1
|
Gonzalez‐de la Rosa T, Marquez‐Paradas E, Leon MJ, Montserrat‐de la Paz S, Rivero‐Pino F. Exploring Tenebrio molitor as a source of low-molecular-weight antimicrobial peptides using a n in silico approach: correlation of molecular features and molecular docking. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1711-1736. [PMID: 39412188 PMCID: PMC11726611 DOI: 10.1002/jsfa.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 01/14/2025]
Abstract
BACKGROUND Yellow mealworm (Tenebrio molitor) larvae are increasingly recognized as a potential source of bioactive peptides due to their high protein content. Antimicrobial peptides from sustainable sources are a research topic of interest. This study aims to characterize the peptidome of T. molitor flour and an Alcalase-derived hydrolysate, and to explore the potential presence of antimicrobial peptides using in silico analyses, including prediction tools, molecular docking and parameter correlations. RESULTS T. molitor protein was hydrolysed using Alcalase, resulting in a hydrolysate (TMH10A) with a 10% degree of hydrolysis. The peptidome was analysed using LC-TIMS-MS/MS, yielding over 6000 sequences. These sequences were filtered using the PeptideRanker tool, selecting the top 100 sequences with scores >0.8. Bioactivity predictions indicated that specific peptides, particularly WLNSKGGF and GFIPYEPFLKKMMA, showed significant antimicrobial potential, particularly against bacteria, fungi and viruses. Correlations were found between antifungal activity and physicochemical properties such as net charge, hydrophobicity and isoelectric point. CONCLUSIONS The study identified specific T. molitor-derived peptides with strong predicted antimicrobial activity through in silico analysis. These peptides, particularly WLNSKGGF and GFIPYEPFLKKMMA, might offer potential applications in food safety and healthcare. Further experimental validation is required to confirm their efficacy. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Teresa Gonzalez‐de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of Medicine, University of SevilleSevilleSpain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSICUniversity of SevilleSevilleSpain
| | - Elvira Marquez‐Paradas
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of Medicine, University of SevilleSevilleSpain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSICUniversity of SevilleSevilleSpain
| | - Maria J Leon
- Department of Microbiology and ParasitologySchool of Pharmacy, University of SevilleSevilleSpain
| | - Sergio Montserrat‐de la Paz
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of Medicine, University of SevilleSevilleSpain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSICUniversity of SevilleSevilleSpain
| | - Fernando Rivero‐Pino
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of Medicine, University of SevilleSevilleSpain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSICUniversity of SevilleSevilleSpain
- European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods TeamParmaItaly
| |
Collapse
|
2
|
Yang MJ, Li MJ, Huang LD, Zhang XW, Huang YY, Gou XY, Chen SN, Yan J, Du P, Sun AH. Response regulator protein CiaR regulates the transcription of ccn-microRNAs and β-lactam antibiotic resistance conversion of Streptococcus pneumoniae. Int J Antimicrob Agents 2025; 65:107387. [PMID: 39566648 DOI: 10.1016/j.ijantimicag.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Streptococcus pneumoniae does not produce β-lactamases, and its reduced susceptibility to β-lactam antibiotics is predominantly caused by mutations of penicillin-binding proteins (PBPs). However, mechanisms of non-PBP mutation-related β-lactam antibiotic resistance in pneumococcal strains remain poorly characterized. METHODS Susceptibility of S. pneumoniae ATCC49619 and its ciaR gene knockout, complemented, or overexpression mutant (ΔciaR, CΔciaR, or ciaROE) to penicillin, cefotaxime, and imipenem was detected using an E-test. Levels of pneumococcal ciaR-mRNA, 5 ccn-microRNAs, and 6 pbps-mRNAs were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Recombinant CiaR (rCiaR) binding to the promoters of ccn-microRNA genes was confirmed using electrophoresis mobility shift and chromatin immunoprecipitation assays. Sequence matching between the ccn-microRNAs and pbps-mRNAs was analyzed using IntaRNA software. RESULTS S. pneumoniae ATCC49619 was sensitive to the 3 β-lactam antibiotics, but overexpression of CiaR, a response regulator protein in 2-component system, caused the increase of MICs against these antibiotics. The ciaROE mutant exhibited the significantly increased transcription of ccn-microRNAs but notably decreased transcription of pbps-mRNAs; conversely, the ΔciaR mutant displayed decreased levels of ccn-microRNAs and increasesed transcription of pbps-mRNAs. rCiaR was able to bind to the promoters of all ccn-microRNA genes in vitro and within cells. The 3 antibiotics at 1/8 minimal inhibitory concentrations caused a significant increase in the ciaR-mRNA and ccn-microRNAs. The mRNA-binding seed sequences in the 5 ccn-microRNAs matched all the promoter-containing sequences of pbps-mRNAs. CONCLUSIONS β-Lactam antibiotics at low concentrations induce non-PBP mutation-related antibiotic resistance conversion of S. pneumoniae by decrease of PBPs through the pathway of CiaR-mediated transcriptional increase of ccn-microRNAs and ccn-microRNA-dependent degradation of pbp-mRNAs.
Collapse
Affiliation(s)
- Mei-Juan Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China; The First Hospital of Putian City, Putian Fujian, PR China
| | - Meng-Jie Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Li-Dan Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China; Yiwu Central Blood Station, Yiwu, Zhejiang, PR China
| | - Xin-Wei Zhang
- The First Affiliated Hospital of Henan University, Kaifeng Henan, PR China
| | - Yan-Ying Huang
- Hangzhou Red Cross Hospital, Hangzhou Zhejiang, PR China
| | - Xiao-Yu Gou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Sui-Ning Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Jie Yan
- Zhejiang Provincial Society for Microbiology, Hangzhou, Zhejiang, PR China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Ai-Hua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
3
|
Rajput P, Nahar KS, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:1197. [PMID: 39766587 PMCID: PMC11672434 DOI: 10.3390/antibiotics13121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The prevalence of resistance in Gram-positive bacterial infections is rapidly rising, presenting a pressing global challenge for both healthcare systems and economies. The WHO categorizes these bacteria into critical, high, and medium priority groups based on the urgency for developing new antibiotics. While the first priority pathogen list was issued in 2017, the 2024 list remains largely unchanged. Despite six years having passed, the progress that has been made in developing novel treatment approaches remains insufficient, allowing antimicrobial resistance to persist and worsen on a global scale. Various strategies have been implemented to address this growing threat by targeting specific resistance mechanisms. This review evaluates antimicrobial resistance (AMR) in Gram-positive bacteria, highlighting its critical impact on global health due to the rise of multidrug-resistant pathogens. It focuses on the unique cell wall structure of Gram-positive bacteria, which influences their identification and susceptibility to antibiotics. The review explores the mechanisms of AMR, including enzymatic inactivation, modification of drug targets, limiting drug uptake, and increased drug efflux. It also examines the resistance strategies employed by high-priority Gram-positive pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecium, as identified in the WHO's 2024 priority list.
Collapse
Affiliation(s)
- Pratiksing Rajput
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Kazi S. Nahar
- Department of Natural Sciences, Faculty of Science & Technology, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK;
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| |
Collapse
|
4
|
Singh G, Hossain MA, Al-Fahad D, Gupta V, Tandon S, Soni H, Narasimhaji CV, Jaremko M, Emwas AH, Anwar MJ, Azam F. An in-silico approach to target multiple proteins involved in anti-microbial resistance using natural compounds produced by wild mushrooms. Biochem Biophys Rep 2024; 40:101854. [PMID: 39498442 PMCID: PMC11532805 DOI: 10.1016/j.bbrep.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Bacterial resistance to antibiotics and the number of patients infected by multi-drug-resistant bacteria have increased significantly over the past decade. This study follows a computational approach to identify potential antibacterial compounds from wild mushrooms. Twenty-six known compounds produced by wild mushrooms were docked to assess their affinity with drug targets of antibiotics such as penicillin-binding protein-1a (PBP1a), DNA gyrase, and isoleucyl-tRNA synthetase (ILERS). Docking scores were further validated by multiple receptor conformer (MRC)-based docking studies. Based on the MRC-based docking results, eight molecules were shortlisted for ADMET analysis. Molecular dynamics (MD) simulations were further performed to evaluate the conformational stability of the ligand-protein complexes. Binding energies were computed by the gmx_MMPBSA method. The data were obtained in terms of root-mean square deviation, and root-mean square fluctuation justified the stability of Austrocortilutein A, Austrocortirubin, and Confluentin in complex with several proteins under physiological conditions. Among these, Austrocortilutein A displayed better binding affinity with PBP1a and ILERS when compared with their respective reference ligands. This study is preliminary and aims to help drive the search for compounds that have the capacity to overcome the anti-microbial resistance of prevalent bacteria, using natural compounds produced by wild mushrooms. Further experimental validation is required to justify the clinical use of the studied compounds.
Collapse
Affiliation(s)
- Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India, 110016
| | - Md Alamgir Hossain
- Department of Pharmacy, Jagannath University, 9, 10 Chittaranjan Ave, Dhaka, 1100, Bangladesh
| | - Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Iraq
| | - Vandana Gupta
- Departments of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Smriti Tandon
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
| | - Hemant Soni
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
| | | | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51542, Saudi Arabia
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
5
|
Khatoon H, Abdul Malek E, Mohd Faudzi SM, Khan T, Shabbir Ahmed O. Synthesis of quinoxaline derivatives using different solvent systems, their potent antibacterial activities and molecular docking. RESULTS IN CHEMISTRY 2024; 7:101389. [DOI: 10.1016/j.rechem.2024.101389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
|
6
|
Chen XW, Wu JH, Liu YL, Munang’andu HM, Peng B. Fructose promotes ampicillin killing of antibiotic-resistant Streptococcus agalactiae. Virulence 2023; 14:2180938. [PMID: 36803528 PMCID: PMC9980678 DOI: 10.1080/21505594.2023.2180938] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Streptococcus agalactiae (GBS) is an important pathogenic bacteria that infected both aquatic animals and human beings, causing huge economic loss. The increasing cases of antibiotic-resistant GBS impose challenges to treat such infection by antibiotics. Thus, it is highly demanded for the approach to tackle antibiotic resistance in GBS. In this study, we adopt a metabolomic approach to identify the metabolic signature of ampicillin-resistant GBS (AR-GBS) that ampicillin is the routine choice to treat infection by GBS. We find glycolysis is significantly repressed in AR-GBS, and fructose is the crucial biomarker. Exogenous fructose not only reverses ampicillin resistance in AR-GBS but also in clinic isolates including methicillin-resistant Staphylococcus aureus (MRSA) and NDM-1 expressing Escherichia coli. The synergistic effect is confirmed in a zebrafish infection model. Furthermore, we demonstrate that the potentiation by fructose is dependent on glycolysis that enhances ampicillin uptake and the expression of penicillin-binding proteins, the ampicillin target. Our study demonstrates a novel approach to combat antibiotic resistance in GBS.
