1
|
Senyushkina T, Samatova E, Klimova M, Rodnina M. Kinetics of programmed and spontaneous ribosome sliding along the mRNA. Nucleic Acids Res 2024; 52:6507-6517. [PMID: 38783118 PMCID: PMC11194080 DOI: 10.1093/nar/gkae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
The ribosome can slide along mRNA without establishing codon-anticodon interactions. This movement can be regulated (programmed) by the elements encoded in the mRNA, as observed in bypassing of non-coding gap in gene 60 of bacteriophage T4, or occur spontaneously, such as during traversal by the 70S ribosome of the 3'UTRs or upon re-initiation on bacterial polycistronic genes. In this study, we investigate the kinetic mechanism underlying the programmed and spontaneous ribosome sliding. We show that the translation rate of gene 60 mRNA decreases as the ribosome approaches the take-off site, especially when the KKYK regulatory sequence in the nascent peptide reaches the constriction site in the ribosome exit tunnel. However, efficiency of bypassing increases when the ribosome traverses the gap quickly. With the non-coding gap exceeding the natural 50 nt, the processivity of sliding remains high up to 56 nt, but drops sharply beyond that due to the loss of mRNA elements support. Sliding efficiency is temperature-dependent; while temperature regulates the number of ribosomes initiating programmed bypassing, traversing the long gaps becomes increasingly unfavorable at lower temperatures. This data offers novel insights into the kinetic determinants of programmed and spontaneous ribosome sliding along the mRNA.
Collapse
Affiliation(s)
- Tamara Senyushkina
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Ekaterina Samatova
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Maria Klimova
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Antonov IV, O’Loughlin S, Gorohovski AN, O’Connor PB, Baranov PV, Atkins JF. Streptomyces rare codon UUA: from features associated with 2 adpA related locations to candidate phage regulatory translational bypassing. RNA Biol 2023; 20:926-942. [PMID: 37968863 PMCID: PMC10732093 DOI: 10.1080/15476286.2023.2270812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/02/2023] [Indexed: 11/17/2023] Open
Abstract
In Streptomyces species, the cell cycle involves a switch from an early and vegetative state to a later phase where secondary products including antibiotics are synthesized, aerial hyphae form and sporulation occurs. AdpA, which has two domains, activates the expression of numerous genes involved in the switch from the vegetative growth phase. The adpA mRNA of many Streptomyces species has a UUA codon in a linker region between 5' sequence encoding one domain and 3' sequence encoding its other and C-terminal domain. UUA codons are exceptionally rare in Streptomyces, and its functional cognate tRNA is not present in a fully modified and acylated form, in the early and vegetative phase of the cell cycle though it is aminoacylated later. Here, we report candidate recoding signals that may influence decoding of the linker region UUA. Additionally, a short ORF 5' of the main ORF has been identified with a GUG at, or near, its 5' end and an in-frame UUA near its 3' end. The latter is commonly 5 nucleotides 5' of the main ORF start. Ribosome profiling data show translation of that 5' region. Ten years ago, UUA-mediated translational bypassing was proposed as a sensor by a Streptomyces phage of its host's cell cycle stage and an effector of its lytic/lysogeny switch. We provide the first experimental evidence supportive of this proposal.
Collapse
Affiliation(s)
- Ivan V. Antonov
- Russian Academy of Science, Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sinéad O’Loughlin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Alessandro N. Gorohovski
- Russian Academy of Science, Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
O'Loughlin S, Capece MC, Klimova M, Wills NM, Coakley A, Samatova E, O'Connor PBF, Loughran G, Weissman JS, Baranov PV, Rodnina MV, Puglisi JD, Atkins JF. Polysomes Bypass a 50-Nucleotide Coding Gap Less Efficiently Than Monosomes Due to Attenuation of a 5' mRNA Stem-Loop and Enhanced Drop-off. J Mol Biol 2020; 432:4369-4387. [PMID: 32454154 PMCID: PMC7245268 DOI: 10.1016/j.jmb.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
Efficient translational bypassing of a 50-nt non-coding gap in a phage T4 topoisomerase subunit gene (gp60) requires several recoding signals. Here we investigate the function of the mRNA stem–loop 5′ of the take-off codon, as well as the importance of ribosome loading density on the mRNA for efficient bypassing. We show that polysomes are less efficient at mediating bypassing than monosomes, both in vitro and in vivo, due to their preventing formation of a stem–loop 5′ of the take-off codon and allowing greater peptidyl-tRNA drop off. A ribosome profiling analysis of phage T4-infected Escherichia coli yielded protected mRNA fragments within the normal size range derived from ribosomes stalled at the take-off codon. However, ribosomes at this position also yielded some 53-nucleotide fragments, 16 longer. These were due to protection of the nucleotides that form the 5′ stem–loop. NMR shows that the 5′ stem–loop is highly dynamic. The importance of different nucleotides in the 5′ stem–loop is revealed by mutagenesis studies. These data highlight the significance of the 5′ stem–loop for the 50-nt bypassing and further enhance appreciation of relevance of the extent of ribosome loading for recoding. Monosomes are more efficient than polysome in mediating 50-nt translational bypassing. A 5′ mRNA stem–loop facilitates translational bypassing by monosomes. Ribosome profiling yields an extra-long, 53-nt, protected fragment of mRNA.
