1
|
Šeflová J, Schwarz JA, Smith AN, Svensson B, Blackwell DJ, Phillips TA, Nikolaienko R, Bovo E, Rebbeck RT, Zima AV, Thomas DD, Van Petegem F, Knollmann BC, Johnston JN, Robia SL, Cornea RL. RyR2 Binding of an Antiarrhythmic Cyclic Depsipeptide Mapped Using Confocal Fluorescence Lifetime Detection of FRET. ACS Chem Biol 2023; 18:2290-2299. [PMID: 37769131 PMCID: PMC11648969 DOI: 10.1021/acschembio.3c00376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Hyperactivity of cardiac sarcoplasmic reticulum (SR) ryanodine receptor (RyR2) Ca2+-release channels contributes to heart failure and arrhythmias. Reducing the RyR2 activity, particularly during cardiac relaxation (diastole), is a desirable therapeutic goal. We previously reported that the unnatural enantiomer (ent) of an insect-RyR activator, verticilide, inhibits porcine and mouse RyR2 at diastolic (nanomolar) Ca2+ and has in vivo efficacy against atrial and ventricular arrhythmia. To determine the ent-verticilide structural mode of action on RyR2 and guide its further development via medicinal chemistry structure-activity relationship studies, here, we used fluorescence lifetime (FLT)-measurements of Förster resonance energy transfer (FRET) in HEK293 cells expressing human RyR2. For these studies, we used an RyR-specific FRET molecular-toolkit and computational methods for trilateration (i.e., using distances to locate a point of interest). Multiexponential analysis of FLT-FRET measurements between four donor-labeled FKBP12.6 variants and acceptor-labeled ent-verticilide yielded distance relationships placing the acceptor probe at two candidate loci within the RyR2 cryo-EM map. One locus is within the Ry12 domain (at the corner periphery of the RyR2 tetrameric complex). The other locus is sandwiched at the interface between helical domain 1 and the SPRY3 domain. These findings document RyR2-target engagement by ent-verticilide, reveal new insight into the mechanism of action of this new class of RyR2-targeting drug candidate, and can serve as input in future computational determinations of the ent-verticilide binding site on RyR2 that will inform structure-activity studies for lead optimization.
Collapse
Affiliation(s)
- Jaroslava Šeflová
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Jacob A Schwarz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abigail N Smith
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Taylor A Phillips
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Björn C Knollmann
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey N Johnston
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Răzvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Walweel K, Beard N, van Helden DF, Laver DR. Dantrolene inhibition of ryanodine channels (RyR2) in artificial lipid bilayers depends on FKBP12.6. J Gen Physiol 2023; 155:e202213277. [PMID: 37279522 PMCID: PMC10244881 DOI: 10.1085/jgp.202213277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/18/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Dantrolene is a neutral hydantoin that is clinically used as a skeletal muscle relaxant to prevent overactivation of the skeletal muscle calcium release channel (RyR1) in response to volatile anesthetics. Dantrolene has aroused considerable recent interest as a lead compound for stabilizing calcium release due to overactive cardiac calcium release channels (RyR2) in heart failure. Previously, we found that dantrolene produces up to a 45% inhibition RyR2 with an IC50 of 160 nM, and that this inhibition requires the physiological association between RyR2 and CaM. In this study, we tested the hypothesis that dantrolene inhibition of RyR2 in the presence of CaM is modulated by RyR2 phosphorylation at S2808 and S2814. Phosphorylation was altered by incubations with either exogenous phosphatase (PP1) or kinases; PKA to phosphorylate S2808 or endogenous CaMKII to phosphorylate S2814. We found that PKA caused selective dissociation of FKBP12.6 from the RyR2 complex and a loss of dantrolene inhibition. Rapamycin-induced FKBP12.6 dissociation from RyR2 also resulted in the loss of dantrolene inhibition. Subsequent incubations of RyR2 with exogenous FKBP12.6 reinstated dantrolene inhibition. These findings indicate that the inhibitory action of dantrolene on RyR2 depends on RyR2 association with FKBP12.6 in addition to CaM as previously found.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, Australia
| | - Nicole Beard
- Faculty of Science and Technology, University of Canberra, Bruce, Australia
| | - Dirk F. van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, Australia
| | - Derek R. Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, Australia
| |
Collapse
|
3
|
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms. Int J Mol Sci 2023; 24:ijms24065409. [PMID: 36982484 PMCID: PMC10049336 DOI: 10.3390/ijms24065409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context.
