2009] [Indexed: 11/15/2022]
|
15
|
Populations of genomic RNAs devoted to the replication or spread of a bipartite plant virus differ in genetic structure. J Virol 2009; 83:12973-83. [PMID: 19793810 DOI: 10.1128/jvi.00950-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA viruses within a host exist as dynamic distributions of closely related mutants and recombinant genomes. These closely related mutants and recombinant genomes, which are subjected to a continuous process of genetic variation, competition, and selection, act as a unit of selection, termed viral quasispecies. Characterization of mutant spectra within hosts is essential for understanding viral evolution and pathogenesis resulting from the cooperative behavior of viral mutants within viral quasispecies. Furthermore, a detailed analysis of viral variability within hosts is needed to design control strategies, because viral quasispecies are reservoirs of viral variants that potentially can emerge with increased virulence or altered tropism. In this work, we report a detailed analysis of within-host viral populations in 13 field isolates of the bipartite Tomato chlorosis virus (ToCV) (genus Crinivirus, family Closteroviridae). The intraisolate genetic structure was analyzed based on sequencing data for 755 molecular clones distributed in four genomic regions within the RNA-dependent RNA polymerase (RNA1) and Hsp70h, CP, and CPm (RNA2) open reading frames. Our results showed that populations of ToCV within a host plant have a heterogeneous and complex genetic structure similar to that described for animal and plant RNA viral quasispecies. Moreover, the structures of these populations clearly differ depending on the RNA segment considered, being more complex for RNA1 (encoding replication-associated proteins) than for RNA2 (encoding encapsidation-, systemic-movement-, and insect transmission-relevant proteins). These results support the idea that, in multicomponent RNA viruses, function can generate profound differences in the genetic structures of the different genomic segments.
Collapse
|
16
|
Arenavirus genetic diversity and its biological implications. INFECTION GENETICS AND EVOLUTION 2009; 9:417-29. [PMID: 19460307 PMCID: PMC7106275 DOI: 10.1016/j.meegid.2009.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 12/15/2022]
Abstract
The Arenaviridae family currently comprises 22 viral species, each of them associated with a rodent species. This viral family is important both as tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens. Arenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. The interaction with the cellular receptor and subsequent entry into the host cell differs between Old World and New World arenavirus that use α-dystoglycan or human transferring receptor 1, respectively, as main receptors. The recent development of reverse genetic systems for several arenaviruses has facilitated progress in understanding the molecular biology and cell biology of this viral family, as well as opening new approaches for the development of novel strategies to combat human pathogenic arenaviruses. On the other hand, increased availability of genetic data has allowed more detailed studies on the phylogeny and evolution of arenaviruses. As with other riboviruses, arenaviruses exist as viral quasispecies, which allow virus adaptation to rapidly changing environments. The large number of different arenavirus host reservoirs and great genetic diversity among virus species provide the bases for the emergence of new arenaviruses potentially pathogenic for humans.
Collapse
|
17
|
Martín V, Domingo E. Influence of the mutant spectrum in viral evolution: focused selection of antigenic variants in a reconstructed viral quasispecies. Mol Biol Evol 2008; 25:1544-54. [PMID: 18436553 DOI: 10.1093/molbev/msn099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA viruses replicate as complex mutant distributions termed viral quasispecies. Despite this, studies on virus populations subjected to positive selection have generally been performed and analyzed as if the viral population consisted of a defined genomic nucleotide sequence; such a simplification may not reflect accurately the molecular events underlying the selection process. In the present study, we have reconstructed a foot-and-mouth disease virus quasispecies with multiple, low-frequency, genetically distinguishable mutants that can escape neutralization by a monoclonal antibody. Some of the mutants included an amino acid substitution that affected an integrin recognition motif that overlaps with the antibody-binding site, whereas other mutants included an amino acid substitution that affected antibody binding but not integrin recognition. We have monitored consensus and clonal nucleotide sequences of populations