1
|
N'Guetta PEY, Fink MM, Rizk SS. Engineering a fluorescence biosensor for the herbicide glyphosate. Protein Eng Des Sel 2020; 33:gzaa021. [PMID: 32930799 DOI: 10.1093/protein/gzaa021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
Glyphosate, the active ingredient in RoundUp, is the most widely used herbicide on the globe, and has recently been linked to an increased risk in non-Hodgkin's lymphoma in exposed individuals. Therefore, detection and monitoring of glyphosate levels in water and soil is important for public safety. Here, we describe a biosensor for glyphosate based on an engineered Escherichia coli phosphonate-binding protein (PhnD). Mutations in the binding pocket were introduced to convert PhnD into a glyphosate-binding protein. A fluorescence group attached near the hinge of the protein was added to monitor binding of glyphosate and to determine its concentration in unknown samples. The resulting engineered biosensor can detect glyphosate in tap water and in soil samples treated with the herbicide at submicromolar concentrations, well below the limit for drinking water in the USA. Incorporating this biosensor in a device would allow rapid and continuous monitoring of glyphosate in water and soil samples.
Collapse
Affiliation(s)
| | - Maggie M Fink
- Department of Chemistry and Biochemistry, Indiana University, South Bend, IN 46615, USA
| | - Shahir S Rizk
- Department of Chemistry and Biochemistry, Indiana University, South Bend, IN 46615, USA
| |
Collapse
|
2
|
Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 2013; 501:212-216. [PMID: 24005320 DOI: 10.1038/nature12443] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/11/2013] [Indexed: 01/27/2023]
Abstract
The ability to design proteins with high affinity and selectivity for any given small molecule is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition. Attempts to rationally design ligand-binding proteins have met with little success, however, and the computational design of protein-small-molecule interfaces remains an unsolved problem. Current approaches for designing ligand-binding proteins for medical and biotechnological uses rely on raising antibodies against a target antigen in immunized animals and/or performing laboratory-directed evolution of proteins with an existing low affinity for the desired ligand, neither of which allows complete control over the interactions involved in binding. Here we describe a general computational method for designing pre-organized and shape complementary small-molecule-binding sites, and use it to generate protein binders to the steroid digoxigenin (DIG). Of seventeen experimentally characterized designs, two bind DIG; the model of the higher affinity binder has the most energetically favourable and pre-organized interface in the design set. A comprehensive binding-fitness landscape of this design, generated by library selections and deep sequencing, was used to optimize its binding affinity to a picomolar level, and X-ray co-crystal structures of two variants show atomic-level agreement with the corresponding computational models. The optimized binder is selective for DIG over the related steroids digitoxigenin, progesterone and β-oestradiol, and this steroid binding preference can be reprogrammed by manipulation of explicitly designed hydrogen-bonding interactions. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics and diagnostics.
Collapse
Affiliation(s)
- Christine E Tinberg
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sagar D Khare
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jiayi Dou
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.,Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA 98195, USA
| | - Lindsey Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jorgen W Nelson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alberto Schena
- Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) of Chemical Biology, École Polytechnique Fédérale de Laussane (EPFL), Laussane, Switzerland
| | - Wojciech Jankowski
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) of Chemical Biology, École Polytechnique Fédérale de Laussane (EPFL), Laussane, Switzerland
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Mills JH, Khare SD, Bolduc JM, Forouhar F, Mulligan VK, Lew S, Seetharaman J, Tong L, Stoddard BL, Baker D. Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy. J Am Chem Soc 2013; 135:13393-9. [PMID: 23924187 DOI: 10.1021/ja403503m] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically encoded unnatural amino acids could facilitate the design of proteins and enzymes of novel function, but correctly specifying sites of incorporation and the identities and orientations of surrounding residues represents a formidable challenge. Computational design methods have been used to identify optimal locations for functional sites in proteins and design the surrounding residues but have not incorporated unnatural amino acids in this process. We extended the Rosetta design methodology to design metalloproteins in which the amino acid (2,2'-bipyridin-5yl)alanine (Bpy-Ala) is a primary ligand of a bound metal ion. Following initial results that indicated the importance of buttressing the Bpy-Ala amino acid, we designed a buried metal binding site with octahedral coordination geometry consisting of Bpy-Ala, two protein-based metal ligands, and two metal-bound water molecules. Experimental characterization revealed a Bpy-Ala-mediated metalloprotein with the ability to bind divalent cations including Co(2+), Zn(2+), Fe(2+), and Ni(2+), with a Kd for Zn(2+) of ∼40 pM. X-ray crystal structures of the designed protein bound to Co(2+) and Ni(2+) have RMSDs to the design model of 0.9 and 1.0 Å respectively over all atoms in the binding site.
