1
|
Storozhuk O, Bruekner SR, Paul A, Lebbink JHG, Sixma TK, Friedhoff P. MutL Activates UvrD by Interaction Between the MutL C-terminal Domain and the UvrD 2B Domain. J Mol Biol 2024; 436:168589. [PMID: 38677494 DOI: 10.1016/j.jmb.2024.168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
UvrD is a helicase vital for DNA replication and quality control processes. In its monomeric state, UvrD exhibits limited helicase activity, necessitating either dimerization or assistance from an accessory protein to efficiently unwind DNA. Within the DNA mismatch repair pathway, MutL plays a pivotal role in relaying the repair signal, enabling UvrD to unwind DNA from the strand incision site up to and beyond the mismatch. Although this interdependence is well-established, the precise mechanism of activation and the specific MutL-UvrD interactions that trigger helicase activity remain elusive. To address these questions, we employed site-specific crosslinking techniques using single-cysteine variants of MutL and UvrD followed by functional assays. Our investigation unveils that the C-terminal domain of MutL not only engages with UvrD but also acts as a self-sufficient activator of UvrD helicase activity on DNA substrates with 3'-single-stranded tails. Especially when MutL is covalently attached to the 2B or 1B domain the tail length can be reduced to a minimal substrate of 5 nucleotides without affecting unwinding efficiency.
Collapse
Affiliation(s)
- Olha Storozhuk
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Susanne R Bruekner
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, Amsterdam, the Netherlands
| | - Ankon Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, Amsterdam, the Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany.
| |
Collapse
|
2
|
Liu J, Lee JB, Fishel R. Stochastic Processes and Component Plasticity Governing DNA Mismatch Repair. J Mol Biol 2018; 430:4456-4468. [PMID: 29864444 PMCID: PMC6461355 DOI: 10.1016/j.jmb.2018.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
DNA mismatch repair (MMR) is a DNA excision-resynthesis process that principally enhances replication fidelity. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologs initiate MMR and in higher eukaryotes act as DNA damage sensors that can trigger apoptosis. MSH proteins recognize mismatched nucleotides, whereas the MLH/PMS proteins mediate multiple interactions associated with downstream MMR events including strand discrimination and strand-specific excision that are initiated at a significant distance from the mismatch. Remarkably, the biophysical functions of the MLH/PMS proteins have been elusive for decades. Here we consider recent observations that have helped to define the mechanics of MLH/PMS proteins and their role in choreographing MMR. We highlight the stochastic nature of DNA interactions that have been visualized by single-molecule analysis and the plasticity of protein complexes that employ thermal diffusion to complete the progressions of MMR.
Collapse
Affiliation(s)
- Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, 43210, OH, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), 790-784, Pohang, Korea; Interdisciplinary Bioscience and Bioengineering, POSTECH, 790-784, Pohang, Korea.
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, 43210, OH, USA.
| |
Collapse
|
3
|
Complementary uses of small angle X-ray scattering and X-ray crystallography. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1623-1630. [PMID: 28743534 DOI: 10.1016/j.bbapap.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Most proteins function within networks and, therefore, protein interactions are central to protein function. Although stable macromolecular machines have been extensively studied, dynamic protein interactions remain poorly understood. Small-angle X-ray scattering probes the size, shape and dynamics of proteins in solution at low resolution and can be used to study samples in a large range of molecular weights. Therefore, it has emerged as a powerful technique to study the structure and dynamics of biomolecular systems and bridge fragmented information obtained using high-resolution techniques. Here we review how small-angle X-ray scattering can be combined with other structural biology techniques to study protein dynamics. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|
4
|
Manhart CM, Alani E. Roles for mismatch repair family proteins in promoting meiotic crossing over. DNA Repair (Amst) 2016; 38:84-93. [PMID: 26686657 PMCID: PMC4740264 DOI: 10.1016/j.dnarep.2015.11.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/14/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
The mismatch repair (MMR) family complexes Msh4-Msh5 and Mlh1-Mlh3 act with Exo1 and Sgs1-Top3-Rmi1 in a meiotic double strand break repair pathway that results in the asymmetric cleavage of double Holliday junctions (dHJ) to form crossovers. This review discusses how meiotic roles for Msh4-Msh5 and Mlh1-Mlh3 do not fit paradigms established for post-replicative MMR. We also outline models used to explain how these factors promote the formation of meiotic crossovers required for the accurate segregation of chromosome homologs during the Meiosis I division.
Collapse
Affiliation(s)
- Carol M Manhart
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA.
| |
Collapse
|
5
|
Pillon MC, Babu VMP, Randall JR, Cai J, Simmons LA, Sutton MD, Guarné A. The sliding clamp tethers the endonuclease domain of MutL to DNA. Nucleic Acids Res 2015; 43:10746-59. [PMID: 26384423 PMCID: PMC4678855 DOI: 10.1093/nar/gkv918] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/04/2015] [Accepted: 09/06/2015] [Indexed: 01/05/2023] Open
Abstract
The sliding clamp enhances polymerase processivity and coordinates DNA replication with other critical DNA processing events including translesion synthesis, Okazaki fragment maturation and DNA repair. The relative binding affinity of the sliding clamp for its partners determines how these processes are orchestrated and is essential to ensure the correct processing of newly replicated DNA. However, while stable clamp interactions have been extensively studied; dynamic interactions mediated by the sliding clamp remain poorly understood. Here, we characterize the interaction between the bacterial sliding clamp (β-clamp) and one of its weak-binding partners, the DNA mismatch repair protein MutL. Disruption of this interaction causes a mild mutator phenotype in Escherichia coli, but completely abrogates mismatch repair activity in Bacillus subtilis. We stabilize the MutL-β interaction by engineering two cysteine residues at variable positions of the interface. Using disulfide bridge crosslinking, we have stabilized the E. coli and B. subtilis MutL-β complexes and have characterized their structures using small angle X-ray scattering. We find that the MutL-β interaction greatly stimulates the endonuclease activity of B. subtilis MutL and supports this activity even in the absence of the N-terminal region of the protein.
Collapse
Affiliation(s)
- Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Vignesh M P Babu
- Department of Biochemistry, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA Witebsky Center for Microbial Pathogenesis and Immunology, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Justin R Randall
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor MI 48109, USA
| | - Jiudou Cai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor MI 48109, USA
| | - Mark D Sutton
- Department of Biochemistry, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA Witebsky Center for Microbial Pathogenesis and Immunology, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA Genetics, Genomics and Bioinformatics Program, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
6
|
Friedhoff P, Li P, Gotthardt J. Protein-protein interactions in DNA mismatch repair. DNA Repair (Amst) 2015; 38:50-57. [PMID: 26725162 DOI: 10.1016/j.dnarep.2015.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
The principal DNA mismatch repair proteins MutS and MutL are versatile enzymes that couple DNA mismatch or damage recognition to other cellular processes. Besides interaction with their DNA substrates this involves transient interactions with other proteins which is triggered by the DNA mismatch or damage and controlled by conformational changes. Both MutS and MutL proteins have ATPase activity, which adds another level to control their activity and interactions with DNA substrates and other proteins. Here we focus on the protein-protein interactions, protein interaction sites and the different levels of structural knowledge about the protein complexes formed with MutS and MutL during the mismatch repair reaction.
Collapse
Affiliation(s)
- Peter Friedhoff
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany.
| | - Pingping Li
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Julia Gotthardt
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| |
Collapse
|
7
|
Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst) 2015; 38:14-23. [PMID: 26796427 DOI: 10.1016/j.dnarep.2015.11.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/05/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
Abstract
The machinery of DNA mismatch repair enzymes is highly conserved in evolution. The process is initiated by recognition of a DNA mismatch, and validated by ATP and the presence of a processivity clamp or a methylation mark. Several events in MMR promote conformational changes that lead to progression of the repair process. Here we discuss functional conformational changes in the MMR proteins and we compare the enzymes to paralogs in other systems.