Collapse
Affiliation(s)
- Xuan-Wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-Han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Ying-Li Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | | | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,CONTACT Bo Peng
| |
Collapse
|
7
|
Hassan SS, Nader M, Nagy M, Mohamed M, Nader M, Zakaria M, Mohamed N, Waleed R, Rashidi FB. Antimicrobial screening involving Helicobacter pylori of nano-therapeutic compounds based on the amoxicillin antibiotic drug. Helicobacter 2023; 28:e13004. [PMID: 37391943 DOI: 10.1111/hel.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Nano-structure Cu(II) complex [Cu(AMAB)2 ]Cl2 with Schiff base (AMAB) derived from the condensation between 4-(dimethylamino)benzaldehyde and amoxicillin trihydrate was prepared. (AMAB) Schiff base and its Cu(II) complex were identified and confirmed by different physicochemical techniques. The Schiff base (AMAB) was coordinated to copper ion through carbonyl oxygen and imine nitrogen donor sites. X-ray powder diffraction shows a cubic crystal system of the Cu(II) complex. The density functional theory was used to optimize the structure geometries of the investigated compounds. The molecular docking of the active amino acids of the investigated proteins' interactions with the tested compounds was evaluated. The bactericidal or bacteriostatic effect of the compounds was screened against some bacterial strains. The activity of Cu-chelate against Gram-negative bacteria was mainly more effective than its (AMAB) ligand and vice versa in the case of Gram-positive bacteria. The biological activity of the prepared compounds with biomolecules calf thymus DNA (CT-DNA) was determined by electronic absorption spectra and DNA gel electrophoresis technique. All studies revealed that the Cu-chelate derivative exhibited better binding affinity to both CT-DNA than the AMAB and amoxicillin itself. The anti-inflammatory effect of the designed compounds was determined by testing their protein denaturation inhibitory activity spectrophotometrically. All obtained data supported that the designed nano-Cu(II) complex with Schiff base (AMAB) is a potent bactericide against H. pylori, and exhibits anti-inflammatory activity. The dual inhibition effects of the designed compound represent a modern therapeutic approach with extended spectrum of action. Therefore, it can act as good drug target in antimicrobial and anti-inflammtory therapies. Finally, H. pylori resistance to amoxicillin is absent or rare in many countries, thus amoxicillin nanoparticles may be beneficial for countries where amoxicillin resistance is reported.
Collapse
Affiliation(s)
- Safaa S Hassan
- Department of Chemistry, Inorganic Chemistry Division, Faculty of Science, Cairo University, Giza, Egypt
| | - Madonna Nader
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Maria Nagy
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mennatallah Mohamed
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mennatulla Nader
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mina Zakaria
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Nada Mohamed
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Rawan Waleed
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma B Rashidi
- Department of Chemistry, Biochemistry Division, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Hassan SS, Hanna DH, Medany SS. The double‐edged sword of the amoxicillin antibiotic against prostate cancer in nano palladium form and its electrochemical detection of dopamine. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Pd (II) complex was prepared from the interaction with Schiff base based on the condensation amoxicillin trihydrate drug and 4‐N,N‐dimethylaminobenzaldehyde. The complex was prepared on the nanoscale that was investigated using transmission electron microscopy (TEM). The chemical structure of the synthesized Schiff base and its Pd (II) chelate was proved through several techniques. Assays using MTT and lactate dehydrogenase verified the Pd (II) complex ability to inhibit human prostate cancer cells (PC3). According to the findings, the inhibition of PC3 cell growth was directly proportional to the dose of Pd (II) complex. Its highest IC50 value was attained after 48 h of incubation reached to 22.6 μg/mL. As a measure of DNA damage in PC3 cells, this IC50 value demonstrated a significant increase in early and late apoptotic cells with an intense comet nucleus. Given that the concentration of reactive oxygen species (ROS) in treated PC3 cells was much higher than in control ones. These results contributed to the notion that ROS‐mediated cell death, which may have taken place via the mitochondrial pathway, was the mechanism by which the Pd (II) complex inhibited the proliferation of PC3 cancer cells. The prepared Pd (II) complex was fabricated and casted onto GC electrode for investigate the dopamine concentration in human serum. The limit of detection and limit of quantization were found to be 0.0127 and 0.0424 μM, respectively, which were in a good agreement with literature and were found to be an improvement to that present in the literature.
Collapse
Affiliation(s)
- Safaa S. Hassan
- Department of Chemistry, Faculty of Science Cairo University 12613 Giza Egypt
| | - Demiana H. Hanna
- Department of Chemistry, Faculty of Science Cairo University 12613 Giza Egypt
| | - Shymaa S. Medany
- Department of Chemistry, Faculty of Science Cairo University 12613 Giza Egypt
| |
Collapse
|
9
|
Jacques LC, Green AE, Barton TE, Baltazar M, Aleksandrowicz J, Xu R, Trochu E, Kadioglu A, Neill DR. Influence of Streptococcus pneumoniae Within-Strain Population Diversity on Virulence and Pathogenesis. Microbiol Spectr 2023; 11:e0310322. [PMID: 36507681 PMCID: PMC9927508 DOI: 10.1128/spectrum.03103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The short generation time of many bacterial pathogens allows the accumulation of de novo mutations during routine culture procedures used for the preparation and propagation of bacterial stocks. Taking the major human pathogen Streptococcus pneumoniae as an example, we sought to determine the influence of standard laboratory handling of microbes on within-strain genetic diversity and explore how these changes influence virulence characteristics and experimental outcomes. A single culture of S. pneumoniae D39 grown overnight resulted in the enrichment of previously rare genotypes present in bacterial freezer stocks and the introduction of new variation to the bacterial population through the acquisition of mutations. A comparison of D39 stocks from different laboratories demonstrated how changes in bacterial population structure taking place during individual culture events can cumulatively lead to fixed, divergent change that profoundly alters virulence characteristics. The passage of D39 through mouse models of infection, a process used to standardize virulence, resulted in the enrichment of high-fitness genotypes that were originally rare (<2% frequency) in D39 culture collection stocks and the loss of previously dominant genotypes. In the most striking example, the selection of a <2%-frequency genotype carrying a mutation in sdhB, a gene thought to be essential for the establishment of lung infection, was associated with enhanced systemic virulence. Three separately passaged D39 cultures originating from the same frozen stocks showed considerable genetic divergence despite comparable virulence. IMPORTANCE Laboratory bacteriology involves the use of high-density cultures that we often assume to be clonal but that in reality are populations consisting of multiple genotypes at various abundances. We have demonstrated that the genetic structure of a single population of a widely used Streptococcus pneumoniae strain can be substantially altered by even short-term laboratory handling and culture and that, over time, this can lead to changes in virulence characteristics. Our findings suggest that caution should be applied when comparing data generated in different laboratories using the same strain but also when comparing data within laboratories over time. Given the dramatic reductions in the cost of next-generation sequencing technology in recent years, we advocate for the frequent sampling and sequencing of bacterial isolate collections.
Collapse
Affiliation(s)
- Laura C. Jacques
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Thomas E. Barton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Julia Aleksandrowicz
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rong Xu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erwan Trochu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Nguyen PTN, Le NV, Dinh HMN, Nguyen BQP, Nguyen TVA. Lung penetration and pneumococcal target binding of antibiotics in lower respiratory tract infection. Curr Med Res Opin 2022; 38:2085-2095. [PMID: 36189961 DOI: 10.1080/03007995.2022.2131304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To achieve the therapeutic effects, antibiotics must penetrate rapidly into infection sites and bind to targets. This study reviewed updated knowledge on the ability of antibiotics to penetrate into the lung, their physicochemical properties influencing the pulmonary penetration and their ability to bind to targets on pneumococci. METHODS A search strategy was developed using PubMED, Web of Science, and ChEMBL. Data on serum protein binding, drug concentration, target binding ability, drug transporters, lung penetration, physicochemical properties of antibiotics in low respiratory tract infection (LRTI) were collected. RESULTS It was seen that infection site-to-serum concentration ratios of most antibiotics are >1 at different time points except for ceftriaxone, clindamycin and vancomycin. Most agents have proper physicochemical properties that facilitate antibiotic penetration. In antimicrobial-resistant Streptococcus pneumoniae, the binding affinity of antibiotics to targets mostly decreases compared to that in susceptible strains. The data on binding affinity of linezolid, clindamycin and vancomycin were insufficient. The higher drug concentration at the infection sites compared to that in the blood can be associated with inflammation conditions. Little evidence showed the effect of drug transporters on the clinical efficacy of antibiotics against LRTI. CONCLUSIONS Data on antibiotic penetration into the lung in LRTI patients and binding affinity of antibiotics for pneumococcal targets are still limited. Further studies are required to clarify the associations of the lung penetration and target binding ability of antibitotics with therapeutic efficacy to help propose the right antibiotics for LRTI.
Collapse
Affiliation(s)
| | - Nho Van Le
- Danang University of Medical Technology and Pharmacy, Da Nang, Vietnam
| | | | | | - Thi Van Anh Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
11
|
Riazimontazer E, Heiran R, Jarrahpour A, Gholami A, Hashemi Z, Kazemi A. Molecular Docking and Antibacterial Assessment of Monocyclic
β
‐Lactams against Broad‐Spectrum and Nosocomial Multidrug‐Resistant Pathogens. ChemistrySelect 2022. [DOI: 10.1002/slct.202203373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elham Riazimontazer
- Biotechnology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Roghayeh Heiran
- Department of Chemistry Estahban Higher Education Center Estahban 74519 44655
| | - Aliasghar Jarrahpour
- Department of Chemistry College of Sciences Shiraz University Shiraz 71946-84795 Iran
| | - Ahmad Gholami
- Biotechnology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Zahra Hashemi
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Aboozar Kazemi
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| |
Collapse
|
12
|
Takata M, Ubukata K, Miyazaki H, Iwata S, Nakamura S. Diversity of amino acid substitutions of penicillin-binding proteins in penicillin-non-susceptible and non-vaccine type Streptococcus pneumoniae. J Infect Chemother 2022; 28:1523-1530. [PMID: 35963598 DOI: 10.1016/j.jiac.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE In Japan, the introduction of pneumococcal conjugate vaccine (PCV) in children has decreased vaccine-type (VT) pneumococcal infections caused by penicillin (PEN)-non-susceptible Streptococcus pneumoniae. PEN-non-susceptible strains have gradually emerged among non-vaccine types (NVT). In this study, we aim to investigate the pbp gene mutations and the characteristics of PEN-binding proteins (PBPs) that mediate PEN resistance in NVT strains. MATERIALS AND METHODS Pneumococcal 41 strains of NVT isolated from patients with invasive pneumococcal infection were randomly selected. Nucleotide sequences for pbp genes encoding PBP1A, PBP2X, and PBP2B were analyzed, and amino acid (AA) substitutions that contribute to β-lactam resistance were identified. In addition, the three-dimensional (3D) structure of abnormal PBPs in the resistant strain was compared with that of a reference R6 strain via homology modeling. RESULTS In PEN-non-susceptible NVT strains, Thr to Ala or Ser substitutions in the conserved AA motif (STMK) were important in PBP1A and PBP2X. In PBP2B, substitutions from Thr to Ala, adjacent to the SSN motif, and from Glu to Gly were essential. The 3D structure modeling indicated that AA substitutions are characterized by accumulation around the enzymatic active pocket in PBPs. Many AA substitutions detected throughout the PBP domains were not associated with resistance, except for AA substitutions in or adjacent to AA motifs. Clonal complexes and sequence types showed that almost all NVT cases originated in other countries and spread to Japan via repeat mutations. CONCLUSIONS NVT with diverse AA substitutions increased gradually with pressure from both antimicrobial agents and vaccines.