Collapse
Affiliation(s)
- Jeremy H Mills
- Department of Biochemistry and ⊥Biomolecular Structure and Design Program, University of Washington , Seattle, Washington, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Structure of an engineered β-lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation. PLoS One 2012; 7:e39168. [PMID: 22720063 PMCID: PMC3375305 DOI: 10.1371/journal.pone.0039168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/16/2012] [Indexed: 11/21/2022] Open
Abstract
Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn2+ at low µM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn2+ concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn2+ acts to “twist tie” the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn2+ site only slightly affected Zn2+ inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn2+ sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms.
Collapse
|
5
|
Design strategies of fluorescent biosensors based on biological macromolecular receptors. SENSORS 2010; 10:1355-76. [PMID: 22205872 PMCID: PMC3244018 DOI: 10.3390/s100201355] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 11/17/2022]
Abstract
Fluorescent biosensors to detect the bona fide events of biologically important molecules in living cells are increasingly demanded in the field of molecular cell biology. Recent advances in the development of fluorescent biosensors have made an outstanding contribution to elucidating not only the roles of individual biomolecules, but also the dynamic intracellular relationships between these molecules. However, rational design strategies of fluorescent biosensors are not as mature as they look. An insatiable request for the establishment of a more universal and versatile strategy continues to provide an attractive alternative, so-called modular strategy, which permits facile preparation of biosensors with tailored characteristics by a simple combination of a receptor and a signal transducer. This review describes an overview of the progress in design strategies of fluorescent biosensors, such as auto-fluorescent protein-based biosensors, protein-based biosensors covalently modified with synthetic fluorophores, and signaling aptamers, and highlights the insight into how a given receptor is converted to a fluorescent biosensor. Furthermore, we will demonstrate a significance of the modular strategy for the sensor design.
Collapse
|
6
|
Abstract
The rational design of artificial enzymes, either by applying physico-chemical intuition of protein structure and function or with the aid of computational methods, is a promising area of research with the potential to tremendously impact medicine, industrial chemistry and energy production. Designed proteins also provide a powerful platform for dissecting enzyme mechanisms of natural systems. Artificial enzymes have come a long way from simple α-helical peptide catalysts to proteins that facilitate multistep chemical reactions designed by state-of-the-art computational methods. Looking forward, we examine strategies employed by natural enzymes that could be used to improve the speed and selectivity of artificial catalysts.
Collapse
|
7
|
Abstract
Computational design has been very successful in recent years: multiple novel ligand binding proteins as well as enzymes have been reported. We wanted to know in molecular detail how precise the predictions of the interactions of protein and ligands are. Therefore, we performed a structural analysis of a number of published receptors designed onto the periplasmic binding protein scaffold that were reported to bind to the new ligands with nano- to micromolar affinities. It turned out that most of these designed proteins are not suitable for structural studies due to instability and aggregation. However, we were able to solve the crystal structure of an arabinose binding protein designed to bind serotonin to 2.2 A resolution. While crystallized in the presence of an excess of serotonin, the protein is in an open conformation with no serotonin bound, although the side-chain conformations in the empty binding pocket are very similar to the conformations predicted. During subsequent characterization using isothermal titration calorimetry, CD, and NMR spectroscopy, no indication of binding could be detected for any of the tested designed receptors, whereas wild-type proteins bound their ligands as expected. We conclude that although the computational prediction of side-chain conformations appears to be working, it does not necessarily confer binding as expected. Hence, the computational design of ligand binding is not a solved problem and needs to be revisited.