passaged either in the absence or the presence of the neutralizing antibody. In both cases, the populations focused toward a specific mutant that was surrounded by a cloud of mutants with different antigenic and cell recognition specificities. In the absence of antibody selection, an antigenic variant that maintained integrin recognition became dominant, but the mutant cloud included as one of its minority components a variant with altered integrin recognition. Conversely, in the presence of antibody selection, a variant with altered integrin recognition motif became dominant, but it was surrounded by a cloud of antigenic variants that maintained integrin recognition. The results have documented that a mutant spectrum can exert an influence on a viral population subjected to a sustained positive selection pressure and have unveiled a mechanism of antigenic flexibility in viral populations, consisting in the presence in the selected quasispecies of mutants with different antigenic and cell recognition specificities.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
18
|
Repeated bottleneck transfers can lead to non-cytocidal forms of a cytopathic virus: implications for viral extinction. J Mol Biol 2007; 376:367-79. [PMID: 18158159 DOI: 10.1016/j.jmb.2007.11.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 11/23/2022]
Abstract
Several biological subclones of a biological clone of foot-and-mouth disease virus (FMDV) have been subjected to many plaque-to-plaque (serial bottleneck) transfers in cell culture. At transfer 190 to 409, clones underwent a transition towards a non-cytolytic (NC) phenotype in which the virus was unable to produce plaques, representing at least a 140-fold reduction in specific infectivity relative to the parental biological clone. NC clones, however, were competent in RNA replication and established a persistent infection in cell culture without an intervening cytolytic phase. In one clone, the transition to the NC phenotype was associated with the elongation of an internal oligodenylate tract that precedes the second functional AUG translation initiation codon. The pattern of mutations and their distribution along the FMDV genome of the clones subjected to serial bottleneck transfers were compared with the pattern of mutations in FMDV clones subjected to large population passages. Both the corrected ratios of non-synonymous to synonymous mutations and some specific mutations in coding and non-coding regions suggest participation of positive selection during large population passages and not during bottleneck transfers. Some mutations in the clones that attained the NC phenotype were located in genomic regions affecting the capacity of FMDV to kill BHK-21 cells. The resistance to extinction of clones subjected to plaque-to-plaque transfers marks a striking contrast with regard to the ease of extinction mediated by lethal mutagenesis. The results document a major phenotypic transition of a virus as a result of serial bottleneck events.
Collapse
|
19
|
Cristina J, del Pilar Moreno M, Moratorio G. Hepatitis C virus genetic variability in patients undergoing antiviral therapy. Virus Res 2007; 127:185-94. [PMID: 17449128 DOI: 10.1016/j.virusres.2007.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/03/2007] [Accepted: 02/22/2007] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) has been the subject of intense research and clinical investigations due to its worldwide prevalence and major role in chronic liver disease. Like most RNA viruses, HCV circulates in vivo as a complex population of different but closely related viral variants, commonly referred to as a quasispecies. Recent studies suggest that ribavirin might exert an antiviral effect against HCV through both mutagenic effect and an impairment of RNA replication. The introduction of alpha interferon (IFN-alpha) plus ribavirin combination therapy was an important breakthrough in the treatment of chronic HCV infection. However, the rate of sustained virological response is still unsatisfactory, particularly in patients infected with HCV genotype 1. Viral persistence, a hallmark of HCV, may result from a dynamic control of the host response by the virus. In children with chronic HCV infection, the viral population is initially highly homogeneous, but diversifies during prolonged infection which seems to be a common event during chronic hepatitis C in childhood. Coinfection of human immunodeficiency virus 1 (HIV-1) patients by HCV can complicate the treatment of these patients with highly active antiretroviral therapy (HAART). HIV coinfection is associated with a decrease of HCV quasispecies variability, which appears to be reversed by effective HAART.
Collapse
Affiliation(s)
- Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay.