Collapse
Affiliation(s)
- Flora S Groothuizen
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015; 124:443-62. [PMID: 25862369 DOI: 10.1007/s00412-015-0514-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by up-to-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR.
Collapse
Affiliation(s)
- Gloria X Reyes
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Tobias T Schmidt
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Hans Hombauer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst) 2014; 20:71-81. [PMID: 24746644 DOI: 10.1016/j.dnarep.2014.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022]
Abstract
DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
10
|
Rogacheva MV, Manhart CM, Chen C, Guarne A, Surtees J, Alani E. Mlh1-Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2-Msh3-stimulated endonuclease. J Biol Chem 2014; 289:5664-73. [PMID: 24403070 DOI: 10.1074/jbc.m113.534644] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.
Collapse
Affiliation(s)
- Maria V Rogacheva
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | | | | | | | | | | |
Collapse
|
11
|
Structure of the MutLα C-terminal domain reveals how Mlh1 contributes to Pms1 endonuclease site. Nat Struct Mol Biol 2013; 20:461-8. [PMID: 23435383 DOI: 10.1038/nsmb.2511] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/04/2013] [Indexed: 01/30/2023]
Abstract
Mismatch-repair factors have a prominent role in surveying eukaryotic DNA-replication fidelity and in ensuring correct meiotic recombination. These functions depend on MutL-homolog heterodimers with Mlh1. In humans, MLH1 mutations underlie half of hereditary nonpolyposis colorectal cancers (HNPCCs). Here we report crystal structures of the MutLα (Mlh1-Pms1 heterodimer) C-terminal domain (CTD) from Saccharomyces cerevisiae, alone and in complex with fragments derived from Mlh1 partners. These structures reveal structural rearrangements and additional domains in MutLα as compared to the bacterial MutL counterparts and show that the strictly conserved C terminus of Mlh1 forms part of the Pms1 endonuclease site. The structures of the ternary complexes between MutLα(CTD) and Exo1 or Ntg2 fragments reveal the binding mode of the MIP-box motif shared by several Mlh1 partners. Finally, the structures provide a rationale for the deleterious impact of MLH1 mutations in HNPCCs.
Collapse
|
12
|
Plys AJ, Rogacheva MV, Greene EC, Alani E. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair. J Mol Biol 2012; 422:192-203. [PMID: 22659005 DOI: 10.1016/j.jmb.2012.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/17/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023]
Abstract
DNA mismatch repair (MMR) models have proposed that MSH (MutS homolog) proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH (MutL homolog) proteins (primarily Mlh1-Pms1 in baker's yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20-30 nm) unstructured arms that connect two terminal globular domains. These arms can vary between 100 and 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker's yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR.
Collapse
Affiliation(s)
- Aaron J Plys
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2073, USA
| | | | | | | |
Collapse
|
13
|
Characterization of C- and N-terminal domains of Aquifex aeolicus MutL endonuclease: N-terminal domain stimulates the endonuclease activity of C-terminal domain in a zinc-dependent manner. Biosci Rep 2012; 31:309-22. [PMID: 20961292 DOI: 10.1042/bsr20100116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA MMR (mismatch repair) is an excision repair system that removes mismatched bases generated primarily by failure of the 3'-5' proofreading activity associated with replicative DNA polymerases. MutL proteins homologous to human PMS2 are the endonucleases that introduce the entry point of the excision reaction. Deficiency in PMS2 function is one of the major etiologies of hereditary non-polyposis colorectal cancers in humans. Although recent studies revealed that the CTD (C-terminal domain) of MutL harbours weak endonuclease activity, the regulatory mechanism of this activity remains unknown. In this paper, we characterize in detail the CTD and NTD (N-terminal domain) of aqMutL (Aquifex aeolicus MutL). On the one hand, CTD existed as a dimer in solution and showed weak DNA-binding and Mn2+-dependent endonuclease activities. On the other hand, NTD was monomeric and exhibited a relatively strong DNA-binding activity. It was also clarified that NTD promotes the endonuclease activity of CTD. NTD-mediated activation of CTD was abolished by depletion of the zinc-ion from the reaction mixture or by the substitution of the zinc-binding cysteine residue in CTD with an alanine. On the basis of these results, we propose a model for the intramolecular regulatory mechanism of MutL endonuclease activity.
Collapse
|
14
|
Li D, Rothballer M, Engel M, Hoser J, Schmidt T, Kuttler C, Schmid M, Schloter M, Hartmann A. Phenotypic variation in Acidovorax radicisN35 influences plant growth promotion. FEMS Microbiol Ecol 2011; 79:751-62. [PMID: 22107346 DOI: 10.1111/j.1574-6941.2011.01259.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/27/2022] Open
Abstract
Acidovorax radicis N35, isolated from surface-sterilized wheat roots (Triticum aestivum), showed irreversible phenotypic variation in nutrient broth, resulting in a differing colony morphology. In addition to the wild-type form (rough colony type), a phenotypic variant form (smooth colony type) appeared at a frequency of 3.2 × 10(-3) per cell per generation on NB agar plates. In contrast to the N35 wild type, the variant N35v showed almost no cell aggregation and had lost its flagella and swarming ability. After inoculation, only the wild-type N35 significantly promoted the growth of soil-grown barley plants. After co-inoculation of axenically grown barley seedlings with differentially fluorescently labeled N35 and N35v cells, decreased competitive endophytic root colonization in the phenotypic variant N35v was observed using confocal laser scanning microscopy. In addition, 454 pyrosequencing of both phenotypes revealed almost identical genomic sequences. The only stable difference noted in the sequence of the phenotype variant N35v was a 16-nucleotide deletion identified in a gene encoding the mismatch repair protein MutL. The deletion resulted in a frameshift that revealed a new stop codon resulting in a truncated MutL protein missing a functional MutL C-terminal domain. The mutation was consistent in all investigated phenotype variant cultures and might be responsible for the observed phenotypic variation in A. radicis N35.
Collapse
Affiliation(s)
- Dan Li
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yamamoto T, Iino H, Kim K, Kuramitsu S, Fukui K. Evidence for ATP-dependent structural rearrangement of nuclease catalytic site in DNA mismatch repair endonuclease MutL. J Biol Chem 2011; 286:42337-42348. [PMID: 21953455 DOI: 10.1074/jbc.m111.277335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hitoshi Iino
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kwang Kim
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Seiki Kuramitsu
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kenji Fukui
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| |
Collapse
|
16
|
Niedziela-Majka A, Maluf NK, Antony E, Lohman TM. Self-assembly of Escherichia coli MutL and its complexes with DNA. Biochemistry 2011; 50:7868-80. [PMID: 21793594 DOI: 10.1021/bi200753b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Escherichia coli MutL protein regulates the activity of several enzymes, including MutS, MutH, and UvrD, during methyl-directed mismatch repair of DNA. We have investigated the self-association properties of MutL and its binding to DNA using analytical sedimentation velocity and equilibrium. Self-association of MutL is quite sensitive to solution conditions. At 25 °C in Tris at pH 8.3, MutL assembles into a heterogeneous mixture of large multimers. In the presence of potassium phosphate at pH 7.4, MutL forms primarily stable dimers, with the higher-order assembly states suppressed. The weight-average sedimentation coefficient of the MutL dimer in this buffer ( ̅s(20,w)) is equal to 5.20 ± 0.08 S, suggesting a highly asymmetric dimer (f/f(o) = 1.58 ± 0.02). Upon binding the nonhydrolyzable ATP analogue, AMPPNP/Mg(2+), the MutL dimer becomes more compact ( ̅s(20,w) = 5.71 ± 0.08 S; f/f(o) = 1.45 ± 0.02), probably reflecting reorganization of the N-terminal ATPase domains. A MutL dimer binds to an 18 bp duplex with a 3'-(dT(20)) single-stranded flanking region, with apparent affinity in the micromolar range. AMPPNP binding to MutL increases its affinity for DNA by a factor of ∼10. These results indicate that the presence of phosphate minimizes further MutL oligomerization beyond a dimer and that differences in solution conditions likely explain apparent discrepancies in previous studies of MutL assembly.