Collapse
|
8
|
Check Hayden E. Protein-design papers challenged. Nature 2009. [DOI: 10.1038/news.2009.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Gould AD, Telmer PG, Shilton BH. Stimulation of the maltose transporter ATPase by unliganded maltose binding protein. Biochemistry 2009; 48:8051-61. [PMID: 19630440 PMCID: PMC2809251 DOI: 10.1021/bi9007066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP hydrolysis by the maltose transporter (MalFGK(2)) is regulated by maltose binding protein (MBP). Binding of maltose to MBP brings about a conformational change from open to closed that leads to a strong stimulation of the MalFGK(2) ATPase. In this study, we address the long-standing but enigmatic observation that unliganded MBP is also able to stimulate MalFGK(2). Although the mechanism of this stimulation is not understood, it is sometimes attributed to a small amount of closed (but unliganded) MBP that may exist in solution. To gain insight into how MBP regulates the MalFGK(2) ATPase, we have investigated whether the open or the closed conformation of MBP is responsible for MalFGK(2) stimulation in the absence of maltose. The effect of MBP concentration on the stimulation of MalFGK(2) was assessed: for unliganded MBP, the apparent K(M) for stimulation of MalFGK(2) was below 1 microM, while for maltose-bound MBP, the K(M) was approximately 15 microM. We show that engineered MBP molecules in which the open-closed equilibrium has been shifted toward the closed conformation have a decreased ability to stimulate MalFGK(2). These results indicate that stimulation of the MalFGK(2) ATPase by unliganded MBP does not proceed through a closed conformation and instead must operate through a different mechanism than stimulation by liganded MBP. One possible explanation is that the open conformation is able to activate the MalFGK(2) ATPase directly.
Collapse
Affiliation(s)
| | | | - Brian H. Shilton
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario Canada N6A 5C1
| |
Collapse
|
10
|
Taraska JW, Puljung MC, Olivier NB, Flynn GE, Zagotta WN. Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat Methods 2009; 6:532-7. [PMID: 19525958 PMCID: PMC2738593 DOI: 10.1038/nmeth.1341] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/06/2009] [Indexed: 11/26/2022]
Abstract
Visualizing conformational dynamics in proteins has been difficult, and the atomic-scale motions responsible for the behavior of most allosteric proteins are unknown. Here, we report that FRET between a small fluorescent dye and a nickel ion bound to a di-histidine motif can be used to monitor small structural rearrangements in proteins. This method provides several key advantages over classical FRET including the ability to measure the dynamics of close range interactions, the use of small probes with short linkers, a low orientation dependence, and the ability to add and remove unique tunable acceptors. We used this ‘transition metal ion FRET’ approach along with x-ray crystallography to determine the structural changes of the gating-ring of the mouse hyperpolarization-activated cyclic nucleotide-regulated ion channel HCN2. Binding of cAMP to the isolated carboxyl-terminal region of HCN2 caused a structural rearrangement involving a movement of the C-helix towards the β-roll of the cAMP-binding domain and a movement of the F′ helix of the C-linker, along with a stabilization of the secondary structure of the helices. Our results suggest a general model for the conformational switch in the cyclic nucleotide-binding site of cyclic nucleotide-regulated ion channels.
