1
|
Schmidt CA, Matera AG. tRNA introns: Presence, processing, and purpose. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1583. [DOI: 10.1002/wrna.1583] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Casey A. Schmidt
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
- Department of Biology, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
- Department of Genetics, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
2
|
Kaneta A, Fujishima K, Morikazu W, Hori H, Hirata A. The RNA-splicing endonuclease from the euryarchaeaon Methanopyrus kandleri is a heterotetramer with constrained substrate specificity. Nucleic Acids Res 2018; 46:1958-1972. [PMID: 29346615 PMCID: PMC5829648 DOI: 10.1093/nar/gky003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
Four different types (α4, α'2, (αβ)2 and ϵ2) of RNA-splicing endonucleases (EndAs) for RNA processing are known to exist in the Archaea. Only the (αβ)2 and ϵ2 types can cleave non-canonical introns in precursor (pre)-tRNA. Both enzyme types possess an insert associated with a specific loop, allowing broad substrate specificity in the catalytic α units. Here, the hyperthermophilic euryarchaeon Methanopyrus kandleri (MKA) was predicted to harbor an (αβ)2-type EndA lacking the specific loop. To characterize MKA EndA enzymatic activity, we constructed a fusion protein derived from MKA α and β subunits (fMKA EndA). In vitro assessment demonstrated complete removal of the canonical bulge-helix-bulge (BHB) intron structure from MKA pre-tRNAAsn. However, removal of the relaxed BHB structure in MKA pre-tRNAGlu was inefficient compared to crenarchaeal (αβ)2 EndA, and the ability to process the relaxed intron within mini-helix RNA was not detected. fMKA EndA X-ray structure revealed a shape similar to that of other EndA types, with no specific loop. Mapping of EndA types and their specific loops and the tRNA gene diversity among various Archaea suggest that MKA EndA is evolutionarily related to other (αβ)2-type EndAs found in the Thaumarchaeota, Crenarchaeota and Aigarchaeota but uniquely represents constrained substrate specificity.
Collapse
Affiliation(s)
- Ayano Kaneta
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Wataru Morikazu
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
3
|
Charpentier E, Richter H, van der Oost J, White MF. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 2015; 39:428-41. [PMID: 25994611 PMCID: PMC5965381 DOI: 10.1093/femsre/fuv023] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences acquired from invading mobile genomes is transcribed as a precursor crRNA (pre-crRNA) molecule. This pre-crRNA undergoes one or two maturation steps to generate the mature crRNAs that guide CRISPR-associated (Cas) protein(s) to cognate invading genomes for their destruction. Different types of CRISPR-Cas systems have evolved distinct crRNA biogenesis pathways that implicate highly sophisticated processing mechanisms. In Types I and III CRISPR-Cas systems, a specific endoribonuclease of the Cas6 family, either standalone or in a complex with other Cas proteins, cleaves the pre-crRNA within the repeat regions. In Type II systems, the trans-acting small RNA (tracrRNA) base pairs with each repeat of the pre-crRNA to form a dual-RNA that is cleaved by the housekeeping RNase III in the presence of the protein Cas9. In this review, we present a detailed comparative analysis of pre-crRNA recognition and cleavage mechanisms involved in the biogenesis of guide crRNAs in the three CRISPR-Cas types. This review presents a detailed comparative analysis of pre-crRNA recognition and cleavage mechanisms involved in the biogenesis of guide crRNAs in the different bacterial and archaeal CRISPR-Cas immune systems.
