1
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
2
|
Song J. Molecular Mechanisms of Phase Separation and Amyloidosis of ALS/FTD-linked FUS and TDP-43. Aging Dis 2024; 15:2084-2112. [PMID: 38029395 PMCID: PMC11346406 DOI: 10.14336/ad.2023.1118] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
FUS and TDP-43, two RNA-binding proteins from the heterogeneous nuclear ribonucleoprotein family, have gained significant attention in the field of neurodegenerative diseases due to their association with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). They possess folded domains for binding ATP and various nucleic acids including DNA and RNA, as well as substantial intrinsically disordered regions (IDRs) including prion-like domains (PLDs) and RG-/RGG-rich regions. They play vital roles in various cellular processes, including transcription, splicing, microRNA maturation, RNA stability and transport and DNA repair. In particular, they are key components for forming ribonucleoprotein granules and stress granules (SGs) through homotypic or heterotypic liquid-liquid phase separation (LLPS). Strikingly, liquid-like droplets formed by FUS and TDP-43 may undergo aging to transform into less dynamic assemblies such as hydrogels, inclusions, and amyloid fibrils, which are the pathological hallmarks of ALS and FTD. This review aims to synthesize and consolidate the biophysical knowledge of the sequences, structures, stability, dynamics, and inter-domain interactions of FUS and TDP-43 domains, so as to shed light on the molecular mechanisms underlying their liquid-liquid phase separation (LLPS) and amyloidosis. The review further delves into the mechanisms through which ALS-causing mutants of the well-folded hPFN1 disrupt the dynamics of LLPS of FUS prion-like domain, providing key insights into a potential mechanism for misfolding/aggregation-prone proteins to cause neurodegenerative diseases and aging by gain of functions. With better understanding of different biophysical aspects of FUS and TDP-43, the ultimate goal is to develop drugs targeting LLPS and amyloidosis, which could mediate protein homeostasis within cells and lead to new treatments for currently intractable diseases, particularly neurodegenerative diseases such as ALS, FTD and aging. However, the study of membrane-less organelles and condensates is still in its infancy and therefore the review also highlights key questions that require future investigation.
Collapse
|
3
|
Lim LZ, Song J. NMR Dynamic View of the Stabilization of the WW4 Domain by Neutral NaCl and Kosmotropic Na 2SO 4 and NaH 2PO 4. Int J Mol Sci 2024; 25:9091. [PMID: 39201778 PMCID: PMC11354479 DOI: 10.3390/ijms25169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy-entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
4
|
Lim LZ, Song J. NMR Dynamic View of the Destabilization of WW4 Domain by Chaotropic GdmCl and NaSCN. Int J Mol Sci 2024; 25:7344. [PMID: 39000450 PMCID: PMC11242413 DOI: 10.3390/ijms25137344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
GdmCl and NaSCN are two strong chaotropic salts commonly used in protein folding and stability studies, but their microscopic mechanisms remain enigmatic. Here, by CD and NMR, we investigated their effects on conformations, stability, binding and backbone dynamics on ps-ns and µs-ms time scales of a 39-residue but well-folded WW4 domain at salt concentrations ≤200 mM. Up to 200 mM, both denaturants did not alter the tertiary packing of WW4, but GdmCl exerted more severe destabilization than NaSCN. Intriguingly, GdmCl had only weak binding to amide protons, while NaSCN showed extensive binding to both hydrophobic side chains and amide protons. Neither denaturant significantly affected the overall ps-ns backbone dynamics, but they distinctively altered µs-ms backbone dynamics. This study unveils that GdmCl and NaSCN destabilize a protein before the global unfolding occurs with differential binding properties and µs-ms backbone dynamics, implying the absence of a simple correlation between thermodynamic stability and backbone dynamics of WW4 at both ps-ns and µs-ms time scales.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
5
|
Kang J, Lim L, Song J. ATP induces folding of ALS-causing C71G-hPFN1 and nascent hSOD1. Commun Chem 2023; 6:186. [PMID: 37670116 PMCID: PMC10480188 DOI: 10.1038/s42004-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
ALS-causing C71G-hPFN1 coexists in both folded and unfolded states, while nascent hSOD1 is unfolded. So far, the mechanisms underlying their ALS-triggering potential remain enigmatic. Here we show by NMR that ATP completely converts C71G-hPFN1 into the folded state at a 1:2 ratio, while inducing nascent hSOD1 into two co-existing states at a 1:8 ratio. Surprisingly, the inducing capacity of ATP comes from its triphosphate, but free triphosphate triggers aggregation. The inducing capacity ranks as: ATP = ATPP = PPP > ADP = AMP-PNP = AMP-PCP = PP, while AMP, adenosine, P, and NaCl show no conversion. Mechanistically, ATP and triphosphate appear to enhance the intrinsic folding capacity encoded in the sequences, as unveiled by comparing conformations and dynamics of ATP- and Zn2+-induced hSOD1 folded states. Our study provides a mechanism for the finding that some single-cell organisms employ polyphosphates as primordial chaperones, and sheds light on the enigma of age-related onset of familial ALS and risk increase of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore.