Collapse
Affiliation(s)
- Anita Niedziela-Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8231, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
17
|
Schorzman AN, Perera L, Cutalo-Patterson JM, Pedersen LC, Pedersen LG, Kunkel TA, Tomer KB. Modeling of the DNA-binding site of yeast Pms1 by mass spectrometry. DNA Repair (Amst) 2011; 10:454-65. [PMID: 21354867 PMCID: PMC3084373 DOI: 10.1016/j.dnarep.2011.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/07/2011] [Accepted: 01/24/2011] [Indexed: 11/26/2022]
Abstract
Mismatch repair (MMR) corrects replication errors that would otherwise lead to mutations and, potentially, various forms of cancer. Among several proteins required for eukaryotic MMR, MutLα is a heterodimer comprised of Mlh1 and Pms1. The two proteins dimerize along their C-terminal domains (CTDs), and the CTD of Pms1 houses a latent endonuclease that is required for MMR. The highly conserved N-terminal domains (NTDs) independently bind DNA and possess ATPase active sites. Here we use two protein footprinting techniques, limited proteolysis and oxidative surface mapping, coupled with mass spectrometry to identify amino acids involved along the DNA-binding surface of the Pms1-NTD. Limited proteolysis experiments elucidated several basic residues that were protected in the presence of DNA, while oxidative surface mapping revealed one residue that is uniquely protected from oxidation. Furthermore, additional amino acids distributed throughout the Pms1-NTD were protected from oxidation either in the presence of a non-hydrolyzable analog of ATP or DNA, indicating that each ligand stabilizes the protein in a similar conformation. Based on the recently published X-ray crystal structure of yeast Pms1-NTD, a model of the Pms1-NTD/DNA complex was generated using the mass spectrometric data as constraints. The proposed model defines the DNA-binding interface along a positively charged groove of the Pms1-NTD and complements prior mutagenesis studies of Escherichia coli and eukaryotic MutL.
Collapse
Affiliation(s)
- Allison N. Schorzman
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Lalith Perera
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jenny M. Cutalo-Patterson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Lars C. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Lee G. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Thomas A. Kunkel
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
18
|
Winkler I, Marx AD, Lariviere D, Heinze RJ, Cristovao M, Reumer A, Curth U, Sixma TK, Friedhoff P. Chemical trapping of the dynamic MutS-MutL complex formed in DNA mismatch repair in Escherichia coli. J Biol Chem 2011; 286:17326-37. [PMID: 21454657 DOI: 10.1074/jbc.m110.187641] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain.
Collapse
Affiliation(s)
- Ines Winkler
- Institute for Biochemistry, FB 08, Justus Liebig University, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brieger A, Adam R, Passmann S, Plotz G, Zeuzem S, Trojan J. A CRM1-dependent nuclear export pathway is involved in the regulation of MutLα subcellular localization. Genes Chromosomes Cancer 2011; 50:59-70. [PMID: 21064154 DOI: 10.1002/gcc.20832] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
MutLα plays an essential role in DNA mismatch repair (MMR) and is additionally involved in other cellular mechanisms such as the regulation of cell cycle checkpoints and apoptosis. Therefore, not only germline MMR gene defects but also the subcellular localization of MutLα might be of importance for the development of Lynch syndrome. Recently, we showed that MutLα contains functional nuclear import sequences and is most frequently localized in the nucleus. Here, we demonstrate that MutLα can move bidirectionally towards the nuclear membrane. Using MutLα transfected HEK293T cells we observed a significant shift of MLH1 and PMS2 from the nucleus to the cytoplasm after irradiation or cisplatin treatment. We analyzed both proteins for potential nuclear export sequences (NES) and identified one functional Rev-type NES (⁵⁷⁸LFDLAMLAL) in the C-terminal part of MLH1 that facilitates export via the CRM1/exportin pathway. Moreover, an MLH1-NES mutation detected in a patient with Lynch syndrome showed normal MMR activity but led to significantly impaired cytoplasmic transport after actinomycin D treatment. These results indicate that MutLα is able to shuttle from the nucleus to the cytoplasm, probably signaling DNA damages to downstream pathways. In conclusion, not only a defective MMR but also impaired nucleo-cytoplasmic shuttling might result in the onset of Lynch syndrome.
Collapse
Affiliation(s)
- Angela Brieger
- Medical Clinic I, Biomedical Research Laboratory, Goethe-University, Frankfurt a.M., Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Park J, Jeon Y, In D, Fishel R, Ban C, Lee JB. Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding. PLoS One 2010; 5:e15496. [PMID: 21103398 PMCID: PMC2980497 DOI: 10.1371/journal.pone.0015496] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/02/2010] [Indexed: 01/30/2023] Open
Abstract
DNA binding by MutL homologs (MLH/PMS) during mismatch repair (MMR) has been considered based on biochemical and genetic studies. Bulk studies with MutL and its yeast homologs Mlh1-Pms1 have suggested an integral role for a single-stranded DNA (ssDNA) binding activity during MMR. We have developed single-molecule Förster resonance energy transfer (smFRET) and a single-molecule DNA flow-extension assays to examine MutL interaction with ssDNA in real time. The smFRET assay allowed us to observe MutL-ssDNA association and dissociation. We determined that MutL-ssDNA binding required ATP and was the greatest at ionic strength below 25 mM (K(D) = 29 nM) while it dramatically decreases above 100 mM (K(D)>2 µM). Single-molecule DNA flow-extension analysis suggests that multiple MutL proteins may bind ssDNA at low ionic strength but this activity does not enhance stability at elevated ionic strengths. These studies are consistent with the conclusion that a stable MutL-ssDNA interaction is unlikely to occur at physiological salt eliminating a number of MMR models. However, the activity may infer some related dynamic DNA transaction process during MMR.
Collapse
Affiliation(s)
- Jonghyun Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Yongmoon Jeon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Daekil In
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Richard Fishel
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Physics Department, The Ohio State University, Columbus, Ohio, United States of America
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| |
Collapse
|
21
|
Pillon MC, Miller JH, Guarné A. The endonuclease domain of MutL interacts with the β sliding clamp. DNA Repair (Amst) 2010; 10:87-93. [PMID: 21050827 DOI: 10.1016/j.dnarep.2010.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
Mismatch repair corrects errors that have escaped polymerase proofreading enhancing replication fidelity by at least two orders of magnitude. The β and PCNA sliding clamps increase the polymerase processivity during DNA replication and are important at several stages of mismatch repair. Both MutS and MutL, the two proteins that initiate the mismatch repair response, interact with β. Binding of MutS to β is important to recruit MutS and MutL to foci. Moreover, the endonuclease activity of human and yeast MutLα is stimulated by PCNA. However, the concrete functions of the processivity clamp in the repair steps preceding DNA resynthesis remain obscure. Here, we demonstrate that the C-terminal domain of MutL encompasses a bona fide β-binding motif that mediates a weak, yet specific, interaction between the two proteins. Mutation of this conserved motif correlates with defects in mismatch repair, demonstrating that the direct interaction with β is important for MutL function. The interaction between the C-terminal domain of MutL and β is conserved in both Bacillus subtilis and Escherichia coli, but the repair defects associated with mutation of this β-binding motif are more severe in the former, suggesting that this interaction may have a more prominent role in methyl-independent than methyl-directed mismatch repair systems. Together with previously published data, our work strongly suggests that β may stimulate the endonuclease activity of MutL through its direct interaction with the C-terminal domain of MutL.