Collapse
Affiliation(s)
- Misako Takata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Kimiko Ubukata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan; Department of General Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Haruko Miyazaki
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Iwata
- Department of Infectious Diseases, National Cancer Hospital, Tokyo, Japan; Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
13
|
Abstract
Most bacteria are surrounded by a peptidoglycan cell wall that defines their shape and protects them from osmotic lysis. The expansion and division of this structure therefore plays an integral role in bacterial growth and division. Additionally, the biogenesis of the peptidoglycan layer is the target of many of our most effective antibiotics. Thus, a better understanding of how the cell wall is built will enable the development of new therapies to combat the rise of drug-resistant bacterial infections. This review covers recent advances in defining the mechanisms involved in assembling the peptidoglycan layer with an emphasis on discoveries related to the function and regulation of the cell elongation and division machineries in the model organisms Escherichia coli and Bacillus subtilis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Patricia D A Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
The penicillin binding protein 1A of Helicobacter pylori, its amoxicillin binding site and access routes. Gut Pathog 2021; 13:43. [PMID: 34183046 PMCID: PMC8240269 DOI: 10.1186/s13099-021-00438-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Amoxicillin-resistant H. pylori strains are increasing worldwide. To explore the potential resistance mechanisms involved, the 3D structure modeling and access tunnel prediction for penicillin-binding proteins (PBP1A) was performed, based on the Streptococcus pneumoniae, PBP 3D structure. Molecular covalent docking was used to determine the interactions between amoxicillin (AMX) and PBP1A. RESULTS The AMX-Ser368 covalent complex interacts with the binding site residues (Gly367, Ala369, ILE370, Lys371, Tyr416, Ser433, Thr541, Thr556, Gly557, Thr558, and Asn560) of PBP1A, non-covalently. Six tunnel-like structures, accessing the PBP1A binding site, were characterized, using the CAVER algorithm. Tunnel-1 was the ultimate access route, leading to the drug catalytic binding residue (Ser368). This tunnel comprises of eighteen amino acid residues, 8 of which are shared with the drug binding site. Subsequently, to screen the presence of PBP1A mutations, in the binding site and tunnel residues, in our clinical strains, in vitro assays were performed. H. pylori strains, isolated under gastroscopy, underwent AMX susceptibility testing by E-test. Of the 100 clinical strains tested, 4 were AMX-resistant. The transpeptidase domain of the pbp1a gene of these resistant, plus 10 randomly selected AMX-susceptible strains, were amplified and sequenced. Of the amino acids lining the tunnel-1 and binding site residues, three (Ser414Arg, Val469Met and Thr556Ser) substitutions, were detected in 2 of the 4 resistant and none of the sequenced susceptible strains, respectively. CONCLUSIONS We hypothesize that mutations in amino acid residues lining the binding site and/or tunnel-1, resulting in conformational/spatial changes, may block drug binding to PBP1A and cause AMX resistance.
Collapse
|
15
|
Recent advances in electrochemical sensors for amoxicillin detection in biological and environmental samples. Bioelectrochemistry 2020; 137:107687. [PMID: 33160182 DOI: 10.1016/j.bioelechem.2020.107687] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Amoxicillin (AMX) is among the most successful antibiotics used for human therapy. It is used extensively to prevent or treat bacterial infections in humans and animals. However, the widespread distribution and excess utilization of AMX can be an environmental and health risk due to the hazardous potential associated to its pharmaceutical industries effluents. Besides, their extensive use in food animal production may result in some undesirable residues in food, e.g. meat, eggs and milk. Consequently, at high enough concentrations in biological fluids, AMX may be responsible of various diseases such as nausea, vomiting, rashes, and antibiotic-associated colitis. For this reason, the detection and quantification of amoxicillin in pharmaceuticals, biological fluids, environmental samples and foodstuffs require new electroanalytical techniques with sensitive and rapid measurement abilities. This review discusses recent advances in the development of electrochemical sensors and bio-sensors for AMX analysis in complex matrices such as pharmaceuticals, biological fluids, environmental water and foodstuffs. The main electrochemical sensors used are based on chemically modified electrodes involving carbon materials and nanomaterials, nanoparticles, polymers and biological recognition molecules.
Collapse
|
16
|
Forde BM, Henderson A, Playford EG, Looke D, Henderson BC, Watson C, Steen JA, Sidjabat HE, Laurie G, Muttaiyah S, Nimmo GR, Lampe G, Smith H, Jennison AV, McCall B, Carroll H, Cooper MA, Paterson DL, Beatson SA. Fatal respiratory diphtheria caused by β-lactam-resistant Corynebacterium diphtheriae. Clin Infect Dis 2020; 73:e4531-e4538. [PMID: 32772111 DOI: 10.1093/cid/ciaa1147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/03/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Diphtheria is a potentially fatal respiratory disease caused by toxigenic Corynebacterium diphtheriae. Although resistance to erythromycin has been recognised, β-lactam resistance in toxigenic diphtheria has not been described. Here, we report a case of fatal respiratory diphtheria caused by toxigenic C. diphtheriae resistant to penicillin and all other β-lactam antibiotics and describe a novel mechanism of inducible carbapenem resistance associated with the acquisition of a mobile resistance element. METHODS Long-read whole genome sequencing was performed using Pacific Biosciences SMRT sequencing to determine the genome sequence of C. diphtheriae BQ11 and mechanism of β-lactam resistance. To investigate phenotypic inducibility of meropenem resistance, short read sequencing was performed using an Illumina NextSeq500 sequencer on the strain with and without exposure to meropenem. RESULTS BQ11 demonstrated high-level resistance to penicillin (benzylpenicillin MIC ≥ 256 μg/ml), β-lactam/β-lactamase inhibitors and cephalosporins (amoxicillin/clavulanic acid MIC ≥ 256 μg/mL; ceftriaxone MIC ≥ 8 μg/L). Genomic analysis of BQ11 identified acquisition of a novel transposon carrying the penicillin binding protein Pbp2c, responsible for resistance to penicillin and cephalosporins. When strain BQ11 was exposed to meropenem, selective pressure drove amplification of the transposon in a tandem array and led to a corresponding change from a low level to high level meropenem resistant phenotype. CONCLUSIONS We have identified a novel mechanism of inducible antibiotic resistance whereby isolates that appear to be carbapenem susceptible on initial testing can develop in vivo resistance to carbapenems with repeated exposure. This phenomenon could have significant implications for treatment of C. diphtheriae infection and may lead to clinical failure.
Collapse
Affiliation(s)
- Brian M Forde
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, QLD, Australia.,Australian Centre for Ecogenomics, University of Queensland, QLD, Australia
| | - Andrew Henderson
- University of Queensland Centre For Clinical Research, University of Queensland, QLD, Australia.,Infection Management Services, Princess Alexandra Hospital, QLD, Australia
| | - Elliott G Playford
- Infection Management Services, Princess Alexandra Hospital, QLD, Australia.,School of Medicine, University of Queensland, QLD, Australia
| | - David Looke
- Infection Management Services, Princess Alexandra Hospital, QLD, Australia.,School of Medicine, University of Queensland, QLD, Australia
| | | | - Catherine Watson
- Infection Management Services, Princess Alexandra Hospital, QLD, Australia
| | - Jason A Steen
- Institute for Molecular Biosciences, University of Queensland, QLD, Australia
| | - Hanna E Sidjabat
- Australian Infectious Diseases Research Centre, University of Queensland, QLD, Australia.,University of Queensland Centre For Clinical Research, University of Queensland, QLD, Australia
| | - Gordon Laurie
- Intensive Care Unit, Princess Alexandra Hospital, QLD, Australia
| | | | - Graeme R Nimmo
- Department of Microbiology, Pathology Queensland, QLD, Australia
| | - Guy Lampe
- Department of Anatomical Pathology, Pathology Queensland, QLD, Australia
| | - Helen Smith
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health
| | - Brad McCall
- Metro South Public Health Unit, Metro South Health, Brisbane, QLD, Australia
| | - Heidi Carroll
- Communicable Diseases Branch, Prevention Division, Department of Health, Queensland Health, QLD, Australia
| | - Matthew A Cooper
- Institute for Molecular Biosciences, University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, University of Queensland, QLD, Australia.,University of Queensland Centre For Clinical Research, University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, QLD, Australia.,Australian Centre for Ecogenomics, University of Queensland, QLD, Australia
| |
Collapse
|
17
|
Singh A, Turner JM, Tomberg J, Fedarovich A, Unemo M, Nicholas RA, Davies C. Mutations in penicillin-binding protein 2 from cephalosporin-resistant Neisseria gonorrhoeae hinder ceftriaxone acylation by restricting protein dynamics. J Biol Chem 2020; 295:7529-7543. [PMID: 32253235 PMCID: PMC7247294 DOI: 10.1074/jbc.ra120.012617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
The global incidence of the sexually transmitted disease gonorrhea is expected to rise due to the spread of Neisseria gonorrhoeae strains with decreased susceptibility to extended-spectrum cephalosporins (ESCs). ESC resistance is conferred by mosaic variants of penicillin-binding protein 2 (PBP2) that have diminished capacity to form acylated adducts with cephalosporins. To elucidate the molecular mechanisms of ESC resistance, we conducted a biochemical and high-resolution structural analysis of PBP2 variants derived from the decreased-susceptibility N. gonorrhoeae strain 35/02 and ESC-resistant strain H041. Our data reveal that mutations both lower affinity of PBP2 for ceftriaxone and restrict conformational changes that normally accompany acylation. Specifically, we observe that a G545S substitution hinders rotation of the β3 strand necessary to form the oxyanion hole for acylation and also traps ceftriaxone in a noncanonical configuration. In addition, F504L and N512Y substitutions appear to prevent bending of the β3-β4 loop that is required to contact the R1 group of ceftriaxone in the active site. Other mutations also appear to act by reducing flexibility in the protein. Overall, our findings reveal that restriction of protein dynamics in PBP2 underpins the ESC resistance of N. gonorrhoeae.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jonathan M Turner
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joshua Tomberg
- Departments of Pharmacology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert A Nicholas
- Departments of Pharmacology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
18
|
Wang Y, Xu J, Kong L, Li B, Li H, Huang WE, Zheng C. Raman-activated sorting of antibiotic-resistant bacteria in human gut microbiota. Environ Microbiol 2020; 22:2613-2624. [PMID: 32114713 PMCID: PMC7383503 DOI: 10.1111/1462-2920.14962] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/26/2020] [Indexed: 01/12/2023]
Abstract
The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA‐ARB) in situ at the single‐cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA‐ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA‐ARB, Raman‐activated cell sorting (RACS) was used to sort MA‐ARB from human gut microbiota, and mini‐metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA‐ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single‐cell level.