| |
Collapse
|
6
|
Dang M, Lim L, Roy A, Song J. Myricetin Allosterically Inhibits the Dengue NS2B-NS3 Protease by Disrupting the Active and Locking the Inactive Conformations. ACS OMEGA 2022; 7:2798-2808. [PMID: 35097276 PMCID: PMC8793048 DOI: 10.1021/acsomega.1c05569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 05/22/2023]
Abstract
The dengue NS2B-NS3 protease existing in equilibrium between the active and inactive forms is essential for virus replication, thus representing a key drug target. Here, myricetin, a plant flavonoid, was characterized to noncompetitively inhibit the dengue protease. Further NMR study identified the protease residues perturbed by binding to myricetin, which were utilized to construct the myricetin-protease complexes. Strikingly, in the active form, myricetin binds to a new allosteric site (AS2) far away from the active site pocket and the allosteric site (AS1) for binding curcumin, while in the inactive form, it binds to both AS1 and AS2. To decipher the mechanism for the allosteric inhibition by myricetin, we conducted molecular dynamics simulations on different forms of dengue NS2B-NS3 proteases. Unexpectedly, the binding of myricetin to AS2 is sufficient to disrupt the active conformation by displacing the characteristic NS2B C-terminal β-hairpin from the active site pocket. By contrast, the binding of myricetin to AS1 and AS2 results in locking the inactive conformation. Therefore, myricetin represents the first small molecule, which allosterically inhibits the dengue protease by both disrupting the active conformation and locking the inactive conformation. The results enforce the notion that a global allosteric network exists in the dengue NS2B-NS3 protease, which is susceptible to allosteric inhibition by small molecules such as myricetin and curcumin. As myricetin has been extensively used as a food additive, it might be directly utilized to fight the dengue infections and as a promising starting material for further design of potent allosteric inhibitors.
Collapse
|
7
|
Lim L, Dang M, Roy A, Kang J, Song J. Curcumin Allosterically Inhibits the Dengue NS2B-NS3 Protease by Disrupting Its Active Conformation. ACS OMEGA 2020; 5:25677-25686. [PMID: 33073093 PMCID: PMC7557217 DOI: 10.1021/acsomega.0c00039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 05/19/2023]
Abstract
Flaviviruses including dengue virus and Zika virus encode a unique two-component NS2B-NS3 protease essential for maturation/infectivity, thus representing a key target for designing antiflavivirus drugs. Here, for the first time, by NMR and molecular docking, we reveal that curcumin allosterically inhibits the dengue protease by binding to a cavity with no overlap with the active site. Further molecular dynamics simulations decode that the binding of curcumin leads to unfolding/displacing the characteristic β-hairpin of the C-terminal NS2B and consequently disrupting the closed (active) conformation of the protease. Our study identified a cavity most likely conserved in all flaviviral NS2B-NS3 proteases, which could thus serve as a therapeutic target for the discovery/design of small-molecule allosteric inhibitors. Moreover, as curcumin has been used as a food additive for thousands of years in many counties, it can be directly utilized to fight the flaviviral infections and as a promising starting for further design of potent allosteric inhibitors.
Collapse
|
8
|
Kang J, Lim L, Song J. TMEM106B, a risk factor for FTLD and aging, has an intrinsically disordered cytoplasmic domain. PLoS One 2018; 13:e0205856. [PMID: 30332472 PMCID: PMC6192649 DOI: 10.1371/journal.pone.0205856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
TMEM106B was initially identified as a risk factor for FTLD, but recent studies highlighted its general role in neurodegenerative diseases. Very recently TMEM106B has also been characterized to regulate aging phenotypes. TMEM106B is a 274-residue lysosomal protein whose cytoplasmic domain functions in the endosomal/autophagy pathway by dynamically and transiently interacting with diverse categories of proteins but the underlying structural basis remains completely unknown. Here we conducted bioinformatics analysis and biophysical characterization by CD and NMR spectroscopy, and obtained results reveal that the TMEM106B cytoplasmic domain is intrinsically disordered with no well-defined three-dimensional structure. Nevertheless, detailed analysis of various multi-dimensional NMR spectra allowed defining residue-specific conformations and dynamics. Overall, the TMEM106B cytoplasmic domain is lacking of any tight tertiary packing and relatively flexible. However, several segments are populated with dynamic/nascent secondary structures and have relatively restricted backbone motions on ps-ns time scale, as indicated by their positive {1H}-15N steady-state NOE. Our study thus decodes that being intrinsically disordered may allow the TMEM106B cytoplasmic domain to dynamically and transiently interact with a variety of distinct partners.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
9
|
Song J. Environment-transformable sequence-structure relationship: a general mechanism for proteotoxicity. Biophys Rev 2017; 10:503-516. [PMID: 29204881 DOI: 10.1007/s12551-017-0369-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/19/2017] [Indexed: 12/15/2022] Open
Abstract
In his Nobel Lecture, Anfinsen stated "the native conformation is determined by the totality of interatomic interactions and hence by the amino acid sequence, in a given environment." As aqueous solutions and membrane systems co-exist in cells, proteins are classified into membrane and non-membrane proteins, but whether one can transform one into the other remains unknown. Intriguingly, many well-folded non-membrane proteins are converted into "insoluble" and toxic forms by aging- or disease-associated factors, but the underlying mechanisms remain elusive. In 2005, we discovered a previously unknown regime of proteins seemingly inconsistent with the classic "Salting-in" dogma: "insoluble" proteins including the integral membrane fragments could be solubilized in the ion-minimized water. We have thus successfully studied "insoluble" forms of ALS-causing P56S-MSP, L126Z-SOD1, nascent SOD1 and C71G-Profilin1, as well as E. coli S1 fragments. The results revealed that these "insoluble" forms are either unfolded or co-exist with their unfolded states. Most unexpectedly, these unfolded states acquire a novel capacity of interacting with membranes energetically driven by the formation of helices/loops over amphiphilic/hydrophobic regions which universally exit in proteins but are normally locked away in their folded native states. Our studies suggest that most, if not all, proteins contain segments which have the dual ability to fold into distinctive structures in aqueous and membrane environments. The abnormal membrane interaction might initiate disease and/or aging processes; and its further coupling with protein aggregation could result in radical proteotoxicity by forming inclusions composed of damaged membranous organelles and protein aggregates. Therefore, environment-transformable sequence-structure relationship may represent a general mechanism for proteotoxicity.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore.