Collapse
Affiliation(s)
- Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
22
|
Namadurai S, Jain D, Kulkarni DS, Tabib CR, Friedhoff P, Rao DN, Nair DT. The C-terminal domain of the MutL homolog from Neisseria gonorrhoeae forms an inverted homodimer. PLoS One 2010; 5:e13726. [PMID: 21060849 PMCID: PMC2965676 DOI: 10.1371/journal.pone.0013726] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/23/2010] [Indexed: 01/07/2023] Open
Abstract
The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.
Collapse
Affiliation(s)
| | - Deepti Jain
- Laboratory 4, National Centre for Biological Sciences, Bangalore, India
| | | | - Chaitanya R. Tabib
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Peter Friedhoff
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Giessen, Germany
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Deepak T. Nair
- Laboratory 4, National Centre for Biological Sciences, Bangalore, India
- * E-mail:
| |
Collapse
|
23
|
Kosinski J, Hinrichsen I, Bujnicki JM, Friedhoff P, Plotz G. Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair. Hum Mutat 2010; 31:975-82. [PMID: 20533529 DOI: 10.1002/humu.21301] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome that predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased coexpression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations.
Collapse
Affiliation(s)
- Jan Kosinski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
24
|
Gajda MJ, Tuszynska I, Kaczor M, Bakulina AY, Bujnicki JM. FILTREST3D: discrimination of structural models using restraints from experimental data. Bioinformatics 2010; 26:2986-7. [PMID: 20956242 DOI: 10.1093/bioinformatics/btq582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SUMMARY Automatic methods for macromolecular structure prediction (fold recognition, de novo folding and docking programs) produce large sets of alternative models. These large model sets often include many native-like structures, which are often scored as false positives. Such native-like models can be more easily identified based on data from experimental analyses used as structural restraints (e.g. identification of nearby residues by cross-linking, chemical modification, site-directed mutagenesis, deuterium exchange coupled with mass spectrometry, etc.). We present a simple server for scoring and ranking of models according to their agreement with user-defined restraints. AVAILABILITY FILTREST3D is freely available for users as a web server and standalone software at: http://filtrest3d.genesilico.pl/ CONTACT iamb@genesilico.pl SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michal J Gajda
- International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, Warsaw, Poland
| | | | | | | | | |
Collapse
|
25
|
Polosina YY, Cupples CG. Wot the 'L-Does MutL do? Mutat Res 2010; 705:228-38. [PMID: 20667509 DOI: 10.1016/j.mrrev.2010.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/26/2022]
Abstract
In model DNA, A pairs with T, and C with G. However, in vivo, the complementarity of the DNA strands may be disrupted by errors in DNA replication, biochemical modification of bases and recombination. In prokaryotic organisms, mispaired bases are recognized by MutS homologs which, together with MutL homologs, initiate mismatch repair. These same proteins also participate in base excision repair and nucleotide excision repair. In eukaryotes they regulate not just DNA repair but also meiotic recombination, cell-cycle delay and/or apoptosis in response to DNA damage, and hypermutation in immunoglobulin genes. Significantly, the same DNA mismatches that trigger repair in some circumstances trigger non-repair pathways in others. In this review, we argue that mismatch recognition by the MutS proteins is linked to these disparate biological outcomes through regulated interaction of MutL proteins with a wide variety of effector proteins.
Collapse
Affiliation(s)
- Yaroslava Y Polosina
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|
26
|
Structure of the endonuclease domain of MutL: unlicensed to cut. Mol Cell 2010; 39:145-51. [PMID: 20603082 DOI: 10.1016/j.molcel.2010.06.027] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/05/2010] [Accepted: 05/12/2010] [Indexed: 11/22/2022]
Abstract
DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn(2+)-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.
Collapse
|
27
|
Fukui K. DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids 2010; 2010. [PMID: 20725617 PMCID: PMC2915661 DOI: 10.4061/2010/260512] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/24/2010] [Indexed: 12/17/2022] Open
Abstract
DNA mismatch repair (MMR) corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as well as sporadic tumors. To date, 2 types of MMRs are known: the human type and Escherichia coli type. The basic features of the former system are expected to be universal among the vast majority of organisms including most bacteria. Here, I review the molecular mechanisms of eukaryotic and bacterial MMR, emphasizing on the similarities between them.
Collapse
Affiliation(s)
- Kenji Fukui
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
28
|
Gorman J, Plys AJ, Visnapuu ML, Alani E, Greene EC. Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat Struct Mol Biol 2010; 17:932-8. [PMID: 20657586 DOI: 10.1038/nsmb.1858] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/20/2010] [Indexed: 11/09/2022]
Abstract
DNA-binding proteins survey genomes for targets using facilitated diffusion, which typically includes a one-dimensional (1D) scanning component for sampling local regions. Eukaryotic proteins must accomplish this task while navigating through chromatin. Yet it is unknown whether nucleosomes disrupt 1D scanning or eukaryotic DNA-binding factors can circumnavigate nucleosomes without falling off DNA. Here we use single-molecule microscopy in conjunction with nanofabricated curtains of DNA to show that the postreplicative mismatch repair protein complex Mlh1-Pms1 diffuses in 1D along DNA via a hopping/stepping mechanism and readily bypasses nucleosomes. This is the first experimental demonstration that a passively diffusing protein can traverse stationary obstacles. In contrast, Msh2-Msh6, a mismatch repair protein complex that slides while maintaining continuous contact with DNA, experiences a boundary upon encountering nucleosomes. These differences reveal important mechanistic constraints affecting intranuclear trafficking of DNA-binding proteins.
Collapse
Affiliation(s)
- Jason Gorman
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | | | | | | | | |
Collapse
|
29
|
Polosina YY, Cupples CG. MutL: conducting the cell's response to mismatched and misaligned DNA. Bioessays 2010; 32:51-9. [PMID: 19953589 DOI: 10.1002/bies.200900089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Base pair mismatches in DNA arise from errors in DNA replication, recombination, and biochemical modification of bases. Mismatches are inherently transient. They are resolved passively by DNA replication, or actively by enzymatic removal and resynthesis of one of the bases. The first step in removal is recognition of strand discontinuity by one of the MutS proteins. Mismatches arising from errors in DNA replication are repaired in favor of the base on the template strand, but other mismatches trigger base excision or nucleotide excision repair (NER), or non-repair pathways such as hypermutation, cell cycle arrest, or apoptosis. We argue that MutL homologues play a key role in determining biologic outcome by recruiting and/or activating effector proteins in response to lesion recognition by MutS. We suggest that the process is regulated by conformational changes in MutL caused by cycles of ATP binding and hydrolysis, and by physiologic changes which influence effector availability.
Collapse
Affiliation(s)
- Yaroslava Y Polosina
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada.
| | | |
Collapse
|
30
|
The C-terminal domain is sufficient for endonuclease activity of Neisseria gonorrhoeae MutL. Biochem J 2009; 423:265-77. [PMID: 19656086 DOI: 10.1042/bj20090626] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mutL gene of Neisseria gonorrhoeae has been cloned and the gene product purified. We have found that the homodimeric N. gonorrhoeae MutL (NgoL) protein displays an endonuclease activity that incises covalently closed circular DNA in the presence of Mn(2+), Mg(2+) or Ca(2+) ions, unlike human MutLalpha which shows endonuclease activity only in the presence of Mn(2+). We report in the present paper that the C-terminal domain of N. gonorrhoeae MutL (NgoL-CTD) consisting of amino acids 460-658 exhibits Mn(2+)-dependent endonuclease activity. Sedimentation velocity, sedimentation equilibrium and dynamic light scattering experiments show NgoL-CTD to be a dimer. The probable endonucleolytic active site is localized to a metal-binding motif, DMHAX2EX4E, and the nicking endonuclease activity is dependent on the integrity of this motif. By in vitro comparison of wild-type and a mutant NgoL-CTD protein, we show that the latter protein exhibits highly reduced endonuclease activity. We therefore suggest that the mode of excision initiation in DNA mismatch repair may be different in organisms that lack MutH protein, but have MutL proteins that harbour the D[M/Q]HAX2EX4E motif.