Collapse
|
4
|
Wang ZW, Riaz S, Niu L. Roles and Sources of Calcium in Synaptic Exocytosis. ADVANCES IN NEUROBIOLOGY 2023; 33:139-170. [PMID: 37615866 DOI: 10.1007/978-3-031-34229-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Calcium ions (Ca2+) play a critical role in triggering neurotransmitter release. The rate of release is directly related to the concentration of Ca2+ at the presynaptic site, with a supralinear relationship. There are two main sources of Ca2+ that trigger synaptic vesicle fusion: influx through voltage-gated Ca2+ channels in the plasma membrane and release from the endoplasmic reticulum via ryanodine receptors. This chapter will cover the sources of Ca2+ at the presynaptic nerve terminal, the relationship between neurotransmitter release rate and Ca2+ concentration, and the mechanisms that achieve the necessary Ca2+ concentrations for triggering synaptic exocytosis at the presynaptic site.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Sadaf Riaz
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
5
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
6
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Sánchez-Solano A, Corral N, Segura-Covarrubias G, Guzmán-Hernández ML, Arechiga-Figueroa I, Cruz-Rangel S, Pérez-Cornejo P, Arreola J. Regulation of the Ca 2+-activated chloride channel Anoctamin-1 (TMEM16A) by Ca 2+-induced interaction with FKBP12 and calcineurin. Cell Calcium 2020; 89:102211. [PMID: 32422433 DOI: 10.1016/j.ceca.2020.102211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
Chloride fluxes through the calcium-gated chloride channel Anoctamin-1 (TMEM16A) control blood pressure, secretion of saliva, mucin, insulin, and melatonin, gastrointestinal motility, sperm capacitation and motility, and pain sensation. Calcium activates a myriad of regulatory proteins but how these proteins affect TMEM16A activity is unresolved. Here we show by co-immunoprecipitation that increasing intracellular calcium with ionomycin or by activating sphingosine-1-phosphate receptors, induces coupling of calcium/calmodulin-dependent phosphatase calcineurin and prolyl isomerase FK506-binding protein 12 (FKBP12) to TMEM16A in HEK-293 cells. Application of drugs that target either calcineurin (cyclosporine A) or FKBP12 (tacrolimus known as FK506 and sirolimus known as rapamycin) caused a decrease in TMEM16A activity. In addition, FK506 and BAPTA-AM prevented co-immunoprecipitation between FKBP12 and TMEM16A. FK506 rendered the channel insensitive to cyclosporine A without altering its apparent calcium sensitivity whereas zero intracellular calcium blocked the effect of FK506. Rapamycin decreased TMEM16A activity in cells pre-treated with cyclosporine A or FK506. These results suggest the formation of a TMEM16A-FKBP12-calcineurin complex that regulates channel function. We conclude that upon a cytosolic calcium increase the TMEM16A-FKPB12-calcineurin trimers are assembled. Such hetero-oligomerization enhances TMEM16A channel activity but is not mandatory for activation by calcium.
Collapse
Affiliation(s)
- Alfredo Sánchez-Solano
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico
| | - Nancy Corral
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico
| | - María Luisa Guzmán-Hernández
- Cátedra CONACYT, School of Medicine, Universidad Autónoma de San Luis Potosí, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Ivan Arechiga-Figueroa
- Cátedra CONACYT, School of Medicine, Universidad Autónoma de San Luis Potosí, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Silvia Cruz-Rangel
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico.