| |
Collapse
|
10
|
Gupta G, Lim L, Song J. NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics. PLoS One 2015; 10:e0134823. [PMID: 26258523 PMCID: PMC4530887 DOI: 10.1371/journal.pone.0134823] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022] Open
Abstract
Dengue genome encodes a two component protease complex (NS2B-NS3pro) essential for the viral maturation/infectivity, thus representing a key drug target. Previously, due to its “complete insolubility”, the isolated NS3pro could not be experimentally studied and it remains elusive what structure it adopts without NS2B and why NS2B is indispensable. Here as facilitated by our previous discovery, the isolated NS3pro has been surprisingly deciphered by NMR to be the first intrinsically-disordered chymotrypsin-like fold, which exists in a loosely-packed state with non-native long-range interactions as revealed by paramagnetic relaxation enhancement (PRE). The disordered NS3pro appears to be needed for binding a human host factor to trigger the membrane remodeling. Moreover, we have in vitro refolded the NS3pro in complex with either NS2B (48–100) or the full-length NS2B (1–130) anchored into the LMPC micelle, and the two complexes have similar activities but different dynamics. We also performed molecular dynamics (MD) simulations and the results revealed that NS2B shows the highest structural fluctuations in the complex, thus providing the dynamic basis for the observation on its conformational exchange between open and closed states. Remarkably, the NS2B cofactor plays a central role in maintaining the correlated motion network required for the catalysis as we previously decoded for the SARS 3CL protease. Indeed, a truncated NS2B (48–100;Δ77–84) with the flexible loop deleted is able to trap the NS2B-NS3pro complex in a highly dynamic and catalytically-impotent state. Taken together, our study implies potential strategies to perturb the NS2B-NS3pro interface for design of inhibitors for treating dengue infection.
Collapse
Affiliation(s)
- Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore
| |
Collapse
|
11
|
Wu J, Zhao C, Lin W, Hu R, Wang Q, Chen H, Li L, Chen S, Zheng J. Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution. J Mater Chem B 2014; 2:2983-2992. [PMID: 32261674 DOI: 10.1039/c4tb00253a] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymer-protein interactions are crucial for determining the activity of both polymer and protein for many bio-related applications. Poly(ethylene glycol) (PEG) as a well-known antifouling material is often coated on surfaces to form highly solvated brushes, which exhibit excellent protein-repellent properties. However, unlike surface-induced antifouling effects, little is known about the intrinsic PEG-protein interactions in aqueous solution, which is an important yet neglected problem. Here, we investigate the interactions between PEG and proteins in aqueous solution using fluorescence spectroscopy, atomic force microscopy (AFM), and nuclear magnetic resonance (NMR). Two important characteristics, molecular weight of PEG and mass ratio of PEG : protein, are examined to determine the effect of each on PEG-protein interactions as well as binding characteristics between PEG and proteins. In contrast to too long and too short PEG chains, collective results have shown that PEG with optimal molecular weight (MW) is more capable of interacting with proteins, which induces the conformational change of proteins through more stable binding sites and stronger interactions with long chain PEG. Enhanced PEG-protein interactions are likely due to the change of hydrophilicity to amphiphilicity of PEG with increasing MWPEG. In contrast to almost none or weak interactions of PEG surfaces with proteins, this work provides new evidence to demonstrate the existence of interactions between PEG and proteins in aqueous solution, which is important not only for better understanding of the structure-activity relationship of PEG both in solution and on surfaces, but also for the rational design of new PEG-based materials for specific applications.