Collapse
Affiliation(s)
- Yi Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.,Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Lingchao Kong
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bei Li
- The State Key Lab of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, CAS, 130033, Changchun, China.,HOOKE Instruments Ltd., 130033, Changchun, China
| | - Hang Li
- HOOKE Instruments Ltd., 130033, Changchun, China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
19
|
Lau CHF, DeJong EN, Dussault F, Carrillo C, Stogios PJ, Savchenko A, Topp E. A penicillin-binding protein that can promote advanced-generation cephalosporin resistance and genome adaptation in the opportunistic pathogen Pseudomonas aeruginosa. Int J Antimicrob Agents 2020; 55:105896. [PMID: 31927042 DOI: 10.1016/j.ijantimicag.2020.105896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/16/2019] [Accepted: 01/04/2020] [Indexed: 11/28/2022]
Abstract
A previous soil metagenomics study recovered a novel cephalosporin resistance determinant, pbpTET A6, for which the exact resistance mechanism was unclear. This study used a three-dimensional structure-guided mutagenesis approach to demonstrate that PBPTET A6 is likely to be a class A penicillin-binding protein (PBP), and that its ability to confer cephalosporin resistance is directly linked to the functional integrity of its transpeptidase (TP) catalytic core. Screening of a library of PBPTET A6 variants carrying randomly introduced point mutations revealed additional residue modifications that compromised resistance, all of which were proximal to the TP active site except one which was found in a 29-amino-acid-long superstructure (α6-α7 loop) absent in other class A PBP homologues. Based on the site-specific mutagenesis results, it is hypothesized that residue arginine-400 plays an important role in limiting the access of certain cephalosporin compounds to the enzymatic core of the TP domain of PBPTET A6. Using a combination of adaptive evolution assays and whole-genome sequencing, the potential impact of PBPTET A6 on promoting the development of resistance in the clinically significant opportunistic pathogen Pseudomonas aeruginosa was investigated. Under the selective pressure of serial ceftazidime exposures, the pbpTET A6-expressing P. aeruginosa population readily evolved by excluding a ~400-kbp chromosomal element to acquire additional resistance against cephalosporins, suggesting that PBPTET A6 has a catalytic effect on facilitating antibiotic-resistance-associated genome adaptation. Overall, the soil environment contains genes conferring resistance to critically important antibiotics by cryptic mechanisms. Understanding what impact anthropogenic activities might have on the abundance and evolution of these genes should be a priority.
Collapse
Affiliation(s)
- Calvin Ho-Fung Lau
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada; Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada.
| | - Erica N DeJong
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Forest Dussault
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Catherine Carrillo
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Center for Structural Genomics of Infectious Diseases
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Center for Structural Genomics of Infectious Diseases; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
20
|
Singh A, Tomberg J, Nicholas RA, Davies C. Recognition of the β-lactam carboxylate triggers acylation of Neisseria gonorrhoeae penicillin-binding protein 2. J Biol Chem 2019; 294:14020-14032. [PMID: 31362987 PMCID: PMC6755799 DOI: 10.1074/jbc.ra119.009942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Indexed: 01/07/2023] Open
Abstract
Resistance of Neisseria gonorrhoeae to extended-spectrum cephalosporins (ESCs) has become a major threat to human health. The primary mechanism by which N. gonorrhoeae becomes resistant to ESCs is by acquiring a mosaic penA allele, encoding penicillin-binding protein 2 (PBP2) variants containing up to 62 mutations compared with WT, of which a subset contribute to resistance. To interpret molecular mechanisms underpinning cephalosporin resistance, it is necessary to know how PBP2 is acylated by ESCs. Here, we report the crystal structures of the transpeptidase domain of WT PBP2 in complex with cefixime and ceftriaxone, along with structures of PBP2 in the apo form and with a phosphate ion bound in the active site at resolutions of 1-7-1.9 Å. These structures reveal that acylation of PBP2 by ESCs is accompanied by rotation of the Thr-498 side chain in the KTG motif to contact the cephalosporin carboxylate, twisting of the β3 strand to form the oxyanion hole, and rolling of the β3-β4 loop toward the active site. Recognition of the cephalosporin carboxylate appears to be the key trigger for formation of an acylation-competent state of PBP2. The structures also begin to explain the impact of mutations implicated in ESC resistance. In particular, a G545S mutation may hinder twisting of β3 because its side chain hydroxyl forms a hydrogen bond with Thr-498. Overall, our data suggest that acylation is initiated by conformational changes elicited or trapped by binding of ESCs and that these movements are restricted by mutations associated with resistance against ESCs.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joshua Tomberg
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, To whom correspondence should be addressed:
Dept. of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425. Tel.:
843-876-2302; Fax:
843-792-8568; E-mail:
| |
Collapse
|
21
|
Miyachiro MM, Contreras-Martel C, Dessen A. Penicillin-Binding Proteins (PBPs) and Bacterial Cell Wall Elongation Complexes. Subcell Biochem 2019; 93:273-289. [PMID: 31939154 DOI: 10.1007/978-3-030-28151-9_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial cell wall is the validated target of mainstream antimicrobials such as penicillin and vancomycin. Penicillin and other β-lactams act by targeting Penicillin-Binding Proteins (PBPs), enzymes that play key roles in the biosynthesis of the main component of the cell wall, the peptidoglycan. Despite the spread of resistance towards these drugs, the bacterial cell wall continues to be a major Achilles' heel for microbial survival, and the exploration of the cell wall formation machinery is a vast field of work that can lead to the development of novel exciting therapies. The sheer complexity of the cell wall formation process, however, has created a significant challenge for the study of the macromolecular interactions that regulate peptidoglycan biosynthesis. New developments in genetic and biochemical screens, as well as different aspects of structural biology, have shed new light on the importance of complexes formed by PBPs, notably within the cell wall elongation machinery. This chapter summarizes structural and functional details of PBP complexes involved in the periplasmic and membrane steps of peptidoglycan biosynthesis with a focus on cell wall elongation. These assemblies could represent interesting new targets for the eventual development of original antibacterials.
Collapse
Affiliation(s)
- Mayara M Miyachiro
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil
| | - Carlos Contreras-Martel
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil. .,Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France.
| |
Collapse
|
22
|
Carbapenem-Nonsusceptible Haemophilus influenzae with Penicillin-Binding Protein 3 Containing an Amino Acid Insertion. Antimicrob Agents Chemother 2018; 62:AAC.00671-18. [PMID: 29784853 DOI: 10.1128/aac.00671-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/16/2018] [Indexed: 01/29/2023] Open
Abstract
The prevalence of β-lactamase-negative ampicillin-resistant (BLNAR) Haemophilus influenzae has become a clinical concern. In BLNAR isolates, amino acid substitutions in penicillin-binding protein 3 (PBP3) are relevant to the β-lactam resistance. Carbapenem-nonsusceptible H. influenzae isolates have been rarely reported. Through antimicrobial susceptibility testing, nucleotide sequence analysis of ftsI, encoding PBP3, and the utilization of a collection of H. influenzae clinical isolates in our laboratory, we obtained a carbapenem-nonsusceptible clinical isolate (NUBL1772) that possesses an altered PBP3 containing V525_N526insM. The aim of this study was to reveal the effect of altered PBP3 containing V525_N526insM on reduced carbapenem susceptibility. After generating recombinant strains with altered ftsI, we performed antimicrobial susceptibility testing and competitive binding assays with fluorescent penicillin (Bocillin FL) and carbapenems. Elevated carbapenem MICs were found for the recombinant strain harboring the entire ftsI gene of NUBL1772. The recombinant PBP3 of NUBL1772 also exhibited reduced binding to carbapenems. These results demonstrate that altered PBP3 containing V525_N526insM influences the reduced carbapenem susceptibility. The revertant mutant lacking the V525_N526insM exhibited lower MICs for carbapenems than NUBL1772, suggesting that this insertion affects reduced carbapenem susceptibility. The MICs of β-lactams for NUBL1772 were higher than those for the recombinant possessing ftsI of NUBL1772. NUBL1772 harbored AcrR with early termination, resulting in low-level transcription of acrB and high efflux pump activity. These findings suggest that the disruption of AcrR also contributes to the reduced carbapenem susceptibility found in NUBL1772. Our results provide the first evidence that the altered PBP3 containing V525_N526insM is responsible for the reduced susceptibility to carbapenems in H. influenzae.
Collapse
|
23
|
Behmard E, Najafi A, Ahmadi A. Understanding the resistance mechanism of penicillin binding protein 1a mutant against cefotaxime using molecular dynamic simulation. J Biomol Struct Dyn 2018; 37:741-749. [PMID: 29429394 DOI: 10.1080/07391102.2018.1439404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance is a threatening challenge for global health, as the expansion of resistance to current antibiotics has made serious therapeutic problems. Genome mutations are key evolutionary mechanisms conferring antibiotic resistance in bacterial pathogens. For example, penicillin and cephalosporins resistance is mostly mediated by mutations in penicillin binding proteins to change the affinity of the drug. Accordingly, threonine point mutations were reported to develop antibiotic resistance in various bacterial infections including pneumococcal infections. In this study, conventional molecular dynamics simulations, umbrella sampling simulations and MM/GBSA free energy calculations were applied to figure out how the Threonine to Alanine mutation (T to A) at STMK motif affects the binding of cefotaxime to Penicillin Binding Protein 1a and to reveal the resistance mechanism induced by the T to A mutation. The results obtained from the computational methods demonstrate that the T to A mutation increases the flexibility of the binding pocket and changes its conformation, which leads to increased conformational entropy change (-TΔS) and attenuates the bonds between the ligand and the receptor. In brief, our findings indicate that both of the alterations of the conformational enthalpy and entropy contribute to the T to A-induced resistance in the binding of cefotaxime into penicillin binding protein 1a.