| |
Collapse
|
8
|
Wang T, Zhang L, Shi C, Wei R, Yin C. Interaction of the Homer1 EVH1 domain and skeletal muscle ryanodine receptor. Biochem Biophys Res Commun 2019; 514:720-725. [PMID: 31078268 DOI: 10.1016/j.bbrc.2019.04.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
The skeletal muscle ryanodine receptor (RyR1) proteins are intracellular calcium (Ca2+) release channels on the membrane of the sarcoplasmic reticulum (SR) and required for skeletal muscle excitation-contraction coupling. Homer (Vesl) is a family of scaffolding proteins that modulate target proteins including RyRs (ryanodine receptors), mGluRs (group 1 metabotropic glutamate receptors) and IP3Rs (inositol-1,4,5-trisphosphate receptors) through a conserved EVH1 (Ena/VASP homology 1) domain. Here, we examined the interaction between Homer1 EVH1 domain and RyR1 by co-immunoprecipitation, continuous sucrose density-gradient centrifugation, and bio-layer interferometry binding assay at different Ca2+ concentrations. Our results show that there exists a high-affinity binding between the Homer1 EVH1 domain and RyR1, especially at 1 mM of Ca2+. Based on our data and the known structures of Homer1 EVH1 domain and RyR1, we found two consensus proline-rich sequences in the structure of RyR1, PPHHF and FLPPP, and proposed two corresponding binding models to show mechanisms of recognition different from those used by other proline-rich motifs. The side proline residues of two proline-rich motifs from RyR1 are away from the hydrophobic surface of Homer1 EVH1, rather than buried in this hydrophobic surface. Our results provide evidence that Homer1 regulates RyR1 by direct interaction.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Lei Zhang
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China; Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Chao Shi
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Risheng Wei
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Changcheng Yin
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China; Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing, 100191, China; Center for Protein Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Steele TWE, Samsó M. The FKBP12 subunit modifies the long-range allosterism of the ryanodine receptor. J Struct Biol 2019; 205:180-188. [PMID: 30641143 DOI: 10.1016/j.jsb.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
Ryanodine receptors (RyRs) are large conductance intracellular channels controlling intracellular calcium homeostasis in myocytes, neurons, and other cell types. Loss of RyR's constitutive cytoplasmic partner FKBP results in channel sensitization, dominant subconductance states, and increased cytoplasmic Ca2+. FKBP12 binds to RyR1's cytoplasmic assembly 130 Å away from the ion gate at four equivalent sites in the RyR1 tetramer. To understand how FKBP12 binding alters RyR1's channel properties, we studied the 3D structure of RyR1 alone in the closed conformation in the context of the open and closed conformations of FKBP12-bound RyR1. We analyzed the metrics of conformational changes of existing structures, the structure of the ion gate, and carried out multivariate statistical analysis of thousands of individual cryoEM RyR1 particles. We find that under closed state conditions, in the presence of FKBP12, the cytoplasmic domain of RyR1 adopts an upward conformation, whereas absence of FKBP12 results in a relaxed conformation, while the ion gate remains closed. The relaxed conformation is intermediate between the RyR1-FKBP12 complex closed (upward) and open (downward) conformations. The closed-relaxed conformation of RyR1 appears to be consistent with a lower energy barrier separating the closed and open states of RyR1-FKBP12, and suggests that FKBP12 plays an important role by restricting conformations within RyR1's conformational landscape.
Collapse
Affiliation(s)
- Tyler W E Steele
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
10
|
Chen B, Liu P, Hujber EJ, Li Y, Jorgensen EM, Wang ZW. AIP limits neurotransmitter release by inhibiting calcium bursts from the ryanodine receptor. Nat Commun 2017; 8:1380. [PMID: 29123133 PMCID: PMC5680226 DOI: 10.1038/s41467-017-01704-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022] Open
Abstract
Pituitary tumors are frequently associated with mutations in the AIP gene and are sometimes associated with hypersecretion of growth hormone. It is unclear whether other factors besides an enlarged pituitary contribute to the hypersecretion. In a genetic screen for suppressors of reduced neurotransmitter release, we identified a mutation in Caenorhabditis elegans AIPR-1 (AIP-related-1), which causes profound increases in evoked and spontaneous neurotransmitter release, a high frequency of spontaneous calcium transients in motor neurons and an enlarged readily releasable pool of vesicles. Calcium bursts and hypersecretion are reversed by mutations in the ryanodine receptor but not in the voltage-gated calcium channel, indicating that these phenotypes are caused by a leaky ryanodine receptor. AIPR-1 is physically associated with the ryanodine receptor at synapses. Finally, the phenotypes in aipr-1 mutants can be rescued by presynaptic expression of mouse AIP, demonstrating that a conserved function of AIP proteins is to inhibit calcium release from ryanodine receptors.