Collapse
Affiliation(s)
- Jiang Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China 310027.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Song J. Why do proteins aggregate? "Intrinsically insoluble proteins" and "dark mediators" revealed by studies on "insoluble proteins" solubilized in pure water. F1000Res 2013; 2:94. [PMID: 24555050 PMCID: PMC3869494 DOI: 10.12688/f1000research.2-94.v1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/22/2022] Open
Abstract
In 2008, I reviewed and proposed a model for our discovery in 2005 that unrefoldable and insoluble proteins could in fact be solubilized in unsalted water. Since then, this discovery has offered us and other groups a powerful tool to characterize insoluble proteins, and we have further addressed several fundamental and disease-relevant issues associated with this discovery. Here I review these results, which are conceptualized into several novel scenarios. 1) Unlike 'misfolded proteins', which still retain the capacity to fold into well-defined structures but are misled to 'off-pathway' aggregation, unrefoldable and insoluble proteins completely lack this ability and will unavoidably aggregate in vivo with ~150 mM ions, thus designated as 'intrinsically insoluble proteins (IIPs)' here. IIPs may largely account for the 'wastefully synthesized' DRiPs identified in human cells. 2) The fact that IIPs including membrane proteins are all soluble in unsalted water, but get aggregated upon being exposed to ions, logically suggests that ions existing in the background play a central role in mediating protein aggregation, thus acting as 'dark mediators'. Our study with 14 salts confirms that IIPs lack the capacity to fold into any well-defined structures. We uncover that salts modulate protein dynamics and anions bind proteins with high selectivity and affinity, which is surprisingly masked by pre-existing ions. Accordingly, I modified my previous model. 3) Insoluble proteins interact with lipids to different degrees. Remarkably, an ALS-causing P56S mutation transforms the β-sandwich MSP domain into a helical integral membrane protein. Consequently, the number of membrane-interacting proteins might be much larger than currently recognized. To attack biological membranes may represent a common mechanism by which aggregated proteins initiate human diseases. 4) Our discovery also implies a solution to the 'chicken-and-egg paradox' for the origin of primitive membranes embedded with integral membrane proteins, if proteins originally emerged in unsalted prebiotic media.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore ; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
13
|
Mukaiyama A, Nakamura T, Makabe K, Maki K, Goto Y, Kuwajima K. The Molten Globule of β2-Microglobulin Accumulated at pH 4 and Its Role in Protein Folding. J Mol Biol 2013; 425:273-91. [DOI: 10.1016/j.jmb.2012.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 01/06/2023]
|
14
|
Sun S, Tepp WH, Johnson EA, Chapman ER. Botulinum neurotoxins B and E translocate at different rates and exhibit divergent responses to GT1b and low pH. Biochemistry 2012; 51:5655-62. [PMID: 22720883 PMCID: PMC3398548 DOI: 10.1021/bi3004928] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Botulinum neurotoxins (BoNTs, serotypes A–G) are
the most
deadly substances known. Here, we investigated how BoNT/E, a serotype
that causes human botulism, translocates into the cytosol of neurons.
Analogous to BoNT/B, BoNT/E required binding of the coreceptor, GT1b,
to undergo significant secondary structural changes and transform
into a hydrophobic protein at low pH. These data indicate that both
serotypes act as coincidence detectors for both GT1b and low pH, to
undergo translocation. However, BoNT/E translocated much more rapidly
than BoNT/B. Also, BoNT/E required only GT1b, and not low pH, to oligomerize,
whereas BoNT/B required both. In further contrast to the case of BoNT/B,
low pH alone altered the secondary structure of BoNT/E to some degree
and resulted in its premature inactivation. Hence, comparison of two
BoNT serotypes revealed that these agents exhibit both convergent
and divergent responses to receptor interactions, and pH, in the translocation
pathway.
Collapse
|
15
|
Lua S, Qin H, Lim L, Shi J, Gupta G, Song J. Structural, stability, dynamic and binding properties of the ALS-causing T46I mutant of the hVAPB MSP domain as revealed by NMR and MD simulations. PLoS One 2011; 6:e27072. [PMID: 22069488 PMCID: PMC3206076 DOI: 10.1371/journal.pone.0027072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/09/2011] [Indexed: 12/31/2022] Open
Abstract
T46I is the second mutation on the hVAPB MSP domain which was recently identified from non-Brazilian kindred to cause a familial amyotrophic lateral sclerosis (ALS). Here using CD, NMR and molecular dynamics (MD) simulations, we characterized the structure, stability, dynamics and binding capacity of the T46I-MSP domain. The results reveal: 1) unlike P56S which we previously showed to completely eliminate the native MSP structure, T46I leads to no significant disruption of the native secondary and tertiary structures, as evidenced from its far-UV CD spectrum, as well as Cα and Cβ NMR chemical shifts. 2) Nevertheless, T46I does result in a reduced thermodynamic stability and loss of the cooperative urea-unfolding transition. As such, the T46I-MSP domain is more prone to aggregation than WT at high protein concentrations and temperatures in vitro, which may become more severe in the crowded cellular environments. 3) T46I only causes a 3-fold affinity reduction to the Nir2 peptide, but a significant elimination of its binding to EphA4. 4) EphA4 and Nir2 peptide appear to have overlapped binding interfaces on the MSP domain, which strongly implies that two signaling networks may have a functional interplay in vivo. 5) As explored by both H/D exchange and MD simulations, the MSP domain is very dynamic, with most loop residues and many residues on secondary structures highly fluctuated or/and exposed to bulk solvent. Although T46I does not alter overall dynamics, it does trigger increased dynamics of several local regions of the MSP domain which are implicated in binding to EphA4 and Nir2 peptide. Our study provides the structural and dynamic understanding of the T46I-causing ALS; and strongly highlights the possibility that the interplay of two signaling networks mediated by the FFAT-containing proteins and Eph receptors may play a key role in ALS pathogenesis.