Collapse
Affiliation(s)
- Esmaeil Behmard
- a Molecular Biology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ali Najafi
- a Molecular Biology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ali Ahmadi
- a Molecular Biology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
24
|
Tomberg J, Fedarovich A, Vincent LR, Jerse AE, Unemo M, Davies C, Nicholas RA. Alanine 501 Mutations in Penicillin-Binding Protein 2 from Neisseria gonorrhoeae: Structure, Mechanism, and Effects on Cephalosporin Resistance and Biological Fitness. Biochemistry 2017; 56:1140-1150. [PMID: 28145684 DOI: 10.1021/acs.biochem.6b01030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Resistance of Neisseria gonorrhoeae to expanded-spectrum cephalosporins such as ceftriaxone and cefixime has increased markedly in the past decade. The primary cephalosporin resistance determinant is a mutated penA gene, which encodes the essential peptidoglycan transpeptidase, penicillin-binding protein 2 (PBP2). Decreased susceptibility and resistance can be conferred by mosaic penA alleles containing upward of 60 amino acid changes relative to wild-type PBP2, or by nonmosaic alleles with relatively few mutations, the most important of which occurs at Ala501 located near the active site of PBP2. Recently, fully cefixime- and ceftriaxone-resistant clinical isolates that harbored a mosaic penA allele with an A501P mutation were identified. To examine the potential of mutations at Ala501 to increase resistance to expanded-spectrum cephalosporins, we randomized codon 501 in a mosaic penA allele and transformed N. gonorrhoeae to increased cefixime resistance. Interestingly, only five substitutions of Ala501 (A501V, A501T, A501P, A501R, and A501S) that increased resistance and preserved essential transpeptidase function were isolated. To understand their structural implications, these mutations were introduced into the nonmosaic PBP2-6140CT, which contains four C-terminal mutations present in PBP2 from the penicillin-resistant strain FA6140. The crystal structure of PBP2-6140CT-A501T was determined and revealed ordering of a loop near the active site and a new hydrogen bond involving Thr501 that connects the loop and the SxxK conserved active site motif. The structure suggests that increased rigidity in the active site region is a mechanism for cephalosporin resistance mediated by Ala501 mutations in PBP2.
Collapse
Affiliation(s)
- Joshua Tomberg
- Department of Pharmacology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7365, United States
| | - Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Leah R Vincent
- Department of Microbiology, Uniformed Services University , Bethesda, Maryland 20814, United States
| | - Ann E Jerse
- Department of Microbiology, Uniformed Services University , Bethesda, Maryland 20814, United States
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Microbiology, Örebro University Hospital , Örebro, Sweden
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7365, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7365, United States
| |
Collapse
|
25
|
Calvez P, Breukink E, Roper DI, Dib M, Contreras-Martel C, Zapun A. Substitutions in PBP2b from β-Lactam-resistant Streptococcus pneumoniae Have Different Effects on Enzymatic Activity and Drug Reactivity. J Biol Chem 2017; 292:2854-2865. [PMID: 28062575 DOI: 10.1074/jbc.m116.764696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Pneumococcus resists β-lactams by expressing variants of its target enzymes, the penicillin-binding proteins (PBPs), with many amino acid substitutions. Up to 10% of the sequence can be modified. These altered PBPs have a much reduced reactivity with the drugs but retain their physiological activity of cross-linking the peptidoglycan, the major constituent of the bacterial cell wall. However, because β-lactams are chemical and structural mimics of the natural substrate, resistance mediated by altered PBPs raises the following paradox: how PBPs that react poorly with the drugs maintain a sufficient level of activity with the physiological substrate. This question is addressed for the first time in this study, which compares the peptidoglycan cross-linking activity of PBP2b from susceptible and resistant strains with their inhibition by different β-lactams. Unexpectedly, the enzymatic activity of the variants did not correlate with their antibiotic reactivity. This finding indicates that some of the numerous amino acid substitutions were selected to restore a viable level of enzymatic activity by a compensatory molecular mechanism.
Collapse
Affiliation(s)
- Philippe Calvez
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Eefjan Breukink
- the Department of Chemical Biology and Organic Chemistry, Institute of Biomembranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, The Netherlands, and
| | - David I Roper
- the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mélanie Dib
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Carlos Contreras-Martel
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - André Zapun
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France,
| |
Collapse
|
26
|
Kim L, McGee L, Tomczyk S, Beall B. Biological and Epidemiological Features of Antibiotic-Resistant Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective. Clin Microbiol Rev 2016; 29:525-52. [PMID: 27076637 PMCID: PMC4861989 DOI: 10.1128/cmr.00058-15] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae inflicts a huge disease burden as the leading cause of community-acquired pneumonia and meningitis. Soon after mainstream antibiotic usage, multiresistant pneumococcal clones emerged and disseminated worldwide. Resistant clones are generated through adaptation to antibiotic pressures imposed while naturally residing within the human upper respiratory tract. Here, a huge array of related commensal streptococcal strains transfers core genomic and accessory resistance determinants to the highly transformable pneumococcus. β-Lactam resistance is the hallmark of pneumococcal adaptability, requiring multiple independent recombination events that are traceable to nonpneumococcal origins and stably perpetuated in multiresistant clonal complexes. Pneumococcal strains with elevated MICs of β-lactams are most often resistant to additional antibiotics. Basic underlying mechanisms of most pneumococcal resistances have been identified, although new insights that increase our understanding are continually provided. Although all pneumococcal infections can be successfully treated with antibiotics, the available choices are limited for some strains. Invasive pneumococcal disease data compiled during 1998 to 2013 through the population-based Active Bacterial Core surveillance program (U.S. population base of 30,600,000) demonstrate that targeting prevalent capsular serotypes with conjugate vaccines (7-valent and 13-valent vaccines implemented in 2000 and 2010, respectively) is extremely effective in reducing resistant infections. Nonetheless, resistant non-vaccine-serotype clones continue to emerge and expand.
Collapse
Affiliation(s)
- Lindsay Kim
- Epidemiology Section, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Streptococcus Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sara Tomczyk
- Epidemiology Section, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Streptococcus Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Dick M, Hartmann R, Weiergräber OH, Bisterfeld C, Classen T, Schwarten M, Neudecker P, Willbold D, Pietruszka J. Mechanism-based inhibition of an aldolase at high concentrations of its natural substrate acetaldehyde: structural insights and protective strategies. Chem Sci 2016; 7:4492-4502. [PMID: 30155096 PMCID: PMC6016325 DOI: 10.1039/c5sc04574f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/29/2016] [Indexed: 11/21/2022] Open
Abstract
2-Deoxy-d-ribose-5-phosphate aldolase (DERA) is used in organic synthesis for the enantioselective reaction between acetaldehyde and a broad range of other aldehydes as acceptor molecules. Nevertheless, its application is hampered by a poor tolerance towards high concentrations of acetaldehyde, its natural substrate. While numerous studies have been performed searching for new, more acetaldehyde-resistant DERAs, the mechanism underlying this deactivation process has remained elusive. By using NMR spectroscopy on both the protein and the small-molecule scale, we could show that a reaction product binds to the inner part of the enzyme, and that this effect can be partly reversed via heating. The crystal structure of DERA before and after acetaldehyde incubation was determined at high resolution, revealing a covalently bound reaction product bridging the catalytically active lysine (K167) to a nearby cysteine (C47) in the deactivated enzyme. A reaction mechanism is proposed where crotonaldehyde as the aldol product of two acetaldehyde molecules after water elimination forms a Schiff base with the lysine side chain, followed by Michael addition of the cysteine thiol group to the Cβ atom of the inhibitor. In support of this mechanism, direct incubation of DERA with crotonaldehyde results in a more than 100-fold stronger inhibition, compared to acetaldehyde, whereas mutation of C47 gives rise to a fully acetaldehyde-resistant DERA. Thus this variant appears perfectly suited for synthetic applications. A similar diagnostic and preventive strategy should be applicable to other biocatalysts suffering from mechanism-based inhibition by a reactive substrate, a condition that may be more common than currently appreciated in biotechnology.
Collapse
Affiliation(s)
- Markus Dick
- Institute of Bioorganic Chemistry , Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich , 52426 Jülich , Germany .
| | - Rudolf Hartmann
- Institute of Complex Systems , ICS-6: Structural Biochemistry , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Oliver H Weiergräber
- Institute of Complex Systems , ICS-6: Structural Biochemistry , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Carolin Bisterfeld
- Institute of Bioorganic Chemistry , Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich , 52426 Jülich , Germany .
| | - Thomas Classen
- Institute of Bio- and Geosciences , IBG-1: Biotechnology , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Melanie Schwarten
- Institute of Complex Systems , ICS-6: Structural Biochemistry , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Philipp Neudecker
- Institute of Complex Systems , ICS-6: Structural Biochemistry , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
- Institut für Physikalische Biologie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany
| | - Dieter Willbold
- Institute of Complex Systems , ICS-6: Structural Biochemistry , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
- Institut für Physikalische Biologie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry , Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich , 52426 Jülich , Germany .