Collapse
Affiliation(s)
- Sinéad O'Loughlin
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland; School of Microbiology, University College Cork, Western Gateway Building, Western Road, Cork, T12 YT57, Ireland
| | - Mark C Capece
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-4090, USA
| | - Mariia Klimova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Norma M Wills
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Arthur Coakley
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick B F O'Connor
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland
| | - Gary Loughran
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow 117997, Russia
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-4090, USA
| | - John F Atkins
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland; School of Microbiology, University College Cork, Western Gateway Building, Western Road, Cork, T12 YT57, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
4
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Coupling of mRNA Structure Rearrangement to Ribosome Movement during Bypassing of Non-coding Regions. Cell 2016; 163:1267-1280. [PMID: 26590426 DOI: 10.1016/j.cell.2015.10.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/07/2015] [Accepted: 10/21/2015] [Indexed: 01/13/2023]
Abstract
Nearly half of the ribosomes translating a particular bacteriophage T4 mRNA bypass a region of 50 nt, resuming translation 3' of this gap. How this large-scale, specific hop occurs and what determines whether a ribosome bypasses remain unclear. We apply single-molecule fluorescence with zero-mode waveguides to track individual Escherichia coli ribosomes during translation of T4's gene 60 mRNA. Ribosomes that bypass are characterized by a 10- to 20-fold longer pause in a non-canonical rotated state at the take-off codon. During the pause, mRNA secondary structure rearrangements are coupled to ribosome forward movement, facilitated by nascent peptide interactions that disengage the ribosome anticodon-codon interactions for slippage. Close to the landing site, the ribosome then scans mRNA in search of optimal base-pairing interactions. Our results provide a mechanistic and conformational framework for bypassing, highlighting a non-canonical ribosomal state to allow for mRNA structure refolding to drive large-scale ribosome movements.
Collapse
|
6
|
Translational Bypassing – Peptidyl-tRNA Re-pairing at Non-overlapping Sites. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2010. [DOI: 10.1007/978-0-387-89382-2_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Atkins JF, Björk GR. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev 2009; 73:178-210. [PMID: 19258537 PMCID: PMC2650885 DOI: 10.1128/mmbr.00010-08] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of translation components which compensate for both -1 and +1 frameshift mutations showed the first evidence for framing malleability. Those compensatory mutants isolated in bacteria and yeast with altered tRNA or protein factors are reviewed here and are considered to primarily cause altered P-site realignment and not altered translocation. Though the first sequenced tRNA mutant which suppressed a +1 frameshift mutation had an extra base in its anticodon loop and led to a textbook "yardstick" model in which the number of anticodon bases determines codon size, this model has long been discounted, although not by all. Accordingly, the reviewed data suggest that reading frame maintenance and translocation are two distinct features of the ribosome. None of the -1 tRNA suppressors have anticodon loops with fewer than the standard seven nucleotides. Many of the tRNA mutants potentially affect tRNA bending and/or stability and can be used for functional assays, and one has the conserved C74 of the 3' CCA substituted. The effect of tRNA modification deficiencies on framing has been particularly informative. The properties of some mutants suggest the use of alternative tRNA anticodon loop stack conformations by individual tRNAs in one translation cycle. The mutant proteins range from defective release factors with delayed decoding of A-site stop codons facilitating P-site frameshifting to altered EF-Tu/EF1alpha to mutant ribosomal large- and small-subunit proteins L9 and S9. Their study is revealing how mRNA slippage is restrained except where it is programmed to occur and be utilized.