Collapse
Affiliation(s)
- Shixiong Lua
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jiahai Shi
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
16
|
Shi J, Lua S, Tong JS, Song J. Elimination of the native structure and solubility of the hVAPB MSP domain by the Pro56Ser mutation that causes amyotrophic lateral sclerosis. Biochemistry 2010; 49:3887-97. [PMID: 20377183 DOI: 10.1021/bi902057a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Pro56Ser mutation in the human VAPB MSP domain causes a familial amyotrophic lateral sclerosis. Here we present the first structural investigation of both wild-type and Pro56Ser mutant MSP domains. The results reveal that the wild-type MSP domain is well-folded at neutral pH but can undergo acid-induced unfolding reversibly. It has a thermodynamic stability energy (DeltaG degrees (N-U)) of 7.40 kcal/mol and is also active in binding to a Nir2 peptide with a K(D) of 0.65 muM. Further determination of its crystal structure reveals that it adopts a seven-strand immunoglobulin-like beta sandwich in which Pro56 adopts the unusual cis-peptide bond conformation that appears to be critical in maintaining the characteristic S-shaped loop. Markedly, the Pro56Ser mutation renders the MSP domain insoluble in buffer. Nevertheless, as facilitated by our recent discovery that "insoluble proteins" can be solubilized in salt-free water, we have successfully characterized the residue-specific conformation of the Pro56Ser mutant by CD and heteronuclear NMR spectroscopy. The Pro56Ser mutant remains lacking of the native tight packing and secondary structures under various conditions and was further characterized as having a non-native helical conformation weakly populated at pH 3.5. Intriguingly, Pro12 located in another S-shaped loop also adopts the cis-peptide bond conformation, and its mutation to Ser is able to make the MSP domain highly insoluble and unfolded like the Pro56Ser mutant. Our study thus implies that the Pro56Ser mutation might lead to ALS by eliminating the native MSP structure, which consequently leads to aggregation and loss of functions under physiological conditions.
Collapse
Affiliation(s)
- Jiahai Shi
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
17
|
Shaveta G, Shi J, Chow VTK, Song J. Structural characterization reveals that viperin is a radical S-adenosyl-L-methionine (SAM) enzyme. Biochem Biophys Res Commun 2009; 391:1390-5. [PMID: 20026307 DOI: 10.1016/j.bbrc.2009.12.070] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
Viperin is an interferon-inducible protein inhibiting many DNA and RNA viruses. It contains an N-terminal transmembrane helix, a highly conserved C-terminus and a middle region carrying a CX3CX2C motif, characteristic of radical S-adenosyl-l-methionine (SAM) enzymes. So far no structural characterization has been reported and reconstitution of the [4Fe-4S] cluster in viperin all failed. Here, by dissecting the 361-residue human viperin into 12 fragments, followed by extensive CD and NMR characterization, Viperin (45-361) was identified to be soluble and structured in buffers. Most importantly, we have successfully reconstituted the [4Fe-4S] cluster in Viperin (45-361), thus providing the first experimental evidence confirming that viperin is indeed a radical SAM enzyme. Furthermore, the C-terminus Viperin (214-361) which is insoluble in buffers but again can be solubilized in salt-free water appears to be only partially folded. Our results thus imply that the radical SAM enzyme activity may play a key role in the broad antiviral actions of viperin.
Collapse
Affiliation(s)
- Goyal Shaveta
- Department of Biochemistry, Yong Loo Lin School of Medicine, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | | | | | |
Collapse
|
18
|
Insights into protein aggregation by NMR characterization of insoluble SH3 mutants solubilized in salt-free water. PLoS One 2009; 4:e7805. [PMID: 19956763 PMCID: PMC2776303 DOI: 10.1371/journal.pone.0007805] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/16/2009] [Indexed: 12/02/2022] Open
Abstract
Protein aggregation in vivo has been extensively associated with a large spectrum of human diseases. On the other hand, mechanistic insights into protein aggregation in vitro were incomplete due to the inability in solubilizing insoluble proteins for high-resolution biophysical investigations. However, a new avenue may be opened up by our recent discovery that previously-thought insoluble proteins can in fact be solubilized in salt-free water. Here we use this approach to study the NMR structural and dynamic properties of an insoluble SH3 mutant with a naturally-occurring insertion of Val22 at the tip of the diverging turn. The obtained results reveal: 1) regardless of whether the residue is Val, Ala, Asp or Arg, the insertion will render the first hNck2 SH3 domain to be insoluble in buffers. Nevertheless, all four mutants could be solubilized in salt-free water and appear to be largely unfolded as evident from their CD and NMR HSQC spectra. 2) Comparison of the chemical shift deviations reveals that while in V22-SH3 the second helical region is similarly populated as in the wild-type SH3 at pH 2.0, the first helical region is largely unformed. 3) In V22-SH3, many non-native medium-range NOEs manifest to define non-native helical conformations. In the meanwhile a small group of native-like long-range NOEs still persists, indicating the existence of a rudimentary native-like tertiary topology. 4) Although overall, V22-SH3 has significantly increased backbone motions on the ps-ns time scale, some regions still own restricted backbone motions as revealed by analyzing 15N relaxation data. Our study not only leads to the establishment of the first high-resolution structural and dynamic picture for an insoluble protein, but also shed more light on the molecular events for the nonhierarchical folding mechanism. Furthermore, a general mechanism is also proposed for in vivo protein aggregation triggered by the genetic mutation and posttranslational modification.