- Institute of Bio- and Geosciences , IBG-1: Biotechnology , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| |
Collapse
|
28
|
Li Y, Metcalf BJ, Chochua S, Li Z, Gertz RE, Walker H, Hawkins PA, Tran T, Whitney CG, McGee L, Beall BW. Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae. mBio 2016; 7:e00756-16. [PMID: 27302760 PMCID: PMC4916381 DOI: 10.1128/mbio.00756-16] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED β-Lactam antibiotics are the drugs of choice to treat pneumococcal infections. The spread of β-lactam-resistant pneumococci is a major concern in choosing an effective therapy for patients. Systematically tracking β-lactam resistance could benefit disease surveillance. Here we developed a classification system in which a pneumococcal isolate is assigned to a "PBP type" based on sequence signatures in the transpeptidase domains (TPDs) of the three critical penicillin-binding proteins (PBPs), PBP1a, PBP2b, and PBP2x. We identified 307 unique PBP types from 2,528 invasive pneumococcal isolates, which had known MICs to six β-lactams based on broth microdilution. We found that increased β-lactam MICs strongly correlated with PBP types containing divergent TPD sequences. The PBP type explained 94 to 99% of variation in MICs both before and after accounting for genomic backgrounds defined by multilocus sequence typing, indicating that genomic backgrounds made little independent contribution to β-lactam MICs at the population level. We further developed and evaluated predictive models of MICs based on PBP type. Compared to microdilution MICs, MICs predicted by PBP type showed essential agreement (MICs agree within 1 dilution) of >98%, category agreement (interpretive results agree) of >94%, a major discrepancy (sensitive isolate predicted as resistant) rate of <3%, and a very major discrepancy (resistant isolate predicted as sensitive) rate of <2% for all six β-lactams. Thus, the PBP transpeptidase signatures are robust indicators of MICs to different β-lactam antibiotics in clinical pneumococcal isolates and serve as an accurate alternative to phenotypic susceptibility testing. IMPORTANCE The human pathogen Streptococcus pneumoniae is a leading cause of morbidity and mortality worldwide. β-Lactam antibiotics such as penicillin and ceftriaxone are the drugs of choice to treat pneumococcal infections. Some pneumococcal strains have developed β-lactam resistance through altering their penicillin-binding proteins (PBPs) and have become a major concern in choosing effective patient therapy. To systematically track and predict β-lactam resistance, we obtained the sequence signatures of PBPs from a large collection of clinical pneumococcal isolates using whole-genome sequencing data and found that these "PBP types" were predictive of resistance levels. Our findings can benefit the current era of strain surveillance when whole-genome sequencing data often lacks detailed resistance information. Using PBP positions that we found are always substituted within highly resistant strains may lead to further refinements. Sequence-based predictions are accurate and may lead to the ability to extract critical resistance information from nonculturable clinical specimens.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - Robert E Gertz
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - Hollis Walker
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - Paulina A Hawkins
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - Theresa Tran
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - Cynthia G Whitney
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - Bernard W Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Filippova EV, Kieser KJ, Luan CH, Wawrzak Z, Kiryukhina O, Rubin EJ, Anderson WF. Crystal structures of the transpeptidase domain of the Mycobacterium tuberculosis penicillin-binding protein PonA1 reveal potential mechanisms of antibiotic resistance. FEBS J 2016; 283:2206-18. [PMID: 27101811 PMCID: PMC5245116 DOI: 10.1111/febs.13738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/30/2016] [Accepted: 04/15/2016] [Indexed: 01/21/2023]
Abstract
UNLABELLED Mycobacterium tuberculosis is a human respiratory pathogen that causes the deadly disease tuberculosis. The rapid global spread of antibiotic-resistant M. tuberculosis makes tuberculosis infections difficult to treat. To overcome this problem new effective antimicrobial strategies are urgently needed. One promising target for new therapeutic approaches is PonA1, a class A penicillin-binding protein, which is required for maintaining physiological cell wall synthesis and cell shape during growth in mycobacteria. Here, crystal structures of the transpeptidase domain, the enzymatic domain responsible for penicillin binding, of PonA1 from M. tuberculosis in the inhibitor-free form and in complex with penicillin V are reported. We used site-directed mutagenesis, antibiotic profiling experiments, and fluorescence thermal shift assays to measure PonA1's sensitivity to different classes of β-lactams. Structural comparison of the PonA1 apo-form and the antibiotic-bound form shows that binding of penicillin V induces conformational changes in the position of the loop β4'-α3 surrounding the penicillin-binding site. We have also found that binding of different antibiotics including penicillin V positively impacts protein stability, while other tested β-lactams such as clavulanate or meropenem resulted in destabilization of PonA1. Our antibiotic profiling experiments indicate that the transpeptidase activity of PonA1 in both M. tuberculosis and M. smegmatis mediates tolerance to specific cell wall-targeting antibiotics, particularly to penicillin V and meropenem. Because M. tuberculosis is an important human pathogen, these structural data provide a template to design novel transpeptidase inhibitors to treat tuberculosis infections. DATABASE Structural data are available in the PDB database under the accession numbers 5CRF and 5CXW.
Collapse
Affiliation(s)
- Ekaterina V Filippova
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Midwest Center for Structural Genomics (MCSG), Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen J Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chi-Hao Luan
- Midwest Center for Structural Genomics (MCSG), Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Zdzislaw Wawrzak
- Life Science Collaborative Access Team, Synchrotron Research Center, Northwestern University, Evanston, IL, USA
| | - Olga Kiryukhina
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Midwest Center for Structural Genomics (MCSG), Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Midwest Center for Structural Genomics (MCSG), Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
30
|
Fisher JF, Mobashery S. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025221. [PMID: 27091943 DOI: 10.1101/cshperspect.a025221] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The value of the β-lactam antibiotics for the control of bacterial infection has eroded with time. Three Gram-positive human pathogens that were once routinely susceptible to β-lactam chemotherapy-Streptococcus pneumoniae, Enterococcus faecium, and Staphylococcus aureus-now are not. Although a fourth bacterium, the acid-fast (but not Gram-positive-staining) Mycobacterium tuberculosis, has intrinsic resistance to earlier β-lactams, the emergence of strains of this bacterium resistant to virtually all other antibiotics has compelled the evaluation of newer β-lactam combinations as possible contributors to the multidrug chemotherapy required to control tubercular infection. The emerging molecular-level understanding of these resistance mechanisms used by these four bacteria provides the conceptual framework for bringing forward new β-lactams, and new β-lactam strategies, for the future control of their infections.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670
| |
Collapse
|
31
|
Metcalf BJ, Gertz RE, Gladstone RA, Walker H, Sherwood LK, Jackson D, Li Z, Law C, Hawkins PA, Chochua S, Sheth M, Rayamajhi N, Bentley SD, Kim L, Whitney CG, McGee L, Beall B. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin Microbiol Infect 2015; 22:60.e9-60.e29. [PMID: 26363404 PMCID: PMC4721534 DOI: 10.1016/j.cmi.2015.08.027] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/28/2015] [Accepted: 08/29/2015] [Indexed: 11/24/2022]
Abstract
The effect of second-generation pneumococcal conjugate vaccines on invasive pneumococcal disease (IPD) strain distributions have not yet been well described. We analysed IPD isolates recovered from children aged <5 years through Active Bacterial Core surveillance before (2008–2009; n = 828) and after (2011–2013; n = 600) 13-valent pneumococcal conjugate vaccine (PCV13) implementation. We employed conventional testing, PCR/electrospray ionization mass spectrometry and whole genome sequence (WGS) analysis to identify serotypes, resistance features, genotypes, and pilus types. PCV13, licensed in February 2010, effectively targeted all major 19A and 7F genotypes, and decreased antimicrobial resistance, primarily owing to removal of the 19A/ST320 complex. The strain complex contributing most to the remaining β-lactam resistance during 2011–2013 was 35B/ST558. Significant emergence of non-vaccine clonal complexes was not evident. Because of the removal of vaccine serotype strains, positivity for one or both pilus types (PI-1 and PI-2) decreased in the post-PCV13 years 2011–2013 relative to 2008–2009 (decreases of 32–55% for PI-1, and >95% for PI-2 and combined PI-1 + PI-2). β-Lactam susceptibility phenotypes correlated consistently with transpeptidase region sequence combinations of the three major penicillin-binding proteins (PBPs) determined through WGS analysis. Other major resistance features were predictable by DNA signatures from WGS analysis. Multilocus sequence data combined with PBP combinations identified progeny, serotype donors and recipient strains in serotype switch events. PCV13 decreased the frequency of all PCV13 serotype clones and concurrently decreased the frequency of strain subsets with resistance and/or adherence features conducive to successful carriage. Our results serve as a reference describing key features of current paediatric IPD strains in the USA after PCV13 implementation.
Collapse
Affiliation(s)
- B J Metcalf
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - R E Gertz
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - R A Gladstone
- Wellcome Trust Sanger Institute, Hinxton, UK; Department of Medicine, Addenbrookes Hospital, University of Cambridge, UK
| | - H Walker
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - L K Sherwood
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - D Jackson
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Z Li
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - C Law
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - P A Hawkins
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - S Chochua
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - M Sheth
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA
| | - N Rayamajhi
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - S D Bentley
- Wellcome Trust Sanger Institute, Hinxton, UK; Department of Medicine, Addenbrookes Hospital, University of Cambridge, UK
| | - L Kim
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - C G Whitney
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - L McGee
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - B Beall
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA.
| | | |
Collapse
|
32
|
Nikolaidis I, Favini-Stabile S, Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci 2014; 23:243-59. [PMID: 24375653 DOI: 10.1002/pro.2414] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 11/10/2022]
Abstract
Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.
Collapse
Affiliation(s)
- I Nikolaidis
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, 6 rue Jules Horowitz, 38027, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France; Centre National de la Recherche Scientifique (CNRS), UMR 5075, Grenoble, France; Bijvoet Center for Biomolecular Research, Department of Biochemistry of Membranes, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
33
|
Ramalingam J, Vennila J, Subbiah P. Computational studies on the resistance of penicillin-binding protein 2B (PBP2B) of wild-type and mutant strains of Streptococcus pneumoniae against β-lactam antibiotics. Chem Biol Drug Des 2013; 82:275-89. [PMID: 22448818 DOI: 10.1111/j.1747-0285.2012.01387.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations within transpeptidase domain of penicillin-binding protein 2B of the strains of Streptococcus pneumoniae leads to resistance against β-lactam antibiotics. To uncover the important residues responsible for sensitivity and resistance, the recently determined three dimensional structures of penicillin-binding protein 2B of both wild-type R6 (sensitive) and mutant 5204 (resistant) strains along with the predicted structures of other mutant strains G54, Hungary19A-6 and SP195 were considered for the interaction study with β-lactam antibiotics using induced-fit docking of Schrödinger. Associated binding energies of the complexes and their intermolecular interactions in the binding site clearly show that the wild-type R6 as sensitive, mutant strains 5204 and G54 as highly resistant, and the mutant strains Hungary19A-6 and SP195 as intermediate resistant. The study also reveals that the mutant strains Hungary19A-6 and SP195 exhibit intermediate resistant because of the existence of mutations till the intermediate 538th and 516th positions, respectively, and not till the end of the C-terminus. Furthermore, our investigations show that if the mutations are extended till the end of the C terminus, then the antibiotic resistance of induced-mutated strains increases from intermediate to high as in the strains 5204 and G54. The binding patterns obtained in the study are useful in designing potential inhibitors against multidrug resistant S. pneumoniae.