Collapse
|
31
|
Adenosine triphosphate stimulates Aquifex aeolicus MutL endonuclease activity. PLoS One 2009; 4:e7175. [PMID: 19777055 PMCID: PMC2744016 DOI: 10.1371/journal.pone.0007175] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 08/26/2009] [Indexed: 11/30/2022] Open
Abstract
Background Human PMS2 (hPMS2) homologues act to nick 5′ and 3′ to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn++ was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X)2E(X)4E motif present in the C-terminus of PMS2 homologues as important for endonuclease activity. Methodologies/Principal Findings We examined the effect ATP had on the Mn++ induced nicking of supercoiled pBR322 by full-length and mutant A. aeolicus MutL (Aae MutL) proteins. Assays were single time point, enzyme titration experiments or reaction time courses. The maximum velocity for MutL nicking was determined to be 1.6±0.08×10−5 s−1 and 4.2±0.3×10−5 s−1 in the absence and presence of ATP, respectively. AMPPNP stimulated the nicking activity to a similar extent as ATP. A truncated Aae MutL protein composed of only the C-terminal 123 amino acid residues was found to nick supercoiled DNA. Furthermore, mutations in the conserved C-terminal DQHA(X)2E(X)4E and CPHGRP motifs were shown to abolish Aae MutL endonuclease activity. Conclusions ATP stimulated the Mn++ induced endonuclease activity of Aae MutL. Experiments utilizing AMPPNP implied that the stimulation did not require ATP hydrolysis. A mutation in the DQHA(X)2E(X)4E motif of Aae MutL further supported the role of this region in endonclease activity. For the first time, to our knowledge, we demonstrate that changing the histidine residue in the conserved CPHGRP motif abolishes endonucleolytic activity of a hPMS2 homologue. Finally, the C-terminal 123 amino acid residues of Aae MutL were sufficient to display Mn++ induced nicking activity.
Collapse
|
32
|
Spampinato CP, Gomez RL, Galles C, Lario LD. From bacteria to plants: a compendium of mismatch repair assays. Mutat Res 2009; 682:110-28. [PMID: 19622396 DOI: 10.1016/j.mrrev.2009.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/16/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
Mismatch repair (MMR) system maintains genome integrity by correcting mispaired or unpaired bases which have escaped the proofreading activity of DNA polymerases. The basic features of the pathway have been highly conserved throughout evolution, although the nature and number of the proteins involved in the mechanism vary from prokaryotes to eukaryotes and even between humans and plants. Cells deficient in MMR genes have been observed to display a mutator phenotype characterized by an increased rate in spontaneous mutation, instability of microsatellite sequences and illegitimate recombination between diverged DNA sequences. Studies of the mutator phenotype have demonstrated a critical role for the MMR system in mutation avoidance and genetic stability. Here, we briefly review our current knowledge of the MMR mechanism and then focus on the in vivo biochemical and genetic assays used to investigate the function of the MMR proteins in processing DNA mismatches generated during replication and mitotic recombination in Escherichia coli, Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana. An overview of the biochemical assays developed to study mismatch correction in vitro is also provided.
Collapse
Affiliation(s)
- Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina.
| | | | | | | |
Collapse
|
33
|
Heinze RJ, Giron-Monzon L, Solovyova A, Elliot SL, Geisler S, Cupples CG, Connolly BA, Friedhoff P. Physical and functional interactions between Escherichia coli MutL and the Vsr repair endonuclease. Nucleic Acids Res 2009; 37:4453-63. [PMID: 19474347 PMCID: PMC2715241 DOI: 10.1093/nar/gkp380] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA mismatch repair (MMR) and very-short patch (VSP) repair are two pathways involved in the repair of T:G mismatches. To learn about competition and cooperation between these two repair pathways, we analyzed the physical and functional interaction between MutL and Vsr using biophysical and biochemical methods. Analytical ultracentrifugation reveals a nucleotide-dependent interaction between Vsr and the N-terminal domain of MutL. Using chemical crosslinking, we mapped the interaction site of MutL for Vsr to a region between the N-terminal domains similar to that described before for the interaction between MutL and the strand discrimination endonuclease MutH of the MMR system. Competition between MutH and Vsr for binding to MutL resulted in inhibition of the mismatch-provoked MutS- and MutL-dependent activation of MutH, which explains the mutagenic effect of Vsr overexpression. Cooperation between MMR and VSP repair was demonstrated by the stimulation of the Vsr endonuclease in a MutS-, MutL- and ATP-hydrolysis-dependent manner, in agreement with the enhancement of VSP repair by MutS and MutL in vivo. These data suggest a mobile MutS–MutL complex in MMR signalling, that leaves the DNA mismatch prior to, or at the time of, activation of downstream effector molecules such as Vsr or MutH.
Collapse
Affiliation(s)
- Roger J Heinze
- Institut für Biochemie, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Characterization of a highly conserved binding site of Mlh1 required for exonuclease I-dependent mismatch repair. Mol Cell Biol 2008; 29:907-18. [PMID: 19015241 DOI: 10.1128/mcb.00945-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mlh1 is an essential factor of mismatch repair (MMR) and meiotic recombination. It interacts through its C-terminal region with MutL homologs and proteins involved in DNA repair and replication. In this study, we identified the site of yeast Mlh1 critical for the interaction with Exo1, Ntg2, and Sgs1 proteins, designated as site S2 by reference to the Mlh1/Pms1 heterodimerization site S1. We show that site S2 is also involved in the interaction between human MLH1 and EXO1 or BLM. Binding at this site involves a common motif on Mlh1 partners that we called the MIP-box for the Mlh1 interacting protein box. Direct and specific interactions between yeast Mlh1 and peptides derived from Exo1, Ntg2, and Sgs1 and between human MLH1 and peptide derived from EXO1 and BLM were measured with K(d) values ranging from 8.1 to 17.4 microM. In Saccharomyces cerevisiae, a mutant of Mlh1 targeted at site S2 (Mlh1-E682A) behaves as a hypomorphic form of Exo1. The site S2 in Mlh1 mediates Exo1 recruitment in order to optimize MMR-dependent mutation avoidance. Given the conservation of Mlh1 and Exo1 interaction, it may readily impact Mlh1-dependent functions such as cancer prevention in higher eukaryotes.
Collapse
|
35
|
Kosinski J, Plotz G, Guarné A, Bujnicki JM, Friedhoff P. The PMS2 subunit of human MutLalpha contains a metal ion binding domain of the iron-dependent repressor protein family. J Mol Biol 2008; 382:610-27. [PMID: 18619468 DOI: 10.1016/j.jmb.2008.06.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/13/2008] [Accepted: 06/23/2008] [Indexed: 12/22/2022]
Abstract
DNA mismatch repair (MMR) is responsible for correcting replication errors. MutLalpha, one of the main players in MMR, has been recently shown to harbor an endonuclease/metal-binding activity, which is important for its function in vivo. This endonuclease activity has been confined to the C-terminal domain of the hPMS2 subunit of the MutLalpha heterodimer. In this work, we identify a striking sequence-structure similarity of hPMS2 to the metal-binding/dimerization domain of the iron-dependent repressor protein family and present a structural model of the metal-binding domain of MutLalpha. According to our model, this domain of MutLalpha comprises at least three highly conserved sequence motifs, which are also present in most MutL homologs from bacteria that do not rely on the endonuclease activity of MutH for strand discrimination. Furthermore, based on our structural model, we predict that MutLalpha is a zinc ion binding protein and confirm this prediction by way of biochemical analysis of zinc ion binding using the full-length and C-terminal domain of MutLalpha. Finally, we demonstrate that the conserved residues of the metal ion binding domain are crucial for MMR activity of MutLalpha in vitro.