Collapse
|
19
|
Song J. Insight into "insoluble proteins" with pure water. FEBS Lett 2009; 583:953-9. [PMID: 19233178 DOI: 10.1016/j.febslet.2009.02.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/14/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
Many proteins are not refoldable and also insoluble. Previously no general method was available to solubilize them and consequently their structural properties remained unknown. Surprisingly, we recently discovered that all insoluble proteins in our laboratory, which are highly diverse, can be solubilized in pure water. Structural characterization by CD and NMR led to their classification into three groups, all of which appear trapped in the highly disordered or partially-folded states with a substantial exposure of hydrophobic side chains. In this review, I discuss our results in a wide context and subsequently propose a model to rationalize the discovery. The potential applications are also explored in studying protein folding, design and membrane proteins.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
20
|
Qin H, Pu HX, Li M, Ahmed S, Song J. Identification and structural mechanism for a novel interaction between a ubiquitin ligase WWP1 and Nogo-A, a key inhibitor for central nervous system regeneration. Biochemistry 2009; 47:13647-58. [PMID: 19035836 DOI: 10.1021/bi8017976] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nogo-A has been extensively demonstrated to play key roles in inhibiting central nervous system regeneration, regulating endoplasmic reticulum formation, and maintaining the integrity of the neuromuscular junction. In this study, an E3 ubiquitin ligase WWP1 was first identified to be a novel interacting partner for Nogo-A both in vitro and in vivo. By using CD, ITC, and NMR, we have further conducted extensive studies on all four WWP1 WW domains and their interactions with a Nogo-A peptide carrying the only PPxY motif. The results lead to several striking findings. (1) Despite containing an unstructured region, the 186-residue WWP1 fragment containing all four WW domains is able to interact with the Nogo-A(650-666) peptide with a high affinity, with a dissociation constant (K(d)) of 1.68 microM. (2) Interestingly, four isolated WW domains show differential structural properties in the free states. WW1 and WW2 are only partially folded, while WW4 is well-folded. Nevertheless, they all become well-folded upon binding to Nogo-A(650-666), with K(d) values ranging from 1.03 to 3.85 microM. (3) The solution structure of the best-folded WW4 domain is determined, and the binding-perturbed residues were derived for both WW4 and Nogo-A(650-666) by NMR HSQC titrations. Moreover, on the basis of the NMR data, the complex model is constructed by HADDOCK 2.0. This study provides rationales as well as a template Nogo-A(650-666) for further design of molecules to intervene in the WWP1-Nogo-A interaction which may regulate the Nogo-A protein level by controlling its ubiquitination.
Collapse
Affiliation(s)
- Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
21
|
Ran X, Qin H, Liu J, Fan JS, Shi J, Song J. NMR structure and dynamics of human ephrin-B2 ectodomain: the functionally critical C-D and G-H loops are highly dynamic in solution. Proteins 2008; 72:1019-29. [PMID: 18300229 DOI: 10.1002/prot.21999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Eph receptors and ephrins constitute the largest family of receptor tyrosine kinases with 15 individual receptors and nine ligands. Its ectodomains represent attractive targets not only for understanding fundamental mechanisms underlying axon guidance, cell migration, segmentation, tumorigenesis, and bone remodeling, but also for drug screening/design to treat cancers, bone diseases and viral infection. So far no NMR study on the ephrin ectodomains is available and as such their properties in solution still remain unknown. In this study, we presented the first NMR structure and dynamics of the human ephrin-B2 ectodomain as well as its interaction with the receptor EphB2. Strikingly, the NMR study reveals a picture different from those previously obtained by X-ray crystallography. Although in solution it still adopts the same Greek key fold, with the central beta-barrel ( approximately 30% of the molecule) highly similar to that in crystal structures, the other regions are highly dynamic and accessible to the bulk solvent. In particular, the functionally critical C-D and G-H loops of the ephrin-B2 ectodomain are highly flexible as reflected by several NMR probes including hydrogen exchange and (15)N backbone relaxation data. Nevertheless, as revealed by ITC and NMR, the ephrin-B2 ectodomain binds to EphB2 with a K(d) of 22.3 nM to form a tight complex in which the tip of the C-D loop and the C-terminus still remain largely flexible. The present results may bear critical implications in understanding the molecular details as well as designing antagonists of therapeutic interest for Eph-ephrin interactions.
Collapse
Affiliation(s)
- Xiaoyuan Ran
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
22
|
NMR evidence for forming highly populated helical conformations in the partially folded hNck2 SH3 domain. Biophys J 2008; 95:4803-12. [PMID: 18599634 DOI: 10.1529/biophysj.107.125641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies of several proteins implied that the folding of beta-proteins may follow a nonhierarchical mechanism in which two major transitions are essential, i.e., the collapse of a random coil to form a nonnative helical intermediate, followed by a transformation into the native beta-structure. We report that the first hNck2 SH3 domain, assuming an all-beta barrel in the native form, can be reversibly transformed into a stable and nonnative helical state by acid-unfolding. We also conducted extensive NMR and mutagenesis studies that led to two striking findings: 1), NMR analysis reveals that in the helical state formed at pH 2.0, the first and last beta-strands in the native form become unstructured, whereas the rest is surprisingly converted into two highly populated helices with a significantly limited backbone motion; and 2), a conserved four-residue sequence is identified on the second beta-strand, a mutation of which suddenly renders the SH3 domain into a helical state even at pH 6.5, with NMR conformational and dynamic properties highly similar to those of the wild-type at pH 2.0. This observation implies that the region might contribute key interactions to disrupt the helical state, and to facilitate a further transformation into the native SH3 fold in the second transition.