Collapse
Affiliation(s)
- Emmanuelle Charpentier
- Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden Hannover Medical School, Hannover 30625, Germany
| | - Hagen Richter
- Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen 6703 HB, the Netherlands
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
4
|
Lopes RRS, Kessler AC, Polycarpo C, Alfonzo JD. Cutting, dicing, healing and sealing: the molecular surgery of tRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:337-49. [PMID: 25755220 DOI: 10.1002/wrna.1279] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/09/2022]
Abstract
All organisms encode transfer RNAs (tRNAs) that are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends; some tRNAs also contain introns, which are removed by splicing. Despite commonality in what the ultimate goal is (i.e., producing a mature tRNA), mechanistically, tRNA splicing differs between Bacteria and Archaea or Eukarya. The number and position of tRNA introns varies between organisms and even between different tRNAs within the same organism, suggesting a degree of plasticity in both the evolution and persistence of modern tRNA splicing systems. Here we will review recent findings that not only highlight nuances in splicing pathways but also provide potential reasons for the maintenance of introns in tRNA. Recently, connections between defects in the components of the tRNA splicing machinery and medically relevant phenotypes in humans have been reported. These differences will be discussed in terms of the importance of splicing for tRNA function and in a broader context on how tRNA splicing defects can often have unpredictable consequences.
Collapse
Affiliation(s)
- Raphael R S Lopes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
5
|
|
6
|
Richter H, Lange SJ, Backofen R, Randau L. Comparative analysis ofCas6b processing and CRISPR RNA stability. RNA Biol 2014; 10:700-7. [PMID: 23392318 DOI: 10.4161/rna.23715] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The prokaryotic antiviral defense systems CRISP R (clustered regularly interspaced short palindromic repeats)/Cas (CRISP Rassociated) employs short crRNAs (CRISP R RNAs) to target invading viral nucleic acids. A short spacer sequence of these crRNAs can be derived from a viral genome and recognizes a reoccurring attack of a virus via base complementarity. We analyzed the effect of spacer sequences on the maturation of crRNAs of the subtype I-B Methanococcus maripaludis C5 CRISP R cluster. The responsible endonuclease, termed Cas6b, bound non-hydrolyzable repeat RNA as a dimer and mature crRNA as a monomer. Comparative analysis of Cas6b processing of individual spacer-repeat-spacer RNA substrates and crRNA stability revealed the potential influence of spacer sequence and length on these parameters. Correlation of these observations with the variable abundance of crRNAs visualized by deep-sequencing analyses is discussed. Finally, insertion of spacer and repeat sequences with archaeal poly-T termination signals is suggested to be prevented in archaeal CRISP R/Cas systems.
Collapse
Affiliation(s)
- Hagen Richter
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | | |
Collapse
|
7
|
Hirata A, Fujishima K, Yamagami R, Kawamura T, Banfield JF, Kanai A, Hori H. X-ray structure of the fourth type of archaeal tRNA splicing endonuclease: insights into the evolution of a novel three-unit composition and a unique loop involved in broad substrate specificity. Nucleic Acids Res 2012; 40:10554-66. [PMID: 22941657 PMCID: PMC3488258 DOI: 10.1093/nar/gks826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cleavage of introns from precursor transfer RNAs (tRNAs) by tRNA splicing endonuclease (EndA) is essential for tRNA maturation in Archaea and Eukarya. In the past, archaeal EndAs were classified into three types (α′2, α4 and α2β2) according to subunit composition. Recently, we have identified a fourth type of archaeal EndA from an uncultivated archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2, which is deeply branched within Euryarchaea. The ARMAN-2 EndA forms an ε2 homodimer and has broad substrate specificity like the α2β2 type EndAs found in Crenarchaea and Nanoarchaea. However, the precise architecture of ARMAN-2 EndA was unknown. Here, we report the crystal structure of the ε2 homodimer of ARMAN-2 EndA. The structure reveals that the ε protomer is separated into three novel units (αN, α and βC) fused by two distinct linkers, although the overall structure of ARMAN-2 EndA is similar to those of the other three types of archaeal EndAs. Structural comparison and mutational analyses reveal that an ARMAN-2 type-specific loop (ASL) is involved in the broad substrate specificity and that K161 in the ASL functions as the RNA recognition site. These findings suggest that the broad substrate specificities of ε2 and α2β2 EndAs were separately acquired through different evolutionary processes.