Collapse
Affiliation(s)
- Justin W Taraska
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
11
|
Shilton BH. The dynamics of the MBP-MalFGK(2) interaction: a prototype for binding protein dependent ABC-transporter systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1772-80. [PMID: 17950243 DOI: 10.1016/j.bbamem.2007.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 08/15/2007] [Accepted: 09/07/2007] [Indexed: 11/30/2022]
Abstract
This review is focused on the interaction between maltose binding protein (MBP) and the maltose transporter complex, MalFGK(2), which is a member of the ATP Binding Cassette (ABC) superfamily. The interaction between MBP and MalFGK(2) has a critical role in maltose transport, but a coherent description of the interaction is complicated because both MBP and MalFGK(2) can adopt multiple conformations. Drawing on genetic, structural, and biochemical data, the different conformations of MBP and MalFGK(2) are described and incorporated into a model for their interaction. The most important feature of this model is that ligand-bound MBP initiates the process of ATP-dependent maltose transport by stabilizing a high-energy conformation of MalFGK(2). In this model of the MBP-MalFGK(2) interaction, stabilization of a high-energy conformation of MalFGK(2) allows ATP to drive conformational changes in the system - in particular the opening of bound MBP - that leads to formation of a transition state for ATP hydrolysis. Such a role for ligand-bound MBP explains how MBP-independent MalFGK(2) mutants work, and represents a general mechanism for binding-protein dependent ABC import systems. In ABC export systems, which do not use a binding protein, the substrate itself is expected to play a role similar to ligand-bound MBP in the maltose transport system. The mechanistic model for the maltose transporter suggests that ABC-type import systems evolved to make use of a peripheral binding protein so that the transport process is essentially irreversible.
Collapse
Affiliation(s)
- Brian H Shilton
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6B 2G3.
| |
Collapse
|
12
|
Wright CM, Heins RA, Ostermeier M. As easy as flipping a switch? Curr Opin Chem Biol 2007; 11:342-6. [PMID: 17466569 DOI: 10.1016/j.cbpa.2007.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 04/17/2007] [Indexed: 11/15/2022]
Abstract
Proteins that behave as switches help to establish the complex molecular logic that is central to biological systems. Aspiring to be nature's equal, researchers have successfully created protein switches of their own design; in particular, numerous and varied zinc-triggered switches have been made. Recent studies in which such switches have been readily identified from combinatorial protein libraries support the notion that proteins are primed to show allosteric behavior and that newly created ligand-binding sites will often be functionally coupled to the original activity of the protein. If true, this notion suggests that switch engineering might be more tractable than previously thought, boding well for the basic science, sensing and biomedical applications for which protein switches hold much promise.
Collapse
Affiliation(s)
- Chapman M Wright
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2681, USA
| | | | | |
Collapse
|
13
|
Liang J, Kim JR, Boock JT, Mansell TJ, Ostermeier M. Ligand binding and allostery can emerge simultaneously. Protein Sci 2007; 16:929-37. [PMID: 17400921 PMCID: PMC2206642 DOI: 10.1110/ps.062706007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A heterotropic allosteric effect involves an effector molecule that is distinct from the substrate or ligand of the protein. How heterotropic allostery originates is an unanswered question. We have previously created several heterotropic allosteric enzymes by recombining the genes for TEM1 beta-lactamase (BLA) and maltose binding protein (MBP) to create BLAs that are positively or negatively regulated by maltose. We show here that one of these engineered enzymes has approximately 10(6) M(-1) affinity for Zn(2+), a property that neither of the parental proteins possesses. Furthermore, Zn(2+) is a negative effector that noncompetitively switches off beta-lactam hydrolysis activity. Mutagenesis experiments indicate that the Zn(2+)-binding site does not involve a histidine or a cysteine, which is atypical of natural Zn(2+)-binding sites. These studies also implicate helices 1 and 12 of the BLA domain in allosteric signal propagation. These results support a model for the evolution of heterotropic allostery in which effector affinity and allosteric signaling emerge simultaneously.
Collapse
Affiliation(s)
- Jing Liang
- Program in Molecular and Computational Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|