| | | | | |
Collapse
|
20
|
Martín V, Perales C, Dávila M, Domingo E. Viral fitness can influence the repertoire of virus variants selected by antibodies. J Mol Biol 2006; 362:44-54. [PMID: 16890952 DOI: 10.1016/j.jmb.2006.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/30/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Minority genomes in the mutant spectra of viral quasispecies may differ in relative fitness. Here, we report experiments designed to evaluate the contribution of relative fitness to selection by a neutralizing monoclonal antibody (mAb). We have reconstructed a foot-and-mouth disease virus (FMDV) quasispecies, with two matched pairs of distinguishable mAb-escape mutants as minority genomes of the mutant spectrum. Each mutant of a pair differs from the other by 11-fold or 33-fold in relative fitness. Analysis of the mutant spectra of virus populations selected with different concentrations of antibody in infections in liquid culture medium has documented a dominance of the high fitness counterpart in the selected population. Plaque development as a function of increasing concentration of the antibody has shown that each mutant of a matched pair yielded the same number of plaques, although the high fitness mutant required less time for plaque formation, and attained a larger plaque size at any given time-point. This result documents equal intrinsic resistance to the antibody of each mutant of a matched pair, confirming previous biochemical, structural, and genetic studies, which indicated that the epitopes of each mutant pair were indistinguishable regarding reactivity with the monoclonal antibody. Thus, relative viral fitness can influence in a significant way the repertoire of viral mutants selected from a viral quasispecies by a neutralizing antibody. We discuss the significance of these results in relation to antibody selection, and to other selective forces likely encountered by viral quasispecies in vivo.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Martín V, Perales C, Abia D, Ortíz AR, Domingo E, Briones C. Microarray-based identification of antigenic variants of foot-and-mouth disease virus: a bioinformatics quality assessment. BMC Genomics 2006; 7:117. [PMID: 16709242 PMCID: PMC1481559 DOI: 10.1186/1471-2164-7-117] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 05/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of viral quasispecies can influence viral pathogenesis and the response to antiviral treatments. Mutant clouds in infected organisms represent the first stage in the genetic and antigenic diversification of RNA viruses, such as foot and mouth disease virus (FMDV), an important animal pathogen. Antigenic variants of FMDV have been classically diagnosed by immunological or RT-PCR-based methods. DNA microarrays are becoming increasingly useful for the analysis of gene expression and single nucleotide polymorphisms (SNPs). Recently, a FMDV microarray was described to detect simultaneously the seven FMDV serotypes. These results encourage the development of new oligonucleotide microarrays to probe the fine genetic and antigenic composition of FMDV for diagnosis, vaccine design, and to gain insight into the molecular epidemiology of this pathogen. RESULTS A FMDV microarray was designed and optimized to detect SNPs at a major antigenic site of the virus. A screening of point mutants of the genomic region encoding antigenic site A of FMDV C-S8c1 was achieved. The hybridization pattern of a mutant includes specific positive and negative signals as well as crosshybridization signals, which are of different intensity depending on the thermodynamic stability of each probe-target pair. Moreover, an array bioinformatic classification method was developed to evaluate the hybridization signals. This statistical analysis shows that the procedure allows a very accurate classification per variant genome. CONCLUSION A specific approach based on a microarray platform aimed at distinguishing point mutants within an important determinant of antigenicity and host cell tropism, namely the G-H loop of capsid protein VP1, was developed. The procedure is of general applicability as a test for specificity and discriminatory power of microarray-based diagnostic procedures using multiple oligonucleotide probes.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - David Abia
- Bioinformatics Unit, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Angel R Ortíz
- Bioinformatics Unit, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Carlos Briones
- Centro de Astobiología (CSIC-INTA), Torrejón de Ardoz, 28850, Madrid, Spain
| |
Collapse
|
22
|
Domingo E, Martin V, Perales C, Grande-Pérez A, García-Arriaza J, Arias A. Viruses as quasispecies: biological implications. Curr Top Microbiol Immunol 2006; 299:51-82. [PMID: 16568896 PMCID: PMC7120838 DOI: 10.1007/3-540-26397-7_3] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During viral infections, the complex and dynamic distributions of variants, termed viral quasispecies, play a key role in the adaptability of viruses to changing environments and the fate of the population as a whole. Mutant spectra are continuously and avoidably generated during RNA genome replication, and they are not just a by-product of error-prone replication, devoid of biological relevance. On the contrary, current evidence indicates that mutant spectra contribute to viral pathogenesis, can modulate the expression of phenotypic traits by subpopulations of viruses, can include memory genomes that reflect the past evolutionary history of the viral lineage, and, furthermore, can participate in viral extinction through lethal mutagenesis. Also, mutant spectra are the target on which selection and random drift act to shape the long-term evolution of viruses. The biological relevance of mutant spectra is the central topic of this chapter.
Collapse
Affiliation(s)
- E Domingo
- Centro de Biologia Molecular, Severo Ochoa, (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|