Collapse
Affiliation(s)
- Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Edward J Hujber
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yan Li
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
11
|
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149:1065-1089. [PMID: 29122978 PMCID: PMC5715910 DOI: 10.1085/jgp.201711878] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023] Open
Abstract
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic "foot" structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
Collapse
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
12
|
Zhao YT, Guo YB, Fan XX, Yang HQ, Zhou P, Chen Z, Yuan Q, Ye H, Ji GJ, Wang SQ. Role of FK506-binding protein in Ca 2+ spark regulation. Sci Bull (Beijing) 2017; 62:1295-1303. [PMID: 36659291 DOI: 10.1016/j.scib.2017.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 01/21/2023]
Abstract
The elementary Ca2+ release events, Ca2+ sparks, has been found for a quarter of century. However, the molecular regulation of the spark generator, the ryanodine receptor (RyR) on the sarcoplasmic reticulum, remains obscure. Although each subunit of the RyR homotetramer has a site for FK506-binding protein (FKBP), the role of FKBPs in modifying RyR Ca2+ sparks has been debated for long. One of the reasons behind the controversy is that most previous studies detect spontaneous sparks, where the mixture with out-of-focus events and local wavelets prevents an accurate characterization of Ca2+ sparks. In the present study, we detected Ca2+ sparks triggered by single L-type Ca2+ channels (LCCs) under loose-seal patch clamp conditions in FK506-treated or FKBP12.6 knockout cardiomyocytes. We found that FKBP dissociation both by FK506 and by rapamycin decreased the Ca2+ spark amplitude in ventricular cardiomyocytes. This change was neither due to decreased releasable Ca2+ in the sarcoplasmic reticulum, nor explained by changed RyR sensitivity. Actually FK506 increased the LCC-RyR coupling probability and curtailed the latency for an LCC to trigger a RyR Ca2+ spark. FKBP12.6 knockout had similar effects as FK506/rapamycin treatment, indicating that the decreased spark amplitude was attributable to the dissociation of FKBP12.6 rather than FKBP12. We also explained how decreased amplitude of spontaneous sparks after FKBP dissociation sometimes appears to be increased or unchanged due to inappropriate data processing. Our results provided firm evidence that without the inter-RyR coordination by functional FKBP12.6, the RyR recruitment during a Ca2+ spark would be compromised despite the sensitization of individual RyRs.
Collapse
Affiliation(s)
- Yan-Ting Zhao
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yun-Bo Guo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xue-Xin Fan
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hua-Qian Yang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhou
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zheng Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haihong Ye
- School of Basic Medical Sciences, Beijing Institute for Brain Disorders Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Guang-Ju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Zhao YT, Guo YB, Gu L, Fan XX, Yang HQ, Chen Z, Zhou P, Yuan Q, Ji GJ, Wang SQ. Sensitized signalling between L-type Ca2+ channels and ryanodine receptors in the absence or inhibition of FKBP12.6 in cardiomyocytes. Cardiovasc Res 2017; 113:332-342. [PMID: 28077437 DOI: 10.1093/cvr/cvw247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/03/2016] [Indexed: 12/19/2022] Open
Abstract