Collapse
Affiliation(s)
- Jothi Ramalingam
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, IndiaDepartment of Zoology, Dharmapuram Gnanambigai Government Arts College (Women), Mayiladuthurai 609 001, Tamil Nadu, IndiaDepartment of Bioinformatics, School of Biotechnology and Health Sciences, Karunya University, Coimbatore 641 114, Tamil Nadu, India
| | | | | |
Collapse
|
34
|
Valegård K, Iqbal A, Kershaw NJ, Ivison D, Généreux C, Dubus A, Blikstad C, Demetriades M, Hopkinson RJ, Lloyd AJ, Roper DI, Schofield CJ, Andersson I, McDonough MA. Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1567-79. [PMID: 23897479 DOI: 10.1107/s0907444913011013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/23/2013] [Indexed: 11/10/2022]
Abstract
Structural and biochemical studies of the orf12 gene product (ORF12) from the clavulanic acid (CA) biosynthesis gene cluster are described. Sequence and crystallographic analyses reveal two domains: a C-terminal penicillin-binding protein (PBP)/β-lactamase-type fold with highest structural similarity to the class A β-lactamases fused to an N-terminal domain with a fold similar to steroid isomerases and polyketide cyclases. The C-terminal domain of ORF12 did not show β-lactamase or PBP activity for the substrates tested, but did show low-level esterase activity towards 3'-O-acetyl cephalosporins and a thioester substrate. Mutagenesis studies imply that Ser173, which is present in a conserved SXXK motif, acts as a nucleophile in catalysis, consistent with studies of related esterases, β-lactamases and D-Ala carboxypeptidases. Structures of wild-type ORF12 and of catalytic residue variants were obtained in complex with and in the absence of clavulanic acid. The role of ORF12 in clavulanic acid biosynthesis is unknown, but it may be involved in the epimerization of (3S,5S)-clavaminic acid to (3R,5R)-clavulanic acid.
Collapse
Affiliation(s)
- Karin Valegård
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Crystal structures of bifunctional penicillin-binding protein 4 from Listeria monocytogenes. Antimicrob Agents Chemother 2013; 57:3507-12. [PMID: 23669378 DOI: 10.1128/aac.00144-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin-binding proteins (PBPs), which catalyze the biosynthesis of the peptidoglycan chain of the bacterial cell wall, are the major molecular target of bacterial antibiotics. Here, we present the crystal structures of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase (TP) PBP4 from Listeria monocytogenes in the apo-form and covalently linked to two β-lactam antibiotics, ampicillin and carbenicillin. The orientation of the TP domain with respect to the GT domain is distinct from that observed in the previously reported structures of bifunctional PBPs, suggesting interdomain flexibility. In this structure, the active site of the GT domain is occluded by the close apposition of the linker domain, which supports the hypothesis that interdomain flexibility is related to the regulation of GT activity. The acylated structures reveal the mode of action of β-lactam antibiotics toward the class A PBP4 from the human pathogen L. monocytogenes. Ampicillin and carbenicillin can access the active site and be acylated without requiring a structural rearrangement. In addition, the active site of the TP domain in the apo-form is occupied by the tartrate molecule via extensive hydrogen bond interactions with the catalytically important residues; thus, derivatives of the tartrate molecule may be useful in the search for new antibiotics to inhibit PBPs.
Collapse
|
36
|
Yoshida H, Kawai F, Obayashi E, Akashi S, Roper DI, Tame JRH, Park SY. Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the apo and cefotaxime-bound forms. J Mol Biol 2012; 423:351-64. [PMID: 22846910 DOI: 10.1016/j.jmb.2012.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
Staphylococcus aureus is a widespread Gram-positive opportunistic pathogen, and a methicillin-resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin-binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin-binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of "dimerization domain", the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution.
Collapse
Affiliation(s)
- Hisashi Yoshida
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Lovering AL, Gretes MC, Safadi SS, Danel F, de Castro L, Page MGP, Strynadka NCJ. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J Biol Chem 2012; 287:32096-102. [PMID: 22815485 DOI: 10.1074/jbc.m112.355644] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an antibiotic-resistant strain of S. aureus afflicting hospitals and communities worldwide. Of greatest concern is its development of resistance to current last-line-of-defense antibiotics; new therapeutics are urgently needed to combat this pathogen. Ceftobiprole is a recently developed, latest generation cephalosporin and has been the first to show activity against MRSA by inhibiting essential peptidoglycan transpeptidases, including the β-lactam resistance determinant PBP2a, from MRSA. Here we present the structure of the complex of ceftobiprole bound to PBP2a. This structure provides the first look at the molecular details of an effective β-lactam-resistant PBP interaction, leading to new insights into the mechanism of ceftobiprole efficacy against MRSA.
Collapse
Affiliation(s)
- Andrew L Lovering
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Hakenbeck R, Brückner R, Denapaite D, Maurer P. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol 2012; 7:395-410. [PMID: 22393892 DOI: 10.2217/fmb.12.2] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.
Collapse
Affiliation(s)
- Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Paul Ehrlich Strasse 23, D-67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
39
|
Tomberg J, Temple B, Fedarovich A, Davies C, Nicholas RA. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae. Biochemistry 2012; 51:2775-84. [PMID: 22397678 PMCID: PMC3338128 DOI: 10.1021/bi2017987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insertion of an aspartate residue at position 345a in penicillin-binding protein 2 (PBP 2), which lowers the rate of penicillin acylation by ~6-fold, is commonly observed in penicillin-resistant strains of Neisseria gonorrhoeae. Here, we show that insertions of other amino acids also lower the penicillin acylation rate of PBP 2, but none supported growth of N. gonorrhoeae, indicating loss of essential transpeptidase activity. The Asp345a mutation likely acts by altering the interaction between its adjacent residue, Asp346, in the β2a-β2d hairpin loop and Ser363, the middle residue of the SXN active site motif. Because the adjacent aspartate creates ambiguity in the position of the insertion, we also examined if insertions at position 346a could confer decreased susceptibility to penicillin. However, only aspartate insertions were identified, indicating that only an Asp-Asp couple can confer resistance and retain transpeptidase function. The importance of the Asp346-Ser363 interaction was assessed by mutation of each residue to Ala. Although both mutants lowered the acylation rate of penicillin G by 5-fold, neither could support growth of N. gonorrhoeae, again indicating loss of transpeptidase function. Interaction between a residue in the equivalent of the β2a-β2d hairpin loop and the middle residue of the SXN motif is observed in crystal structures of other Class B PBPs, and its importance is also supported by multisequence alignments. Overall, these results suggest that this conserved interaction can be manipulated (e.g., by insertion) to lower the acylation rate by β-lactam antibiotics and increase resistance, but only if essential transpeptidase activity is preserved.
Collapse
Affiliation(s)
- Joshua Tomberg
- Department of Pharmacology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| | - Brenda Temple
- Departments of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
- Departments of R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| | - Alena Fedarovich
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Christopher Davies
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Robert A. Nicholas
- Department of Pharmacology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| |
Collapse
|
40
|
Contreras-Martel C, Amoroso A, Woon ECY, Zervosen A, Inglis S, Martins A, Verlaine O, Rydzik AM, Job V, Luxen A, Joris B, Schofield CJ, Dessen A. Structure-guided design of cell wall biosynthesis inhibitors that overcome β-lactam resistance in Staphylococcus aureus (MRSA). ACS Chem Biol 2011; 6:943-51. [PMID: 21732689 DOI: 10.1021/cb2001846] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
β-Lactam antibiotics have long been a treatment of choice for bacterial infections since they bind irreversibly to Penicillin-Binding Proteins (PBPs), enzymes that are vital for cell wall biosynthesis. Many pathogens express drug-insensitive PBPs rendering β-lactams ineffective, revealing a need for new types of PBP inhibitors active against resistant strains. We have identified alkyl boronic acids that are active against pathogens including methicillin-resistant S. aureus (MRSA). The crystal structures of PBP1b complexed to 11 different alkyl boronates demonstrate that in vivo efficacy correlates with the mode of inhibitor side chain binding. Staphylococcal membrane analyses reveal that the most potent alkyl boronate targets PBP1, an autolysis system regulator, and PBP2a, a low β-lactam affinity enzyme. This work demonstrates the potential of boronate-based PBP inhibitors for circumventing β-lactam resistance and opens avenues for the development of novel antibiotics that target Gram-positive pathogens.
Collapse
Affiliation(s)
| | - Ana Amoroso
- Centre d'Ingénierie des Protéines, Institut de Chimie, B6a, Université de Liège, Sart Tilman, B4000 Liège, Belgium
| | - Esther C. Y. Woon
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Astrid Zervosen
- Centre de Recherches du Cyclotron, B30, Université de Liège, Sart Tilman, B4000 Liège, Belgium
| | - Steven Inglis
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | | | - Olivier Verlaine
- Centre d'Ingénierie des Protéines, Institut de Chimie, B6a, Université de Liège, Sart Tilman, B4000 Liège, Belgium
| | - Anna M. Rydzik
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | | | - André Luxen
- Centre de Recherches du Cyclotron, B30, Université de Liège, Sart Tilman, B4000 Liège, Belgium
| | - Bernard Joris
- Centre d'Ingénierie des Protéines, Institut de Chimie, B6a, Université de Liège, Sart Tilman, B4000 Liège, Belgium
| | | | | |
Collapse
|
41
|
Bobba S, Gutheil WG. Multivariate geometrical analysis of catalytic residues in the penicillin-binding proteins. Int J Biochem Cell Biol 2011; 43:1490-9. [PMID: 21740978 DOI: 10.1016/j.biocel.2011.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/04/2011] [Accepted: 06/22/2011] [Indexed: 12/11/2022]
Abstract
Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis, and are targets of the β-lactam antibiotics. They can be subdivided into essential high-molecular-mass (HMM) and non-essential low-molecular-mass (LMM) PBPs, and further divided into subclasses based on sequence homologies. PBPs can catalyze transpeptidase or hydrolase (carboxypeptidase and endopeptidase) reactions. The PBPs are of interest for their role in bacterial cell wall biosynthesis, and as mechanistically interesting enzymes which can catalyze alternative reaction pathways using the same catalytic machinery. A global catalytic residue comparison seemed likely to provide insight into structure-function correlations within the PBPs. More than 90 PBP structures were aligned, and a number (40) of active site geometrical parameters extracted. This dataset was analyzed using both univariate and multivariate statistical methods. Several interesting relationships were observed. (1) Distribution of the dihedral angle for the SXXK-motif Lys side chain (DA_1) was bimodal, and strongly correlated with HMM/transpeptidase vs LMM/hydrolase classification/activity (P<0.001). This structural feature may therefore be associated with the main functional difference between the HMM and LMM PBPs. (2) The distance between the SXXK-motif Lys-NZ atom and the Lys/His-nitrogen atom of the (K/H)T(S)G-motif was highly conserved, suggesting importance for PBP function, and a possibly conserved role in the catalytic mechanism of the PBPs. (3) Principal components-based cluster analysis revealed several distinct clusters, with the HMM Class A and B, LMM Class C, and LMM Class A K15 PBPs forming one "Main" cluster, and demonstrating a globally similar arrangement of catalytic residues within this group.