Collapse
|
23
|
Shi J, Lua S, Du N, Liu X, Song J. Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 2008; 29:2820-8. [DOI: 10.1016/j.biomaterials.2008.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 03/16/2008] [Indexed: 10/22/2022]
|
24
|
Liu J, Song J. A novel nucleolar transcriptional activator ApLLP for long-term memory formation is intrinsically unstructured but functionally active. Biochem Biophys Res Commun 2007; 366:585-91. [PMID: 18078811 DOI: 10.1016/j.bbrc.2007.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Accepted: 12/04/2007] [Indexed: 11/20/2022]
Abstract
A novel Aplysia nucleolar protein ApLLP has been recently characterized to be a transcriptional activator that binds to the cAMP-response element (CRE) and thus induces ApC/EBP expression required for establishing long-term memory. So far, no structural information is available for both ApLLP and its homologs. Here, we expressed the entire ApLLP and its two dissected fragments, followed by structural and binding studies using CD and NMR spectroscopy. The study leads to two interesting findings: (1) all three ApLLP proteins are highly disordered, owning no predominant secondary and tertiary structures; (2) ApLLP is capable of binding the CRE DNA element but this induces no significant change in its secondary and tertiary structures. Intriguingly, it appears that the DNA-binding residues are mainly located on the C-half of the ApLLP molecule. Taken together, our results define ApLLP as an intrinsically unstructured protein and may bear important implications in understanding the molecular mechanism underlying ApLLP functions.
Collapse
Affiliation(s)
- Jingxian Liu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | |
Collapse
|
25
|
Perier A, Chassaing A, Raffestin S, Pichard S, Masella M, Ménez A, Forge V, Chenal A, Gillet D. Concerted Protonation of Key Histidines Triggers Membrane Interaction of the Diphtheria Toxin T Domain. J Biol Chem 2007; 282:24239-45. [PMID: 17584737 DOI: 10.1074/jbc.m703392200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation domain (T domain) of the diphtheria toxin contributes to the transfer of the catalytic domain from the cell endosome to the cytosol, where it blocks protein synthesis. Translocation is initiated when endosome acidification induces the interaction of the T domain with the membrane of the compartment. We found that the protonation of histidine side chains triggers the conformational changes required for membrane interaction. All histidines are involved in a concerted manner, but none is indispensable. However, the preponderance of each histidine varies according to the transition observed. The pair His(223)-His(257) and His(251) are the most sensitive triggers for the formation of the molten globule state in solution, whereas His(322)-His(323) and His(251) are the most sensitive triggers for membrane binding. Interestingly, the histidines are located at key positions throughout the structure of the protein, in hinges and at the interface between each of the three layers of helices forming the domain. Their protonation induces local destabilizations, disrupting the tertiary structure and favoring membrane interaction. We propose that the selection of histidine residues as triggers of membrane interaction enables the T domain to initiate translocation at the rather mild pH found in the endosome, contributing to toxin efficacy.
Collapse
Affiliation(s)
- Aurélie Perier
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette F-91191, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li M, Song J. Nogo-B receptor possesses an intrinsically unstructured ectodomain and a partially folded cytoplasmic domain. Biochem Biophys Res Commun 2007; 360:128-34. [PMID: 17585875 DOI: 10.1016/j.bbrc.2007.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
RTN4/Nogo proteins containing three isoforms have been implicated in a large and diverse spectrum of biological functions. By contrast, only two functional receptors were known for them, namely NgR binding the 66-residue ectodomain shared by all three Nogos and NgBR specifically binding Nogo-B. The 297-residue NgBR was recently identified to be essential for stimulating chemotaxis and morphogenesis of endothelial cells but its structural property still remains completely unknown. In the present study, we expressed and subsequently conducted bioinformatics, CD and NMR characterization of NgBR and its two dissected domains. Very surprisingly, our results indicate that the NgBR ectodomain is intrinsically unstructured without both secondary and tertiary structures while the cytoplasmic domain is only partially folded with secondary structures but without a tight tertiary packing. Therefore, NgBR is a very rare example showing that the entire ectodomain of a transmembrane receptor could be predominantly disordered and the results presented here may bear important implications in understanding NgBR functions in the future.
Collapse
Affiliation(s)
- Minfen Li
- Department of Biological Sciences, Faculty of Science, Yong Loo Lin School of Medicine and National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | | |
Collapse
|
27
|
Li M, Liu J, Song J. Nogo goes in the pure water: solution structure of Nogo-60 and design of the structured and buffer-soluble Nogo-54 for enhancing CNS regeneration. Protein Sci 2006; 15:1835-41. [PMID: 16877707 PMCID: PMC2242580 DOI: 10.1110/ps.062306906] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The inability to determine the structure of the buffer-insoluble Nogo extracellular domain retarded further design of Nogo receptor (NgR) antagonists to treat CNS axonal injuries. Very surprisingly, we recently discovered that Nogo-60 was soluble and structured in salt-free water, thus allowing the determination of the first Nogo structure by heteronuclear NMR spectroscopy. Nogo-60 adopts an unusual helical structure with the N- and C-terminal helices connected by a long middle helix. While the N-helix has no contact with the rest of the molecule, the C-helix flips back to pack against the 20-residue middle helix. This packing appears to trigger the formation of the stable Nogo-60 structure because Nogo-40 with the last helix truncated is unstructured. The Nogo-60 structure offered us rationales for further design of the structured and buffer-soluble Nogo-54, which may be used as a novel NgR antagonist. Furthermore, our discovery may imply a general solution to solubilizing a category of buffer-insoluble proteins for urgent structural investigations.