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Hirata A, Kitajima T, Hori H. Cleavage of intron from the standard or non-standard position of the precursor tRNA by the splicing endonuclease of Aeropyrum pernix, a hyper-thermophilic Crenarchaeon, involves a novel RNA recognition site in the Crenarchaea specific loop. Nucleic Acids Res 2011; 39:9376-89. [PMID: 21846775 PMCID: PMC3241643 DOI: 10.1093/nar/gkr615] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Crenarchaea, several tRNA genes are predicted to express precursor-tRNAs (pre-tRNAs) with canonical or non-canonical introns at various positions. We initially focused on the tRNA(Thr) species of hyperthermophilic crenarchaeon, Aeropyrum pernix (APE) and found that in the living APE cells three tRNA(Thr) species were transcribed and subsequently matured to functional tRNAs. During maturation, introns in two of them were cleaved from standard and non-standard positions. Biochemical studies revealed that the APE splicing endonuclease (APE-EndA) removed both types of introns, including the non-canonical introns, without any nucleotide modification. To clarify the underlying reasons for broad substrate specificity of APE-EndA, we determined the crystal structure of wild-type APE-EndA and subsequently compared its structure with that of Archaeaoglobus fulgidus (AFU)-EndA, which has narrow substrate specificity. Remarkably, structural comparison revealed that APE-EndA possesses a Crenarchaea specific loop (CSL). Introduction of CSL into AFU-EndA enhanced its intron-cleaving activity irrespective of the position or motif of the intron. Thus, our biochemical and crystallographic analyses of the chimera-EndA demonstrated that the CSL is responsible for the broad substrate specificity of APE-EndA. Furthermore, mutagenesis studies revealed that Lys44 in CSL functions as the RNA recognition site.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering and Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan
| | | | | |
Collapse
|
9
|
Okuda M, Shiba T, Inaoka DK, Kita K, Kurisu G, Mineki S, Harada S, Watanabe YI, Yoshinari S. A conserved lysine residue in the crenarchaea-specific loop is important for the crenarchaeal splicing endonuclease activity. J Mol Biol 2010; 405:92-104. [PMID: 21050862 DOI: 10.1016/j.jmb.2010.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 11/25/2022]
Abstract
In Archaea, splicing endonuclease (EndA) recognizes and cleaves precursor RNAs to remove introns. Currently, EndAs are classified into three families according to their subunit structures: homotetramer, homodimer, and heterotetramer. The crenarchaeal heterotetrameric EndAs can be further classified into two subfamilies based on the size of the structural subunit. Subfamily A possesses a structural subunit similar in size to the catalytic subunit, whereas subfamily B possesses a structural subunit significantly smaller than the catalytic subunit. Previously, we solved the crystal structure of an EndA from Pyrobaculum aerophilum. The endonuclease was classified into subfamily B, and the structure revealed that the enzyme lacks an N-terminal subdomain in the structural subunit. However, no structural information is available for crenarchaeal heterotetrameric EndAs that are predicted to belong to subfamily A. Here, we report the crystal structure of the EndA from Aeropyrum pernix, which is predicted to belong to subfamily A. The enzyme possesses the N-terminal subdomain in the structural subunit, revealing that the two subfamilies of heterotetrameric EndAs are structurally distinct. EndA from A. pernix also possesses an extra loop region that is characteristic of crenarchaeal EndAs. Our mutational study revealed that the conserved lysine residue in the loop is important for endonuclease activity. Furthermore, the sequence characteristics of the loops and the positions towards the substrate RNA according to a docking model prompted us to propose that crenarchaea-specific loops and an extra amino acid sequence at the catalytic loop of nanoarchaeal EndA are derived by independent convergent evolution and function for recognizing noncanonical bulge-helix-bulge motif RNAs as substrates.