Collapse
Affiliation(s)
- John F Atkins
- BioSciences Institute, University College, Cork, Ireland.
| | | |
Collapse
|
8
|
Abstract
The tri-frame model gives mathematical expression to the transcription and translation processes, and considers all three reading frames (RFs). RNA polymerases transcribe DNA in single nucleotide increments, but ribosomes translate mRNA in pairings of three (triplets or codons). The set of triplets in the mRNA, starting with the initiation codon (usually AUG) defines the open reading frame (ORF). Since ribosomes do not always translocate three nucleotide positions, two additional RFs are accessible. The -1 RF and the +1 RF are triplet pairings of the mRNA, which are accessed by shifting one nucleotide position in the 5' and 3' directions, respectively. Transcription is modeled as a linear operator that maps the initial codons in all three frames into other codon sets to account for possible transcriptional errors. Translational errors (missense errors) originate from misacylation of tRNAs and misreading of aa-tRNAs by the ribosome. Translation is modeled as a linear mapping from codons into aa-tRNA species, which includes misreading errors. A final transformation from aa-tRNA species into amino acids provides the probability distributions of possible amino acids into which the codons in all three frames could be translated. An important element of the tri-frame model is the ribosomal occupancy probability. It is a vector in R(3) that gives the probability to find the ribosome in the ORF, -1 or +1 RF at each codon position. The sequence of vectors, from the first to the final codon position, gives a history of ribosome frameshifting. The model is powerful: it provides explicit expressions for (1) yield of error-free protein, (2) fraction of prematurely terminated polypeptides, (3) number of transcription errors, (4) number of translation errors and (5) mutations due to frameshifting. The theory is demonstrated for the three genes rpsU, dnaG and rpoD of Escherichia coli, which lie on the same operon, as well as for the prfB gene.
Collapse
Affiliation(s)
- Elsje Pienaar
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588-0643
| | - Hendrik J. Viljoen
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588-0643
| |
Collapse
|
9
|
Farabaugh PJ, Kramer E, Vallabhaneni H, Raman A. Evolution of +1 programmed frameshifting signals and frameshift-regulating tRNAs in the order Saccharomycetales. J Mol Evol 2006; 63:545-61. [PMID: 16838213 DOI: 10.1007/s00239-005-0311-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 03/21/2006] [Indexed: 11/27/2022]
Abstract
Programmed translational frameshifting is a ubiquitous but rare mechanism of gene expression in which mRNA sequences cause the translational machinery to shift reading frames with extreme efficiency, up to at least 50%. The mRNA sequences responsible are deceptively simple; the sequence CUU-AGG-C causes about 40% frameshifting when inserted into an mRNA in the yeast Saccharomyces cerevisiae. The high efficiency of this site depends on a set of S. cerevisiae tRNA isoacceptors that perturb the mechanism of translation to cause the programmed translational error. The simplicity of the system might suggest that it could evolve frequently and perhaps be lost as easily. We have investigated the history of programmed +1 frameshifting in fungi. We find that frameshifting has persisted in two structural genes in budding yeasts, ABP140 and EST3 for about 150 million years. Further, the tRNAs that stimulate the event are equally old. Species that diverged from the lineage earlier both do not employ frameshifting and have a different complement of tRNAs predicted to be inimical to frameshifting. The stability of the coevolution of protein coding genes and tRNAs suggests that frameshifting has been selected for during the divergence of these species.
Collapse
Affiliation(s)
- Philip J Farabaugh
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA.
| | | | | | | |
Collapse
|
10
|
Shu P, Dai H, Gao W, Goldman E. Inhibition of translation by consecutive rare leucine codons in E. coli: absence of effect of varying mRNA stability. Gene Expr 2006; 13:97-106. [PMID: 17017124 PMCID: PMC6032470 DOI: 10.3727/000000006783991881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Consecutive homologous codons that are rarely used in E. coli are known to inhibit translation to varying degrees. As few as two consecutive rare arginine codons exhibit a profound inhibition of translation when they are located in the 5' portion of a gene in E. coli. We have previously shown that nine consecutive rare CUA leucine codons cause almost complete inhibition of translation when they are placed after the 13th codon of a test message (although they do not inhibit translation when they are placed in the middle of the message). In the present work, we report that five consecutive rare CUA leucine codons exhibit approximately a threefold inhibition of translation when they are similarly placed after the 13th codon of a test message, compared to five consecutive common CUG leucine codons, in a T7 RNA polymerase-driven system. Further, by removing RNase III processing sites at the 3' ends of the mRNAs, we have manipulated the stability of the mRNAs encoding the test and control messages to see if decreasing mRNA stability might have an effect on the extent of translation inhibition by the rare leucine codons. However, the inhibition with the less stable mRNAs was similar to that with the stable mRNAs, approximately 3.4-fold, indicating that mRNA stability per se does not have a major influence on the effects of rare codons in this system.
Collapse
Affiliation(s)
- Ping Shu
- Department of Microbiology & Molecular Genetics, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ 07101-1709, USA
| | - Huacheng Dai
- Department of Microbiology & Molecular Genetics, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ 07101-1709, USA
| | - Wenwu Gao
- Department of Microbiology & Molecular Genetics, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ 07101-1709, USA
| | - Emanuel Goldman
- Department of Microbiology & Molecular Genetics, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ 07101-1709, USA
| |
Collapse
|