Collapse
Affiliation(s)
- Minfen Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | | | | |
Collapse
|
28
|
Li M, Liu J, Ran X, Fang M, Shi J, Qin H, Goh JM, Song J. Resurrecting abandoned proteins with pure water: CD and NMR studies of protein fragments solubilized in salt-free water. Biophys J 2006; 91:4201-9. [PMID: 16980357 PMCID: PMC1635667 DOI: 10.1529/biophysj.106.093187] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many proteins expressed in Escherichia coli cells form inclusion bodies that are neither refoldable nor soluble in buffers. Very surprisingly, we recently discovered that all 11 buffer-insoluble protein fragments/domains we have, with a great diversity of cellular function, location, and molecular size, could be easily solubilized in salt-free water. The circular dichroism (CD) and NMR characterization led to classification of these proteins into three groups: group 1, with no secondary structure by CD and with narrowly-dispersed but sharp (1)H-(15)N heteronuclear single quantum correlation (HSQC) peaks; group 2, with secondary structure by CD but with HSQC peaks broadened and, consequently, only a small set of peaks detectable; and group 3, with secondary structure by CD and also well-separated HSQC peaks. Intriguingly, we failed to find any protein with a tight tertiary packing. Therefore, we propose that buffer-insoluble proteins may lack intrinsic ability to reach or/and to maintain a well-packed conformation, and thus are trapped in partially-folded states with many hydrophobic side chains exposed to the bulk solvent. As such, a very low ionic strength is sufficient to screen out intrinsic repulsive interactions and, consequently, allow the hydrophobic clustering/aggregation to occur. Marvelously enough, it appears that in pure water, proteins have the potential to manifest their full spectrum of structural states by utilizing intrinsic repulsive interactions to suppress the attractive hydrophobic clustering. Our discovery not only gives a novel insight into the properties of insoluble proteins, but also sheds the first light that we know of on previously unknown regimes associated with proteins.
Collapse
Affiliation(s)
- Minfen Li
- Department of Biological Sciences, Faculty of Science, Yong Loo Lin School of Mediciine, National Univeristy of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The 3C‐like protease of the severe acute respiratory syndrome (SARS) coronavirus has a C‐terminal extra domain in addition to the chymotrypsin‐fold adopted by piconavirus 3C proteases hosting the complete catalytic machinery. Previously we identified the extra domain to be involved in enzyme dimerization which has been considered essential for the catalytic activity. In an initial attempt to map out the extra‐domain residues critical for dimerization, we have systematically generated 15 point mutations, five deletions and one triple mutation and subsequently characterized them by enzymatic assay, dynamic light scattering, CD and NMR spectroscopy. The results led to identification of four regions critical for enzyme dimerization. Interestingly, Asn214Ala mutant with a significant tendency to form a monomer still retained ≈ 30% activity, indicating that the relationship between the activity and dimerization might be very complex. Very surprisingly, two regions (one over Ser284–Thr285–Ile286 and another around Phe291) were discovered on which Ala‐mutations significantly increased the enzymatic activities. Based on this, a super‐active triple‐mutant STI/A with a 3.7‐fold activity enhancement was thus engineered by mutating residues Ser284, Thr285 and Ile286 to Ala. The dynamic light scattering, CD and NMR characterizations indicate that the wild‐type (WT) and STI/A mutant share similar structural and dimerization properties, thus implying that in addition to dimerization, the extra domain might have other mechanisms to regulate the catalytic machinery. We rationalized these results based on the enzyme structure and consequently observed an interesting picture: the majority of the dimerization‐critical residues plus Ser284–Thr285–Ile286 and Phe291 are clustered together to form a nano‐scale channel passing through the central region of the enzyme. We therefore speculate that this channel might play a role in relaying regulatory effects from the extra domain to the catalytic machinery.
Collapse
Affiliation(s)
- Jiahai Shi
- Department of Biochemistry, The Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
30
|
Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, Wakabayashi T. Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. J Mol Biol 2005; 352:178-201. [PMID: 16061251 DOI: 10.1016/j.jmb.2005.06.067] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/17/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
Troponin and tropomyosin on actin filaments constitute a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle through a series of conformational changes within the actin-based thin filament. Troponin consists of three subunits: an inhibitory subunit (TnI), a Ca2+-binding subunit (TnC), and a tropomyosin-binding subunit (TnT). Ca2+-binding to TnC is believed to weaken interactions between troponin and actin, and triggers a large conformational change of the troponin complex. However, the atomic details of the actin-binding sites of troponin have not been determined. Ternary troponin complexes have been reconstituted from recombinant chicken skeletal TnI, TnC, and TnT2 (the C-terminal region of TnT), among which only TnI was uniformly labelled with 15N and/or 13C. By applying NMR spectroscopy, the solution structures of a "mobile" actin-binding domain (approximately 6.1 kDa) in the troponin ternary complex (approximately 52 kDa) were determined. The mobile domain appears to tumble independently of the core domain of troponin. Ca2+-induced changes in the chemical shift and line shape suggested that its tumbling was more restricted at high Ca2+ concentrations. The atomic details of interactions between actin and the mobile domain of troponin were defined by docking the mobile domain into the cryo-electron microscopy (cryo-EM) density map of thin filament at low [Ca2+]. This allowed the determination of the 3D position of residue 133 of TnI, which has been an important landmark to incorporate the available information. This enabled unique docking of the entire globular head region of troponin into the thin filament cryo-EM map at a low Ca2+ concentration. The resultant atomic model suggests that troponin interacted electrostatically with actin and caused the shift of tropomyosin to achieve muscle relaxation. An important feature is that the coiled-coil region of troponin pushed tropomyosin at a low Ca2+ concentration. Moreover, the relationship between myosin and the mobile domain on actin filaments suggests that the latter works as a fail-safe latch.
Collapse
Affiliation(s)
- Kenji Murakami
- Department of Biosciences, School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551, Japan
| | | | | | | | | | | |
Collapse
|