Collapse
Affiliation(s)
- Maho Okuda
- Department of Biomedical Chemistry, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Das S, Mukherjee R, Sahoo S, Thakkar R, Chakrabarti J. Structural Clones of UAG Decoding RNA. J Biomol Struct Dyn 2009; 27:381-90. [DOI: 10.1080/07391102.2009.10507324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Yokobori SI, Itoh T, Yoshinari S, Nomura N, Sako Y, Yamagishi A, Oshima T, Kita K, Watanabe YI. Gain and loss of an intron in a protein-coding gene in Archaea: the case of an archaeal RNA pseudouridine synthase gene. BMC Evol Biol 2009; 9:198. [PMID: 19671140 PMCID: PMC2738675 DOI: 10.1186/1471-2148-9-198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/11/2009] [Indexed: 01/13/2023] Open
Abstract
Background We previously found the first examples of splicing of archaeal pre-mRNAs for homologs of the eukaryotic CBF5 protein (also known as dyskerin in humans) in Aeropyrum pernix, Sulfolobus solfataricus, S. tokodaii, and S. acidocaldarirus, and also showed that crenarchaeal species in orders Desulfurococcales and Sulfolobales, except for Hyperthermus butylicus, Pyrodictium occultum, Pyrolobus fumarii, and Ignicoccus islandicus, contain the (putative) cbf5 intron. However, the exact timing of the intron insertion was not determined and verification of the putative secondary loss of the intron in some lineages was not performed. Results In the present study, we determined approximately two-thirds of the entire coding region of crenarchaeal Cbf5 sequences from 43 species. A phylogenetic analysis of our data and information from the available genome sequences suggested that the (putative) cbf5 intron existed in the common ancestor of the orders Desulfurococcales and Sulfolobales and that probably at least two independent lineages in the order Desulfurococcales lost the (putative) intron. Conclusion This finding is the first observation of a lineage-specific loss of a pre-mRNA intron in Archaea. As the insertion or deletion of introns in protein-coding genes in Archaea has not yet been seriously considered, our finding suggests the possible difficulty of accurately and completely predicting protein-coding genes in Archaea.
Collapse
Affiliation(s)
- Shin-ichi Yokobori
- Department of Molecular Biology, School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mitchell M, Xue S, Erdman R, Randau L, Söll D, Li H. Crystal structure and assembly of the functional Nanoarchaeum equitans tRNA splicing endonuclease. Nucleic Acids Res 2009; 37:5793-802. [PMID: 19578064 PMCID: PMC2761253 DOI: 10.1093/nar/gkp537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The RNA splicing and processing endonuclease from Nanoarchaeum equitans (NEQ) belongs to the recently identified (αβ)2 family of splicing endonucleases that require two different subunits for splicing activity. N. equitans splicing endonuclease comprises the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Here, we report the crystal structure of the functional NEQ enzyme at 2.1 Å containing both subunits, as well as that of the NEQ261 subunit alone at 2.2 Å. The functional enzyme resembles previously known α2 and α4 endonucleases but forms a heterotetramer: a dimer of two heterodimers of the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Surprisingly, NEQ261 alone forms a homodimer, similar to the previously known homodimer of the catalytic subunit. The homodimers of isolated subunits are inhibitory to heterodimerization as illustrated by a covalently linked catalytic homodimer that had no RNA cleavage activity upon mixing with the structural subunit. Detailed structural comparison reveals a more favorable hetero- than homodimerization interface, thereby suggesting a possible regulation mechanism of enzyme assembly through available subunits. Finally, the uniquely flexible active site of the NEQ endonuclease provides a possible explanation for its broader substrate specificity.