Collapse
Affiliation(s)
- Sudheer Bobba
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | | |
Collapse
|
42
|
The requirement for pneumococcal MreC and MreD is relieved by inactivation of the gene encoding PBP1a. J Bacteriol 2011; 193:4166-79. [PMID: 21685290 DOI: 10.1128/jb.05245-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MreC and MreD, along with the actin homologue MreB, are required to maintain the shape of rod-shaped bacteria. The depletion of MreCD in rod-shaped bacteria leads to the formation of spherical cells and the accumulation of suppressor mutations. Ovococcus bacteria, such as Streptococcus pneumoniae, lack MreB homologues, and the functions of the S. pneumoniae MreCD (MreCD(Spn)) proteins are unknown. mreCD are located upstream from the pcsB cell division gene in most Streptococcus species, but we found that mreCD and pcsB are transcribed independently. Similarly to rod-shaped bacteria, we show that mreCD are essential in the virulent serotype 2 D39 strain of S. pneumoniae, and the depletion of MreCD results in cell rounding and lysis. In contrast, laboratory strain R6 contains suppressors that allow the growth of ΔmreCD mutants, and bypass suppressors accumulate in D39 ΔmreCD mutants. One class of suppressors eliminates the function of class A penicillin binding protein 1a (PBP1a). Unencapsulated Δpbp1a D39 mutants have smaller diameters than their pbp1a(+) parent or Δpbp2a and Δpbp1b mutants, which lack other class A PBPs and do not show the suppression of ΔmreCD mutations. Suppressed ΔmreCD Δpbp1a double mutants form aberrantly shaped cells, some with misplaced peptidoglycan (PG) biosynthesis compared to that of single Δpbp1a mutants. Quantitative Western blotting showed that MreC(Spn) is abundant (≈8,500 dimers per cell), and immunofluorescent microscopy (IFM) located MreCD(Spn) to the equators and septa of dividing cells, similarly to the PBPs and PG pentapeptides indicative of PG synthesis. These combined results are consistent with a model in which MreCD(Spn) direct peripheral PG synthesis and control PBP1a localization or activity.
Collapse
|
43
|
Shi Q, Meroueh SO, Fisher JF, Mobashery S. A computational evaluation of the mechanism of penicillin-binding protein-catalyzed cross-linking of the bacterial cell wall. J Am Chem Soc 2011; 133:5274-83. [PMID: 21417389 DOI: 10.1021/ja1074739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Penicillin-binding protein 1b (PBP 1b) of the gram-positive bacterium Streptococcus pneumoniae catalyzes the cross-linking of adjacent peptidoglycan strands, as a critical event in the biosynthesis of its cell wall. This enzyme is representative of the biosynthetic PBP structures of the β-lactam-recognizing enzyme superfamily and is the target of the β-lactam antibiotics. In the cross-linking reaction, the amide between the -D-Ala-D-Ala dipeptide at the terminus of a peptide stem acts as an acyl donor toward the ε-amino group of a lysine found on an adjacent stem. The mechanism of this transpeptidation was evaluated using explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics calculations. Sequential acyl transfer occurs to, and then from, the active site serine. The resulting cross-link is predicted to have a cis-amide configuration. The ensuing and energetically favorable cis- to trans-amide isomerization, within the active site, may represent the key event driving product release to complete enzymatic turnover.
Collapse
Affiliation(s)
- Qicun Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
44
|
Macheboeuf P, Piuzzi M, Finet S, Bontems F, Pérez J, Dessen A, Vachette P. Solution X-ray scattering study of a full-length class A penicillin-binding protein. Biochem Biophys Res Commun 2011; 405:107-11. [PMID: 21216228 DOI: 10.1016/j.bbrc.2011.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022]
Abstract
Penicillin binding proteins (PBPs) catalyze essential steps in the biosynthesis of peptidoglycan, the main component of the bacterial cell wall. PBPs can harbor two catalytic domains, namely the glycosyltransferase (GT) and transpeptidase (TP) activities, the latter being the target for β-lactam antibiotics. Despite the availability of structural information regarding bi-functional PBPs, little is known regarding the interaction and flexibility between the TP and GT domains. Here, we describe the structural characterization in solution by small angle X-ray scattering (SAXS) of PBP1b, a bi-functional PBP from Streptococcus pneumoniae. The molecule is present in solution as an elongated monomer. Refinement of internal coordinates starting from a homology model yields models in which the two domains are in an extended conformation without any mutual contact compatible with the existence of restricted mobility.
Collapse
Affiliation(s)
- P Macheboeuf
- Institut de Biologie Structurale, Bacterial Pathogenesis Group, UMR 5075 (CEA, CNRS, University Joseph Fourier-Grenoble I), Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Bridging cell wall biosynthesis and bacterial morphogenesis. Curr Opin Struct Biol 2010; 20:749-55. [DOI: 10.1016/j.sbi.2010.09.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/17/2010] [Accepted: 09/29/2010] [Indexed: 11/17/2022]
|
46
|
Gautam A, Vyas R, Tewari R. Peptidoglycan biosynthesis machinery: a rich source of drug targets. Crit Rev Biotechnol 2010; 31:295-336. [PMID: 21091161 DOI: 10.3109/07388551.2010.525498] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The range of antibiotic therapy for the control of bacterial infections is becoming increasingly limited because of the rapid rise in multidrug resistance in clinical bacterial isolates. A few diseases, such as tuberculosis, which were once thought to be under control, have re-emerged as serious health threats. These problems have resulted in intensified research to look for new inhibitors for bacterial pathogens. Of late, the peptidoglycan (PG) layer, the most important component of the bacterial cell wall has been the subject of drug targeting because, first, it is essential for the survivability of eubacteria and secondly, it is absent in humans. The last decade has seen tremendous inputs in deciphering the 3-D structures of the PG biosynthetic enzymes. Many inhibitors against these enzymes have been developed using virtual and high throughput screening techniques. This review discusses the mechanistic and structural properties of the PG biosynthetic enzymes and inhibitors developed in the last decade.
Collapse
Affiliation(s)
- Ankur Gautam
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
47
|
Contribution of specific amino acid changes in penicillin binding protein 1 to amoxicillin resistance in clinical Helicobacter pylori isolates. Antimicrob Agents Chemother 2010; 55:101-9. [PMID: 20956585 DOI: 10.1128/aac.00545-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Amoxicillin is commonly used to treat Helicobacter pylori, a major cause of peptic ulcers, stomach cancer, and B-cell mucosa-associated lymphoid tissue lymphoma. Amoxicillin resistance in H. pylori is increasing steadily, especially in developing countries, leading to treatment failures. In this study, we characterize the mechanism of amoxicillin resistance in the U.S. clinical isolate B258. Transformation of amoxicillin-susceptible strain 26695 with the penicillin binding protein 1 gene (pbp1) from B258 increased the amoxicillin resistance of 26695 to equal that of B258, while studies using biotinylated amoxicillin showed a decrease in the binding of amoxicillin to the PBP1 of B258. Transformation with 4 pbp1 fragments, each encompassing several amino acid substitutions, combined with site-directed mutagenesis studies, identified 3 amino acid substitutions in PBP1 of B258 which affected amoxicillin susceptibility (Val 469 Met, Phe 473 Leu, and Ser 543 Arg). Homology modeling showed the spatial orientation of these specific amino acid changes in PBP1 from 26695 and B258. The results of these studies demonstrate that amoxicillin resistance in the clinical U.S. isolate B258 is due solely to an altered PBP1 protein with a lower binding affinity for amoxicillin. Homology modeling analyses using previously identified amino acid substitutions of amoxicillin-resistant PBP1s demonstrate the importance of specific amino acid substitutions in PBP1 that affect the binding of amoxicillin in the putative binding cleft, defining those substitutions deemed most important in amoxicillin resistance.
Collapse
|
48
|
Dzhekieva L, Rocaboy M, Kerff F, Charlier P, Sauvage E, Pratt RF. Crystal Structure of a Complex between the Actinomadura R39 dd-Peptidase and a Peptidoglycan-mimetic Boronate Inhibitor: Interpretation of a Transition State Analogue in Terms of Catalytic Mechanism. Biochemistry 2010; 49:6411-9. [DOI: 10.1021/bi100757c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459
| | - Mathieu Rocaboy
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Frédéric Kerff
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Paulette Charlier
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Eric Sauvage
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459
| |
Collapse
|
49
|
Fedarovich A, Nicholas RA, Davies C. Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis. J Mol Biol 2010; 398:54-65. [PMID: 20206184 DOI: 10.1016/j.jmb.2010.02.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 11/17/2022]
Abstract
PBPA from Mycobacterium tuberculosis is a class B-like penicillin-binding protein (PBP) that is not essential for cell growth in M. tuberculosis, but is important for proper cell division in Mycobacterium smegmatis. We have determined the crystal structure of PBPA at 2.05 A resolution, the first published structure of a PBP from this important pathogen. Compared to other PBPs, PBPA has a relatively small N-terminal domain, and conservation of a cluster of charged residues within this domain suggests that PBPA is more related to class B PBPs than previously inferred from sequence analysis. The C-terminal domain is a typical transpeptidase fold and contains the three conserved active-site motifs characteristic of penicillin-interacting enzymes. Whilst the arrangement of the SxxK and KTG motifs is similar to that observed in other PBPs, the SxN motif is markedly displaced away from the active site, such that its serine (Ser281) is not involved in hydrogen bonding with residues of the other two motifs. A disulfide bridge between Cys282 (the "x" of the SxN motif) and Cys266, which resides on an adjacent loop, may be responsible for this unusual conformation. Another interesting feature of the structure is a relatively long connection between beta 5 and alpha 11, which restricts the space available in the active site of PBPA and suggests that conformational changes would be required to accommodate peptide substrate or beta-lactam antibiotics during acylation. Finally, the structure shows that one of the two threonines postulated to be targets for phosphorylation is inaccessible (Thr362), whereas the other (Thr437) is well placed on a surface loop near the active site.
Collapse
Affiliation(s)
- Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | |
Collapse
|
50
|
Kawai F, Clarke TB, Roper DI, Han GJ, Hwang KY, Unzai S, Obayashi E, Park SY, Tame JR. Crystal Structures of Penicillin-Binding Proteins 4 and 5 from Haemophilus influenzae. J Mol Biol 2010; 396:634-45. [DOI: 10.1016/j.jmb.2009.11.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/20/2009] [Accepted: 11/22/2009] [Indexed: 10/20/2022]
|