Collapse
Affiliation(s)
- Jan Kosinski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
36
|
The thymidine-dependent small-colony-variant phenotype is associated with hypermutability and antibiotic resistance in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 2008; 52:2183-9. [PMID: 18378706 DOI: 10.1128/aac.01395-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thymidine-dependent small-colony variants (TD-SCVs) of Staphylococcus aureus can be isolated from the airway secretions of patients suffering from cystic fibrosis (CF) and are implicated in persistent and treatment-resistant infections. These characteristics, as well as the variety of mutations in the thymidylate synthase-encoding thyA gene which are responsible for thymidine dependency, suggest that these morphological variants are hypermutable. To prove this hypothesis, we analyzed the mutator phenotype of different S. aureus phenotypes, in particular CF-derived TD-SCVs, CF-derived isolates with a normal phenotype (NCVs), and non-CF NCVs. The comparative analysis revealed that the CF isolates had significantly higher mutation rates than the non-CF isolates. The TD-SCVs, in turn, harbored significantly more strong hypermutators (mutation rate > or = 10(-7)) than the CF and non-CF NCVs. In addition, antimicrobial resistance to non-beta-lactam antibiotics, including gentamicin, ciprofloxacin, erythromycin, fosfomycin, and rifampin, was significantly more prevalent in TD-SCVs than in CF and non-CF NCVs. Interestingly, macrolide resistance, which is usually mediated by mobile genetic elements, was conferred in half of the macrolide-resistant TD-SCVs by the point mutation A2058G or A2058T in the genes encoding the 23S rRNA. Sequence analysis of mutS and mutL, which are involved in DNA mismatch repair in gram-positive bacteria, revealed that in hypermutable CF isolates and especially in TD-SCVs, mutL was often truncated due to frameshift mutations. In conclusion, these data provide direct evidence that TD-SCVs are hypermutators. This hypermutability apparently favors the acquisition of antibiotic resistance and facilitates bacterial adaptation during long-term persistence.
Collapse
|
37
|
Sacho EJ, Kadyrov FA, Modrich P, Kunkel TA, Erie DA. Direct visualization of asymmetric adenine-nucleotide-induced conformational changes in MutL alpha. Mol Cell 2008; 29:112-21. [PMID: 18206974 DOI: 10.1016/j.molcel.2007.10.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/15/2007] [Accepted: 10/18/2007] [Indexed: 11/26/2022]
Abstract
MutL alpha, the heterodimeric eukaryotic MutL homolog, is required for DNA mismatch repair (MMR) in vivo. It has been suggested that conformational changes, modulated by adenine nucleotides, mediate the interactions of MutL alpha with other proteins in the MMR pathway, coordinating the recognition of DNA mismatches by MutS alpha and the activation of MutL alpha with the downstream events that lead to repair. Thus far, the only evidence for these conformational changes has come from X-ray crystallography of isolated domains, indirect biochemical analyses, and comparison to other members of the GHL ATPase family to which MutL alpha belongs. Using atomic force microscopy (AFM), coupled with biochemical techniques, we demonstrate that adenine nucleotides induce large asymmetric conformational changes in full-length yeast and human MutL alpha and that these changes are associated with significant increases in secondary structure. These data reveal an ATPase cycle in which sequential nucleotide binding, hydrolysis, and release modulate the conformational states of MutL alpha.
Collapse
Affiliation(s)
- Elizabeth J Sacho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
38
|
X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 2008; 40:191-285. [PMID: 18078545 DOI: 10.1017/s0033583507004635] [Citation(s) in RCA: 864] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Crystallography supplies unparalleled detail on structural information critical for mechanistic analyses; however, it is restricted to describing low energy conformations of macromolecules within crystal lattices. Small angle X-ray scattering (SAXS) offers complementary information about macromolecular folding, unfolding, aggregation, extended conformations, flexibly linked domains, shape, conformation, and assembly state in solution, albeit at the lower resolution range of about 50 A to 10 A resolution, but without the size limitations inherent in NMR and electron microscopy studies. Together these techniques can allow multi-scale modeling to create complete and accurate images of macromolecules for modeling allosteric mechanisms, supramolecular complexes, and dynamic molecular machines acting in diverse processes ranging from eukaryotic DNA replication, recombination and repair to microbial membrane secretion and assembly systems. This review addresses both theoretical and practical concepts, concerns and considerations for using these techniques in conjunction with computational methods to productively combine solution scattering data with high-resolution structures. Detailed aspects of SAXS experimental results are considered with a focus on data interpretation tools suitable to model protein and nucleic acid macromolecular structures, including membrane protein, RNA, DNA, and protein-nucleic acid complexes. The methods discussed provide the basis to examine molecular interactions in solution and to study macromolecular flexibility and conformational changes that have become increasingly relevant for accurate understanding, simulation, and prediction of mechanisms in structural cell biology and nanotechnology.
Collapse
|
39
|
Role of proliferating cell nuclear antigen interactions in the mismatch repair-dependent processing of mitotic and meiotic recombination intermediates in yeast. Genetics 2008; 178:1221-36. [PMID: 18245822 DOI: 10.1534/genetics.107.085415] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mismatch repair (MMR) system is critical not only for the repair of DNA replication errors, but also for the regulation of mitotic and meiotic recombination processes. In a manner analogous to its ability to remove replication errors, the MMR system can remove mismatches in heteroduplex recombination intermediates to generate gene conversion events. Alternatively, such mismatches can trigger an MMR-dependent antirecombination activity that blocks the completion of recombination, thereby limiting interactions between diverged sequences. In Saccharomyces cerevisiae, the MMR proteins Msh3, Msh6, and Mlh1 interact with proliferating cell nuclear antigen (PCNA), and mutations that disrupt these interactions result in a mutator phenotype. In addition, some mutations in the PCNA-encoding POL30 gene increase mutation rates in an MMR-dependent manner. In the current study, pol30, mlh1, and msh6 mutants were used to examine whether MMR-PCNA interactions are similarly important during mitotic and meiotic recombination. We find that MMR-PCNA interactions are important for repairing mismatches formed during meiotic recombination, but play only a relatively minor role in regulating the fidelity of mitotic recombination.
Collapse
|
40
|
Gottschling S, Reinhard H, Pagenstecher C, Krüger S, Raedle J, Plotz G, Henn W, Buettner R, Meyer S, Graf N. Hypothesis: Possible role of retinoic acid therapy in patients with biallelic mismatch repair gene defects. Eur J Pediatr 2008; 167:225-9. [PMID: 17387511 DOI: 10.1007/s00431-007-0474-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Accepted: 03/13/2007] [Indexed: 11/30/2022]
Abstract
A boy showing symptoms of a Turcot-like childhood cancer syndrome together with stigmata of neurofibromatosis type I is reported. His brother suffers from an infantile myofibromatosis, and a sister died of glioblastoma at age 7. Another 7-year-old brother is so far clinically unaffected. The parents are consanguineous. Molecular diagnosis in the index patient revealed a constitutional homozygous mutation of the mismatch repair gene PMS2. The patient was in remission of his glioblastoma (WHO grade IV) after multimodal treatment followed by retinoic acid chemoprevention for 7 years. After discontinuation of retinoic acid medication, he developed a relapse of his brain tumour together with the simultaneous occurrence of three other different HNPCC-related carcinomas. We think that retinoic acid might have provided an effective chemoprevention in this patient with homozygous mismatch repair gene defect. We propose to take a retinoic acid chemoprevention into account in children with proven biallelic PMS2 mismatch repair mutations being at highest risk concerning the development of a malignancy.