Collapse
Affiliation(s)
- Michelle Mitchell
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yoshinari S, Shiba T, Inaoka DK, Itoh T, Kurisu G, Harada S, Kita K, Watanabe YI. Functional importance of crenarchaea-specific extra-loop revealed by an X-ray structure of a heterotetrameric crenarchaeal splicing endonuclease. Nucleic Acids Res 2009; 37:4787-98. [PMID: 19515941 PMCID: PMC2724299 DOI: 10.1093/nar/gkp506] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Archaeal splicing endonucleases (EndAs) are currently classified into three groups. Two groups require a single subunit protein to form a homodimer or homotetramer. The third group requires two nonidentical protein components for the activity. To elucidate the molecular architecture of the two-subunit EndA system, we studied a crenarchaeal splicing endonuclease from Pyrobaculum aerophilum. In the present study, we solved a crystal structure of the enzyme at 1.7-Å resolution. The enzyme adopts a heterotetrameric form composed of two catalytic and two structural subunits. By connecting the structural and the catalytic subunits of the heterotetrameric EndA, we could convert the enzyme to a homodimer that maintains the broad substrate specificity that is one of the characteristics of heterotetrameric EndA. Meanwhile, a deletion of six amino acids in a Crenarchaea-specific loop abolished the endonuclease activity even on a substrate with canonical BHB motif. These results indicate that the subunit architecture is not a major factor responsible for the difference of substrate specificity between single- and two-subunit EndA systems. Rather, the structural basis for the broad substrate specificity is built into the crenarchaeal splicing endonuclease itself.
Collapse
Affiliation(s)
- Shigeo Yoshinari
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Response by Lennart Randau & Dieter Söll. EMBO Rep 2008. [DOI: 10.1038/embor.2008.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
16
|
Mallick B, Ghosh Z, Chakrabarti J. Structural determinants characteristic to AARS subclasses and tRNA-splicing endonuclease in eukaryotes. J Biomol Struct Dyn 2008; 26:223-34. [PMID: 18597544 DOI: 10.1080/07391102.2008.10507238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We compare and analyse the whole set of cytoplasmic, nonorganellar transfer RNA genes from 22 eukaryal genomes. Grouping this whole set into sets of isoacceptors we have elucidated structural elements that are characteristic to individual isoacceptor tRNAs within the subclasses of aminoacyl tRNA synthetases. Further, we have observed structural motifs straddling the exon-intron boundaries, which includes selective occurrence of both symmetric- 3-4-3 and asymmetric-3-4-(4, 5) bulge-helix-bulge-like structural motifs. Among all the tRNA isoacceptors, Ile, Leu, Ser, Pro, Met, Arg, and Tyr harbor BHB-like secondary structures at exon-intron boundaries. The structural signatories at the exon-intron boundaries appear to contribute to the specificity of splice site recognition.
Collapse
Affiliation(s)
- Bibekanand Mallick
- Computational Biology Group, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700032, India.
| | | | | |
Collapse
|
17
|
Abstract
The short genes encoding transfer RNA (tRNA) molecules are highly conserved in both sequence and structure, reflecting the central role of tRNA in protein biosynthesis. The frequent occurrence of fragmented intron-containing tRNAs that require processing to form contiguous molecules is therefore surprising. Recent discoveries of permuted and split tRNA genes have added to the apparent creativity of nature regarding the organization of these fragmented genes. Here, we provide an overview of the various types of fragmented tRNA genes and examine the hypothesis that the integration of mobile genetic elements--including viruses and plasmids--established such genes in pieces.
Collapse
|
18
|
Kim YK, Mizutani K, Rhee KH, Nam KH, Lee WH, Lee EH, Kim EE, Park SY, Hwang KY. Structural and mutational analysis of tRNA intron-splicing endonuclease from Thermoplasma acidophilum DSM 1728: catalytic mechanism of tRNA intron-splicing endonucleases. J Bacteriol 2007; 189:8339-46. [PMID: 17827289 PMCID: PMC2168659 DOI: 10.1128/jb.00713-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In archaea, RNA endonucleases that act specifically on RNA with bulge-helix-bulge motifs play the main role in the recognition and excision of introns, while the eukaryal enzymes use a measuring mechanism to determine the positions of the universally positioned splice sites relative to the conserved domain of pre-tRNA. Two crystallographic structures of tRNA intron-splicing endonuclease from Thermoplasma acidophilum DSM 1728 (EndA(Ta)) have been solved to 2.5-A and 2.7-A resolution by molecular replacement, using the 2.7-A resolution data as the initial model and the single-wavelength anomalous-dispersion phasing method using selenomethionine as anomalous signals, respectively. The models show that EndA(Ta) is a homodimer and that it has overall folding similar to that of other archaeal tRNA endonucleases. From structural and mutational analyses of H236A, Y229F, and K265I in vitro, we have demonstrated that they play critical roles in recognizing the splice site and in cleaving the pre-tRNA substrate.