Aims The heart contraction is controlled by the Ca2+-induced Ca2+ release (CICR) between L-type Ca2+ channels and ryanodine receptors (RyRs). The FK506-binding protein FKBP12.6 binds to RyR subunits, but its role in stabilizing RyR function has been debated for long. Recent reports of high-resolution RyR structure show that the HD2 domain that binds to the SPRY2 domain of neighbouring subunit in FKBP-bound RyR1 is detached and invisible in FKBP-null RyR2. The present study was to test the consequence of FKBP12.6 absence on the in situ activation of RyR2. Methods and results Using whole-cell patch-clamp combined with confocal imaging, we applied a near threshold depolarization to activate a very small fraction of LCCs, which in turn activated RyR Ca2+ sparks stochastically. FKBP12.6-knockout and FK506/rapamycin treatments increased spark frequency and LCC-RyR coupling fidelity without altering LCC open probability. Neither FK506 nor rapamycin further altered LCC-RyR coupling fidelity in FKBP12.6-knockout cells. In loose-seal patch-clamp experiments, the LCC-RyR signalling kinetics, indexed by the delay for a LCC sparklet to trigger a RyR spark, was accelerated after FKBP12.6 knockout and FK506/rapamycin treatments. These results demonstrated that RyRs became more sensitive to Ca2+ triggers without FKBP12.6. Isoproterenol (1 μM) further accelerated the LCC-RyR signalling in FKBP12.6-knockout cells. The synergistic sensitization of RyRs by catecholaminergic signalling and FKBP12.6 dysfunction destabilized the CICR system, leading to chaotic Ca2+ waves and ventricular arrhythmias. Conclusion FKBP12.6 keeps the RyRs from over-sensitization, stabilizes the potentially regenerative CICR system, and thus may suppress the life-threatening arrhythmogenesis.
Collapse
Affiliation(s)
- Yan-Ting Zhao
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| | - Yun-Bo Guo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| | - Lei Gu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Xue-Xin Fan
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| | - Hua-Qian Yang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| | - Zheng Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Peng Zhou
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| | - Qi Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Guang-Ju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| |
Collapse
|
14
|
Richardson SJ, Steele GA, Gallant EM, Lam A, Schwartz CE, Board PG, Casarotto MG, Beard NA, Dulhunty AF. Association of FK506 binding proteins with RyR channels - effect of CLIC2 binding on sub-conductance opening and FKBP binding. J Cell Sci 2017; 130:3588-3600. [PMID: 28851804 DOI: 10.1242/jcs.204461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
Ryanodine receptor (RyR) Ca2+ channels are central to striated muscle function and influence signalling in neurons and other cell types. Beneficially low RyR activity and maximum conductance opening may be stabilised when RyRs bind to FK506 binding proteins (FKBPs) and destabilised by FKBP dissociation, with submaximal opening during RyR hyperactivity associated with myopathies and neurological disorders. However, the correlation with submaximal opening is debated and quantitative evidence is lacking. Here, we have measured altered FKBP binding to RyRs and submaximal activity with addition of wild-type (WT) CLIC2, an inhibitory RyR ligand, or its H101Q mutant that hyperactivates RyRs, which probably causes cardiac and intellectual abnormalities. The proportion of sub-conductance opening increases with WT and H101Q CLIC2 and is correlated with reduced FKBP-RyR association. The sub-conductance opening reduces RyR currents in the presence of WT CLIC2. In contrast, sub-conductance openings contribute to excess RyR 'leak' with H101Q CLIC2. There are significant FKBP and RyR isoform-specific actions of CLIC2, rapamycin and FK506 on FKBP-RyR association. The results show that FKBPs do influence RyR gating and would contribute to excess Ca2+ release in this CLIC2 RyR channelopathy.