Collapse
Affiliation(s)
- Sven Gottschling
- Department of Pediatric Hematology and Oncology Saarland University, University Children's Hospital, Homburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C. Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 2007; 67:4595-604. [PMID: 17510385 DOI: 10.1158/0008-5472.can-06-3509] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The functional characterization of nonsynonymous single nucleotide polymorphisms in human mismatch repair (MMR) genes has been critical to evaluate their pathogenicity for hereditary nonpolyposis colorectal cancer. We previously established an assay for detecting loss-of-function mutations in the MLH1 gene using a dominant mutator effect of human MLH1 expressed in Saccharomyces cerevisiae. The purpose of this study is to extend the functional analyses of nonsynonymous single nucleotide polymorphisms in the MLH1 gene both in quality and in quantity, and integrate the results to evaluate the variants for pathogenic significance. The 101 MLH1 variants, which covered most of the reported MLH1 nonsynonymous single nucleotide polymorphisms and consisted of one 3-bp deletion, 1 nonsense and 99 missense variants, were examined for the dominant mutator effect by three yeast assays and for the ability of the variant to repair a heteroduplex DNA with mismatch bases by in vitro MMR assay. There was diversity in the dominant mutator effects and the in vitro MMR activities among the variants. The majority of functionally inactive variants were located around the putative ATP-binding pocket of the NH(2)-terminal domain or the whole region of the COOH-terminal domain. Integrated functional evaluations contribute to a better prediction of the cancer risk in individuals or families carrying MLH1 variants and provide insights into the function-structure relationships in MLH1.
Collapse
Affiliation(s)
- Masanobu Takahashi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University Hospital, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Cutalo JM, Darden TA, Kunkel TA, Tomer KB. Mapping the dimer interface in the C-terminal domains of the yeast MLH1-PMS1 heterodimer. Biochemistry 2006; 45:15458-67. [PMID: 17176067 DOI: 10.1021/bi061392a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Yeast MutLalpha is a heterodimer of MLH1 and PMS1 that participates in a variety of DNA transactions, including DNA mismatch repair. Formation of the MutLalpha heterodimer requires that the C-terminal domains of MLH1 and PMS1 interact in a manner that is not yet fully understood. Here we investigate the interactions involved in heterodimerization. Using protein surface modification and mass spectrometry, we identify numerous lysine residues that are exposed to solvent in monomeric MLH1. A corresponding analysis of the MLH1-PMS1 heterodimer reveals that three of these exposed residues, K665, K675, and K704, are no longer solvent accessible in the heterodimer, suggesting that they are within the dimer interface. We refine secondary structure predictions and sequence alignments of C-terminal residues of seven eukaryotic MutL homologues and then develop homology models for the N- and C-terminal domains of MLH1. On the basis of this information, we present a model for interaction of the C-terminal domains of MLH1 and PMS1.
Collapse
Affiliation(s)
- Jenny M Cutalo
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, P.O. Box 12233, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
43
|
Yang W. Human MutLalpha: the jack of all trades in MMR is also an endonuclease. DNA Repair (Amst) 2006; 6:135-9. [PMID: 17142111 PMCID: PMC1847629 DOI: 10.1016/j.dnarep.2006.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 11/22/2022]
Abstract
Recently, Paul Modrich's group reported the discovery of an intrinsic endonuclease activity for human MutLalpha. This breakthrough provides a satisfactory answer to the longstanding puzzle of a missing nuclease activity in human mismatch repair and will undoubtedly lead to new investigations of DNA repair and replication. Here, the implications of this exciting new finding are discussed in the context of mismatch repair in Escherichia coli and humans.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Plotz G, Welsch C, Giron-Monzon L, Friedhoff P, Albrecht M, Piiper A, Biondi RM, Lengauer T, Zeuzem S, Raedle J. Mutations in the MutSalpha interaction interface of MLH1 can abolish DNA mismatch repair. Nucleic Acids Res 2006; 34:6574-86. [PMID: 17135187 PMCID: PMC1747184 DOI: 10.1093/nar/gkl944] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
MutLα, a heterodimer of MLH1 and PMS2, plays a central role in human DNA mismatch repair. It interacts ATP-dependently with the mismatch detector MutSα and assembles and controls further repair enzymes. We tested if the interaction of MutLα with DNA-bound MutSα is impaired by cancer-associated mutations in MLH1, and identified one mutation (Ala128Pro) which abolished interaction as well as mismatch repair activity. Further examinations revealed three more residues whose mutation interfered with interaction. Homology modelling of MLH1 showed that all residues clustered in a small accessible surface patch, suggesting that the major interaction interface of MutLα for MutSα is located on the edge of an extensive β-sheet that backs the MLH1 ATP binding pocket. Bioinformatic analysis confirmed that this patch corresponds to a conserved potential protein–protein interaction interface which is present in both human MLH1 and its E.coli homologue MutL. MutL could be site-specifically crosslinked to MutS from this patch, confirming that the bacterial MutL–MutS complex is established by the corresponding interface in MutL. This is the first study that identifies the conserved major MutLα–MutSα interaction interface in MLH1 and demonstrates that mutations in this interface can affect interaction and mismatch repair, and thereby can also contribute to cancer development.
Collapse
Affiliation(s)
- Guido Plotz
- Klinik für Innere Medizin II, Gebäude 41Kirrberger Straße, Universität des Saarlandes, D-66421 Homburg/Saar, Germany
- To whom correspondence should be addressed. Tel: +49 6841 16 23253; Fax: +49 6841 16 23570;
| | - Christoph Welsch
- Klinik für Innere Medizin II, Gebäude 41Kirrberger Straße, Universität des Saarlandes, D-66421 Homburg/Saar, Germany
- Max Planck Institut für Informatik, Stuhlsatzenhausweg 85D-66123 Saarbrücken, Germany
| | - Luis Giron-Monzon
- Institut für Biochemie (FB 08), Justus-Liebig-Universität GiessenD-35392 Giessen, Germany
| | - Peter Friedhoff
- Institut für Biochemie (FB 08), Justus-Liebig-Universität GiessenD-35392 Giessen, Germany
| | - Mario Albrecht
- Max Planck Institut für Informatik, Stuhlsatzenhausweg 85D-66123 Saarbrücken, Germany
| | - Albrecht Piiper
- Klinik für Innere Medizin II, Gebäude 41Kirrberger Straße, Universität des Saarlandes, D-66421 Homburg/Saar, Germany
| | - Ricardo M. Biondi
- Klinik für Innere Medizin II, Gebäude 41Kirrberger Straße, Universität des Saarlandes, D-66421 Homburg/Saar, Germany
| | - Thomas Lengauer
- Max Planck Institut für Informatik, Stuhlsatzenhausweg 85D-66123 Saarbrücken, Germany
| | - Stefan Zeuzem
- Klinik für Innere Medizin II, Gebäude 41Kirrberger Straße, Universität des Saarlandes, D-66421 Homburg/Saar, Germany
| | - Jochen Raedle
- Klinik für Innere Medizin II, Gebäude 41Kirrberger Straße, Universität des Saarlandes, D-66421 Homburg/Saar, Germany
| |
Collapse
|
45
|
Matson SW, Robertson AB. The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res 2006; 34:4089-97. [PMID: 16935885 PMCID: PMC1616947 DOI: 10.1093/nar/gkl450] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
UvrD is a superfamily I DNA helicase with well documented roles in excision repair and methyl-directed mismatch repair (MMR) in addition to poorly understood roles in replication and recombination. The MutL protein is a homodimeric DNA-stimulated ATPase that plays a central role in MMR in Escherichia coli. This protein has been characterized as the master regulator of mismatch repair since it interacts with and modulates the activity of several other proteins involved in the mismatch repair pathway including MutS, MutH and UvrD. Here we present a brief summary of recent studies directed toward arriving at a better understanding of the interaction between MutL and UvrD, and the impact of this interaction on the activity of UvrD and its role in mismatch repair.