Collapse
Affiliation(s)
- Young Kwan Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP. The dawn of dominance by the mature domain in tRNA splicing. Proc Natl Acad Sci U S A 2007; 104:12300-5. [PMID: 17636125 PMCID: PMC1941465 DOI: 10.1073/pnas.0705537104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relationship between enzyme architecture and substrate specificity among archaeal pre-tRNA splicing endonucleases has been investigated more deeply, by using biochemical assays and model building. The enzyme from Archeoglobus fulgidus (AF) is particularly interesting: it cleaves the bulge-helix-bulge target without requiring the mature tRNA domain, but, when the target is a bulge-helix-loop, the mature domain is required. A model of AF based on its electrostatic potential shows three polar patches interacting with the pre-tRNA substrate. A simple deletion mutant of the AF endonuclease lacking two of the three polar patches no longer cleaves the bulge-helix-loop substrate with or without the mature domain. This single deletion shows a possible path for the evolution of eukaryal splicing endonucleases from the archaeal enzyme.
Collapse
Affiliation(s)
- Giuseppe D. Tocchini-Valentini
- *Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Campus A, Buzzati-Traverso, Via Ramarini 32, Monterotondo Scalo, 00016 Rome, Italy; and
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Paolo Fruscoloni
- *Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Campus A, Buzzati-Traverso, Via Ramarini 32, Monterotondo Scalo, 00016 Rome, Italy; and
| | - Glauco P. Tocchini-Valentini
- *Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Campus A, Buzzati-Traverso, Via Ramarini 32, Monterotondo Scalo, 00016 Rome, Italy; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Li H. Complexes of tRNA and maturation enzymes: shaping up for translation. Curr Opin Struct Biol 2007; 17:293-301. [PMID: 17580114 DOI: 10.1016/j.sbi.2007.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 03/27/2007] [Accepted: 05/25/2007] [Indexed: 11/29/2022]
Abstract
Several significant structures of transfer ribonucleic acid (tRNA) maturation enzymes complexed with precursor tRNA or fragments thereof have been published recently, providing detailed knowledge of enzyme-tRNA recognition and catalytic strategies. In addition to reinforcing the general principles of RNA-protein interaction, the new structures highlight both the features of composite RNA recognition by multiple enzyme subunits and the pronounced RNA structural flexibility in or near the active site in all cases. These structural principles provide plausible explanations for the exquisite specificity and catalytic power of these enzymes and, in the case of evolutionary adaptation, for the ability of some enzymes to develop novel specificities.
Collapse
Affiliation(s)
- Hong Li
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
21
|
Calvin K, Li H. Achieving specific RNA cleavage activity by an inactive splicing endonuclease subunit through engineered oligomerization. J Mol Biol 2006; 366:642-9. [PMID: 17174977 PMCID: PMC2276650 DOI: 10.1016/j.jmb.2006.11.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/10/2006] [Accepted: 11/16/2006] [Indexed: 02/02/2023]
Abstract
Protein-protein interaction is a common strategy exploited by enzymes to control substrate specificity and catalytic activities. RNA endonucleases, which are involved in many RNA processing and regulation processes, are prime examples of this. How the activities of RNA endonucleases are tightly controlled such that they act on specific RNA is of general interest. We demonstrate here that an inactive RNA splicing endonuclease subunit can be switched "on" solely by oligomerization. Furthermore, we show that the mode of assembly correlates with different RNA specificities. The recently identified splicing endonuclease homolog from Sulfolobus solfataricus, despite possessing all of the putatively catalytic residues, has no detectable RNA cleavage activity on its own but is active upon mixing with its structural subunit. Guided by the previously determined three-dimensional structure of the catalytic subunit, we altered its sequence such that it could potentially self-assemble thereby enabling its catalytic activity. We present the evidence for the specific RNA cleavage activity of the engineered catalytic subunit and for its formation of a functional tetramer. We also identify a higher order oligomer species that possesses distinct RNA cleavage specificity from that of previously characterized RNA splicing endonucleases.