Collapse
Affiliation(s)
- Spencer J Richardson
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Gregory A Steele
- Capital Pathology Laboratory, 70 Kent St, Deakin, ACT 2600, Australia
| | - Esther M Gallant
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Alexander Lam
- Neurosurgery, Royal Perth Hospital, 197 Wellington St, Perth, WA 6000, Australia
| | - Charles E Schwartz
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Philip G Board
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Marco G Casarotto
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| | - Nicole A Beard
- Cardiac Physiology Department, Health Research Institute, Faculty of Education Science and Mathematics, University of Canberra, Bruce, ACT 2617, Australia
| | - Angela F Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, PO Box 334, ACT 2601, Australia
| |
Collapse
|
15
|
Gonano LA, Jones PP. FK506-binding proteins 12 and 12.6 (FKBPs) as regulators of cardiac Ryanodine Receptors: Insights from new functional and structural knowledge. Channels (Austin) 2017. [PMID: 28636428 DOI: 10.1080/19336950.2017.1344799] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ryanodine Receptors (RyRs) are intracellular Ca2+ channels that mediate Ca2+ flux from the sarco(endo)plasmic reticulum in many cell types. The interaction of RyRs with FK506-binding proteins (FKBPs) has been proposed as an important regulatory mechanism, where the loss of this interaction leads to channel dysfunction. In the heart, phosphorylation of RyR has been suggested to disrupt the RyR-FKBP interaction promoting altered Ca2+ signaling, heart failure and arrhythmias. However, the functional result of FKBP interaction with RyR and how this interaction is regulated remains highly controversial. Recently, high resolution structures of RyR have provided novel aspects to the ongoing debate. This review will discuss the most recent functional data in light of these new structures.
Collapse
Affiliation(s)
- Luis A Gonano
- a Department of Physiology , School of Biomedical Sciences and HeartOtago, University of Otago , Dunedin, Otago , New Zealand
| | - Peter P Jones
- a Department of Physiology , School of Biomedical Sciences and HeartOtago, University of Otago , Dunedin, Otago , New Zealand
| |
Collapse
|
16
|
Cabra V, Murayama T, Samsó M. Ultrastructural Analysis of Self-Associated RyR2s. Biophys J 2017; 110:2651-2662. [PMID: 27332123 DOI: 10.1016/j.bpj.2016.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022] Open
Abstract
In heart, type-2 ryanodine receptor (RyR2) forms discrete supramolecular clusters in the sarcoplasmic reticulum known as calcium release units (CRUs), which are responsible for most of the Ca(2+) released for muscle contraction. To learn about the substructure of the CRU, we sought to determine whether RyR2s have the ability to self-associate in the absence of other factors and if so, whether they do it in a specific manner. Purified RyR2 was negatively stained and imaged on the transmission electron microscope, and RyR2 particles closely associated were further analyzed using bias-free multivariate statistical analysis and classification. The resulting two-dimensional averages show that RyR2s can interact in two rigid, reproducible configurations: "adjoining", with two RyR2s alongside each other, and "oblique", with two partially overlapped RyR2s forming an angle of 12°. The two configurations are nearly identical under two extreme physiological Ca(2+) concentrations. Pseudo-atomic models for these two interactions indicate that the adjoining interaction involves contacts between the P1, SPRY1 and the helical domains. The oblique interaction is mediated by extensive contacts between the SPRY1 domains (domains 9) and P1 domains (domains 10) of both RyR2s and not through domain 6 as previously thought; in addition its asymmetric interface imposes steric constrains that inhibit the growth of RyR2 as a checkerboard, which is the configuration usually assumed, and generates new configurations, i.e., "branched" and "interlocked". This first, to our knowledge, structural detailed analysis of the inter-RyR2 interactions helps to understand important morphological and functional aspects of the CRU in the context of cardiac EC coupling.