Collapse
Affiliation(s)
- Steven W Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
46
|
Plotz G, Zeuzem S, Raedle J. DNA mismatch repair and Lynch syndrome. J Mol Histol 2006; 37:271-83. [PMID: 16821093 DOI: 10.1007/s10735-006-9038-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/06/2006] [Indexed: 01/31/2023]
Abstract
The evolutionary conserved mismatch repair proteins correct a wide range of DNA replication errors. Their importance as guardians of genetic integrity is reflected by the tremendous decrease of replication fidelity (two to three orders of magnitude) conferred by their loss. Germline mutations in mismatch repair genes, predominantly MSH2 and MLH1, have been found to underlie the Lynch syndrome (also called hereditary non-polyposis colorectal cancer, HNPCC), a hereditary predisposition for cancer. Lynch syndrome affects predominantly the colon and accounts for 2-5% of all colon cancer cases. During more than 30 years of biochemical, crystallographic and clinical research, deep insight has been achieved in the function of mismatch repair and the diseases that are associated with its loss. We review the biochemistry of mismatch repair and also introduce the clinical, diagnostic and genetic aspects of Lynch syndrome.
Collapse
Affiliation(s)
- Guido Plotz
- Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes, Kirrberger Strasse, Gebäude 41, D-66421 Homburg, Germany.
| | | | | |
Collapse
|
47
|
Ahrends R, Kosinski J, Kirsch D, Manelyte L, Giron-Monzon L, Hummerich L, Schulz O, Spengler B, Friedhoff P. Identifying an interaction site between MutH and the C-terminal domain of MutL by crosslinking, affinity purification, chemical coding and mass spectrometry. Nucleic Acids Res 2006; 34:3169-80. [PMID: 16772401 PMCID: PMC1483222 DOI: 10.1093/nar/gkl407] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To investigate protein–protein interaction sites in the DNA mismatch repair system we developed a crosslinking/mass spectrometry technique employing a commercially available trifunctional crosslinker with a thiol-specific methanethiosulfonate group, a photoactivatable benzophenone moiety and a biotin affinity tag. The XACM approach combines photocrosslinking (X), in-solution digestion of the crosslinked mixtures, affinity purification via the biotin handle (A), chemical coding of the crosslinked products (C) followed by MALDI-TOF mass spectrometry (M). We illustrate the feasibility of the method using a single-cysteine variant of the homodimeric DNA mismatch repair protein MutL. Moreover, we successfully applied this method to identify the photocrosslink formed between the single-cysteine MutH variant A223C, labeled with the trifunctional crosslinker in the C-terminal helix and its activator protein MutL. The identified crosslinked MutL-peptide maps to a conserved surface patch of the MutL C-terminal dimerization domain. These observations are substantiated by additional mutational and chemical crosslinking studies. Our results shed light on the potential structures of the MutL holoenzyme and the MutH–MutL–DNA complex.
Collapse
Affiliation(s)
- Robert Ahrends
- Institut für Biochemie (FB 08), Justus-Liebig-UniversitätD-35392 Giessen, Germany
- Institut für Chemie, Humboldt-Universität zu BerlinBrook-Taylor-Strasse 2, 12489 Berlin
| | - Jan Kosinski
- Institut für Biochemie (FB 08), Justus-Liebig-UniversitätD-35392 Giessen, Germany
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology4 Ks. Trojdena, 02-109 Warsaw, Poland
| | - Dieter Kirsch
- Institut für Anorganische und Analytische Chemie (FB 08), Justus-Liebig-UniversitätD-35392 Giessen, Germany
| | - Laura Manelyte
- Institut für Biochemie (FB 08), Justus-Liebig-UniversitätD-35392 Giessen, Germany
| | - Luis Giron-Monzon
- Institut für Biochemie (FB 08), Justus-Liebig-UniversitätD-35392 Giessen, Germany
| | - Lars Hummerich
- Institut für Biochemie (FB 08), Justus-Liebig-UniversitätD-35392 Giessen, Germany
| | - Oliver Schulz
- Institut für Anorganische und Analytische Chemie (FB 08), Justus-Liebig-UniversitätD-35392 Giessen, Germany
| | - Bernhard Spengler
- Institut für Anorganische und Analytische Chemie (FB 08), Justus-Liebig-UniversitätD-35392 Giessen, Germany
| | - Peter Friedhoff
- Institut für Biochemie (FB 08), Justus-Liebig-UniversitätD-35392 Giessen, Germany
- To whom correspondence should be addressed. Tel: +49 641 9935407; Fax: +49 641 9935409;
| |
Collapse
|
48
|
Robertson AB, Pattishall SR, Gibbons EA, Matson SW. MutL-catalyzed ATP hydrolysis is required at a post-UvrD loading step in methyl-directed mismatch repair. J Biol Chem 2006; 281:19949-59. [PMID: 16690604 DOI: 10.1074/jbc.m601604200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methyl-directed mismatch repair is a coordinated process that ensures replication fidelity and genome integrity by resolving base pair mismatches and insertion/deletion loops. This post-replicative event involves the activities of several proteins, many of which appear to be regulated by MutL. MutL interacts with and modulates the activities of MutS, MutH, UvrD, and perhaps other proteins. The purified protein catalyzes a slow ATP hydrolysis reaction that is essential for its role in mismatch repair. However, the role of the ATP hydrolysis reaction is not understood. We have begun to address this issue using two point mutants: MutL-E29A, which binds nucleotide but does not catalyze ATP hydrolysis, and MutL-D58A, which does not bind nucleotide. As expected, both mutants failed to complement the loss of MutL in genetic assays. Purified MutL-E29A protein interacted with MutS and stimulated the MutH-catalyzed nicking reaction in a mismatch-dependent manner. Importantly, MutL-E29A stimulated the loading of UvrD on model substrates. In fact, stimulation of UvrD-catalyzed unwinding was more robust with MutL-E29A than the wild-type protein. MutL-D58A, on the other hand, did not interact with MutS, stimulate MutH-catalyzed nicking, or stimulate the loading of UvrD. We conclude that ATP-bound MutL is required for the incision steps associated with mismatch repair and that ATP hydrolysis by MutL is required for a step in the mismatch repair pathway subsequent to the loading of UvrD and may serve to regulate helicase loading.
Collapse
Affiliation(s)
- Adam B Robertson
- Department of Biology, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
49
|
Robertson A, Pattishall SR, Matson SW. The DNA binding activity of MutL is required for methyl-directed mismatch repair in Escherichia coli. J Biol Chem 2006; 281:8399-408. [PMID: 16446358 DOI: 10.1074/jbc.m509184200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA binding properties of the mismatch repair protein MutL and their importance in the repair process have been controversial for nearly two decades. We have addressed this issue using a point mutant of MutL (MutL-R266E). The biochemical and genetic data suggest that DNA binding by MutL is required for dam methylation-directed mismatch repair. We demonstrate that purified MutL-R266E retains wild-type biochemical properties that do not depend on DNA binding, such as basal ATP hydrolysis in the absence of DNA and the ability to interact with other mismatch repair proteins. However, purified MutL-R266E binds DNA poorly in vitro as compared with MutL, and consistent with this observation, its DNA-dependent biochemical activities, like DNA-stimulated ATP hydrolysis and helicase II stimulation, are severely compromised. In addition, there is a modest effect on stimulation of MutH-catalyzed nicking. Finally, genetic assays show that MutL-R266E has a strong mutator phenotype, demonstrating that the mutant is unable to function in dam methylation-directed mismatch repair in vivo.
Collapse
Affiliation(s)
- Adam Robertson
- Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
50
|
Joseph N, Duppatla V, Rao DN. Prokaryotic DNA Mismatch Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:1-49. [PMID: 16891168 DOI: 10.1016/s0079-6603(06)81001-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nimesh Joseph
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|