Collapse
Affiliation(s)
- Kate Calvin
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
22
|
Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe YI, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A 2006; 103:18296-301. [PMID: 17114289 PMCID: PMC1643844 DOI: 10.1073/pnas.0608549103] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crenarchaeota are ubiquitous and abundant microbial constituents of soils, sediments, lakes, and ocean waters. To further describe the cosmopolitan nonthermophilic Crenarchaeota, we analyzed the genome sequence of one representative, the uncultivated sponge symbiont Cenarchaeum symbiosum. C. symbiosum genotypes coinhabiting the same host partitioned into two dominant populations, corresponding to previously described a- and b-type ribosomal RNA variants. Although they were syntenic, overlapping a- and b-type ribotype genomes harbored significant variability. A single tiling path comprising the dominant a-type genotype was assembled and used to explore the genomic properties of C. symbiosum and its planktonic relatives. Of 2,066 ORFs, 55.6% matched genes with predicted function from previously sequenced genomes. The remaining genes partitioned between functional RNAs (2.4%) and hypotheticals (42%) with limited homology to known functional genes. The latter category included some genes likely involved in the archaeal-sponge symbiotic association. Conversely, 525 C. symbiosum ORFs were most highly similar to sequences from marine environmental genomic surveys, and they apparently represent orthologous genes from free-living planktonic Crenarchaeota. In total, the C. symbiosum genome was remarkably distinct from those of other known Archaea and shared many core metabolic features in common with its free-living planktonic relatives.
Collapse
Affiliation(s)
| | | | - Nik Putnam
- Joint Genome Institute, Walnut Creek, CA 94598
| | - Christa Schleper
- Department of Biology, University of Bergen, Jahnebakken 5, N-5020 Bergen, Norway
| | - Yoh-ichi Watanabe
- Department of Biomedical Chemistry, University of Tokyo, Tokyo 113-0033, Japan
| | - Junichi Sugahara
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
| | - Christina Preston
- **Monterey Bay Aquarium Research Institute, Moss Landing, CA 95069; and
| | | | | | - Edward F. DeLong
- *Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Song J, Markley JL. Three-dimensional structure determined for a subunit of human tRNA splicing endonuclease (Sen15) reveals a novel dimeric fold. J Mol Biol 2006; 366:155-64. [PMID: 17166513 PMCID: PMC1865571 DOI: 10.1016/j.jmb.2006.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/06/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Splicing of eukaryal intron-containing tRNAs requires the action of the heterotetrameric splicing endonuclease, which is composed of two catalytic subunits, Sen34 and Sen2, and two structural subunits, Sen15 and Sen54. Here we report the solution structure of the human tRNA splicing endonuclease subunit HsSen15. To facilitate the structure determination, we removed the disordered 35 N-terminal and 14 C-terminal residues of the full-length protein to produce HsSen15(36-157). The structure of HsSen15(36-157), the first for a subunit of a eukaryal splicing endonuclease, revealed that the protein possesses a novel homodimeric fold. Each monomer consists of three alpha-helices and a mixed antiparallel/parallel beta-sheet, arranged in a topology similar to that of the C-terminal domain of Methanocaldococcus jannaschii endonuclease. The dimeric interface is dominated by a beta-barrel structure, formed by face-to-face packing of two, three-stranded beta-sheets. Each of the beta-sheets results from reciprocal parallel pairing of one beta-strand from one subunit with two other beta-strands from the symmetric subunit. The structural model provides insights into the functional assembly of the human tRNA splicing endonuclease.