Collapse
Affiliation(s)
- Vanessa Cabra
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
17
|
Dhindwal S, Lobo J, Cabra V, Santiago DJ, Nayak AR, Dryden K, Samsó M. A cryo-EM–based model of phosphorylation- and FKBP12.6-mediated allosterism of the cardiac ryanodine receptor. Sci Signal 2017; 10:10/480/eaai8842. [DOI: 10.1126/scisignal.aai8842] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Walweel K, Molenaar P, Imtiaz MS, Denniss A, Dos Remedios C, van Helden DF, Dulhunty AF, Laver DR, Beard NA. Ryanodine receptor modification and regulation by intracellular Ca 2+ and Mg 2+ in healthy and failing human hearts. J Mol Cell Cardiol 2017; 104:53-62. [PMID: 28131631 DOI: 10.1016/j.yjmcc.2017.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/01/2017] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
Abstract
RATIONALE Heart failure is a multimodal disorder, of which disrupted Ca2+ homeostasis is a hallmark. Central to Ca2+ homeostasis is the major cardiac Ca2+ release channel - the ryanodine receptor (RyR2) - whose activity is influenced by associated proteins, covalent modification and by Ca2+ and Mg2+. That RyR2 is remodelled and its function disturbed in heart failure is well recognized, but poorly understood. OBJECTIVE To assess Ca2+ and Mg2+ regulation of RyR2 from left ventricles of healthy, cystic fibrosis and failing hearts, and to correlate these functional changes with RyR2 modifications and remodelling. METHODS AND RESULTS The function of RyR2 from left ventricular samples was assessed using lipid bilayer single-channel measurements, whilst RyR2 modification and protein:protein interactions were determined using Western Blots and co-immunoprecipitation. In all failing hearts there was an increase in RyR2 activity at end-diastolic cytoplasmic Ca2+ (100nM), a decreased cytoplasmic [Ca2+] required for half maximal activation (Ka) and a decrease in inhibition by cytoplasmic Mg2+. This was accompanied by significant hyperphosphorylation of RyR2 S2808 and S2814, reduced free thiol content and a reduced interaction with FKBP12.0 and FKBP12.6. Either dephosphorylation of RyR2 using PP1 or thiol reduction using DTT eliminated any significant difference in the activity of RyR2 from healthy and failing hearts. We also report a subgroup of RyR2 in failing hearts that were not responsive to regulation by intracellular Ca2+ or Mg2+. CONCLUSION Despite different aetiologies, disrupted RyR2 Ca2+ sensitivity and biochemical modification of the channel are common constituents of failing heart RyR2 and may underlie the pathological disturbances in intracellular Ca2+ signalling.
Collapse
Affiliation(s)
- K Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia
| | - P Molenaar
- Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Northside Clinical School, School of Clinical Medicine, University of Queensland and Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, 4032, Australia
| | - M S Imtiaz
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - A Denniss
- Health Research Institute, Faculty of Education Science and Mathematics, University of Canberra, Bruce, ACT 2617, Australia
| | - C Dos Remedios
- Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - D F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia
| | - A F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, 0200, Australia
| | - D R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia
| | - N A Beard
- Health Research Institute, Faculty of Education Science and Mathematics, University of Canberra, Bruce, ACT 2617, Australia; John Curtin School of Medical Research, Australian National University, Canberra, ACT, 0200, Australia.
| |
Collapse
|
19
|
Samsó M. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Protein Sci 2016; 26:52-68. [PMID: 27671094 DOI: 10.1002/pro.3052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/04/2023]
Abstract
Signal transduction by the ryanodine receptor (RyR) is essential in many excitable cells including all striated contractile cells and some types of neurons. While its transmembrane domain is a classic tetrameric, six-transmembrane cation channel, the cytoplasmic domain is uniquely large and complex, hosting a multiplicity of specialized domains. The overall outline and substructure readily recognizable by electron microscopy make RyR a geometrically well-behaved specimen. Hence, for the last two decades, the 3D structural study of the RyR has tracked closely the technological advances in electron microscopy, cryo-electron microscopy (cryoEM), and computerized 3D reconstruction. This review summarizes the progress in the structural determination of RyR by cryoEM and, bearing in mind the leap in resolution provided by the recent implementation of direct electron detection, analyzes the first near-atomic structures of RyR. These reveal a complex orchestration of domains controlling the channel's function, and help to understand how this could break down as a consequence of disease-causing mutations.