Collapse
Affiliation(s)
- Jikui Song
- Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | |
Collapse
|
24
|
Yoshinari S, Itoh T, Hallam SJ, DeLong EF, Yokobori SI, Yamagishi A, Oshima T, Kita K, Watanabe YI. Archaeal pre-mRNA splicing: a connection to hetero-oligomeric splicing endonuclease. Biochem Biophys Res Commun 2006; 346:1024-32. [PMID: 16781672 DOI: 10.1016/j.bbrc.2006.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
Eukaryotic Cbf5 is a protein subunit of the small nucleolar RNA-protein complex. Previously, we identified, in archaeal homologs of cbf5 of the crenarchaea, Aeropyrum pernix, Sulfolobus solfataricus, and Sulfolobus tokodaii, the first examples of introns of archaeal protein-coding genes. Here, we report the immunological detection of Cbf5 protein of S. tokodaii, the product of the spliced cbf5 mRNA. The hetero-oligomeric splicing endonuclease activity from recombinant S. tokodaii subunits cleaved at the exon-intron boundaries of cbf5 pre-mRNA fragments,suggesting that synthesis of full-length Cbf5 protein requires this activity. Database searches and PCR screens identified additional cbf5 introns in some, but not all sequenced crenarchaeal genomes. The predicted secondary structures of exon-intron boundaries of many of the newly identified intron-containing cbf5 pre-mRNAs contained relaxed forms of the bulge-helix-bulge motif similar to that of S. tokodaii. These observations are consistent with previous reports indicating that subunit composition of the splicing endonuclease contributes to substrate specificity.
Collapse
Affiliation(s)
- Shigeo Yoshinari
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The RNA splicing endonuclease cleaves two phosphodiester bonds within folded precursor RNAs during intron removal, producing the functional RNAs required for protein synthesis. Here we describe at a resolution of 2.85 angstroms the structure of a splicing endonuclease from Archaeglobus fulgidus bound with a bulge-helix-bulge RNA containing a noncleaved and a cleaved splice site. The endonuclease dimer cooperatively recognized a flipped-out bulge base and stabilizes sharply bent bulge backbones that are poised for an in-line RNA cleavage reaction. Cooperativity arises because an arginine pair from one catalytic domain sandwiches a nucleobase within the bulge cleaved by the other catalytic domain.
Collapse
Affiliation(s)
- Song Xue
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
26
|
Randau L, Calvin K, Hall M, Yuan J, Podar M, Li H, Söll D. The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. Proc Natl Acad Sci U S A 2005; 102:17934-9. [PMID: 16330750 PMCID: PMC1312423 DOI: 10.1073/pnas.0509197102] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among the tRNA population of the archaeal parasite Nanoarchaeum equitans are five species assembled from separate 5' and 3' tRNA halves and four species derived from tRNA precursors containing introns. In both groups an intervening sequence element must be removed during tRNA maturation. A bulge-helix-bulge (BHB) motif is the hallmark structure required by the archaeal splicing endonuclease for recognition and excision of all introns. BHB motifs are recognizable at the joining sites of all five noncontinuous tRNA species, although deviations from the canonical BHB motif are clearly present in at least two of them. Here, we show that the N. equitans splicing endonuclease cleaves tRNA precursors containing normal introns, as well as all five noncontinuous precursor tRNAs, at the predicted splice sites, indicating the enzyme's dual role in the removal of tRNA introns and processing of tRNA halves to be joined in trans. The cleavage activity on a set of synthetic canonical and noncanonical BHB constructs showed that the N. equitans splicing endonuclease accepts a broader range of substrates than the homodimeric Archaeoglobus fulgidus enzyme. In contrast to the A. fulgidus endonuclease, the N. equitans splicing enzyme possesses two different subunits. This heteromeric endonuclease type, found in N. equitans, in all Crenarchaeota, and in Methanopyrus kandleri, is able to act on the noncanonical tRNA introns present only in these organisms, which suggests coevolution of enzyme and substrate.
Collapse
Affiliation(s)
- Lennart Randau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | | | |
Collapse
|