Collapse
Affiliation(s)
- Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
20
|
Yuchi Z, Van Petegem F. Ryanodine receptors under the magnifying lens: Insights and limitations of cryo-electron microscopy and X-ray crystallography studies. Cell Calcium 2016; 59:209-27. [DOI: 10.1016/j.ceca.2016.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
|
21
|
The ryanodine receptor provides high throughput Ca2+-release but is precisely regulated by networks of associated proteins: a focus on proteins relevant to phosphorylation. Biochem Soc Trans 2016; 43:426-33. [PMID: 26009186 DOI: 10.1042/bst20140297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Once opened, ryanodine receptors (RyR) are efficient pathways for the release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR). The precise nature of the Ca2+-release event, however, requires fine-tuning for the specific process and type of cell involved. For example, the spatial organization of RyRs, the luminal [Ca2+] and the influence of soluble regulators that fluctuate under physiological and pathophysiological control mechanisms, all affect the amplitude and duration of RyR Ca2+ fluxes. Various proteins are docked tightly to the huge bulky structure of RyR and there is growing evidence that, together, they provide a sophisticated and integrated system for regulating RyR channel gating. This review focuses on those proteins that are relevant to phosphorylation of RyR channels with particular reference to the cardiac isoform of RyR (RyR2). How phosphorylation of RyR affects channel activity and whether proteins such as the FK-506 binding proteins (FKBP12 and FKBP12.6) are involved, have been highly controversial subjects for more than a decade. But that is expected given the large number of participating proteins, the relevance of phosphorylation in heart failure and inherited arrhythmic diseases, and the frustrations of predicting relationships between structure and function before the advent of a high resolution structure of RyR.
Collapse
|
22
|
Hernández-Ochoa EO, Pratt SJP, Lovering RM, Schneider MF. Critical Role of Intracellular RyR1 Calcium Release Channels in Skeletal Muscle Function and Disease. Front Physiol 2016; 6:420. [PMID: 26793121 PMCID: PMC4709859 DOI: 10.3389/fphys.2015.00420] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 01/25/2023] Open
Abstract
The skeletal muscle Ca2+ release channel, also known as ryanodine receptor type 1 (RyR1), is the largest ion channel protein known and is crucial for effective skeletal muscle contractile activation. RyR1 function is controlled by Cav1.1, a voltage gated Ca2+ channel that works mainly as a voltage sensor for RyR1 activity during skeletal muscle contraction and is also fine-tuned by Ca2+, several intracellular compounds (e.g., ATP), and modulatory proteins (e.g., calmodulin). Dominant and recessive mutations in RyR1, as well as acquired channel alterations, are the underlying cause of various skeletal muscle diseases. The aim of this mini review is to summarize several current aspects of RyR1 function, structure, regulation, and to describe the most common diseases caused by hereditary or acquired RyR1 malfunction.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
23
|
Rakesh R, Srinivasan N. Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps of Protein Assemblies Using Evolutionary Information from Aligned Homologous Proteins. Methods Mol Biol 2016; 1415:193-209. [PMID: 27115634 DOI: 10.1007/978-1-4939-3572-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cryo-Electron Microscopy (cryo-EM) has become an important technique to obtain structural insights into large macromolecular assemblies. However the resolution of the density maps do not allow for its interpretation at atomic level. Hence they are combined with high resolution structures along with information from other experimental or bioinformatics techniques to obtain pseudo-atomic models. Here, we describe the use of evolutionary conservation of residues as obtained from protein structures and alignments of homologous proteins to detect errors in the fitting of atomic structures as well as improve accuracy of the protein-protein interfacial regions in the cryo-EM density maps.
Collapse
Affiliation(s)
- Ramachandran Rakesh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
24
|
Yuchi Z, Yuen SMWK, Lau K, Underhill AQ, Cornea RL, Fessenden JD, Van Petegem F. Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant. Nat Commun 2015; 6:7947. [PMID: 26245150 PMCID: PMC4530471 DOI: 10.1038/ncomms8947] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 06/30/2015] [Indexed: 12/22/2022] Open
Abstract
Ryanodine receptors (RyRs) form calcium release channels located in the membranes of the sarcoplasmic and endoplasmic reticulum. RyRs play a major role in excitation-contraction coupling and other Ca2+-dependent signalling events, and consist of several globular domains that together form a large assembly. Here we describe the crystal structures of the SPRY1 and tandem-repeat domains at 1.2–1.5 Å resolution, which reveal several structural elements not detected in recent cryo-EM reconstructions of RyRs. The cryo-EM studies disagree on the position of SPRY domains, which had been proposed based on homology modelling. Computational docking of the crystal structures, combined with FRET studies, show that the SPRY1 domain is located next to FK506-binding protein (FKBP). Molecular dynamics flexible fitting and mutagenesis experiments suggest a hydrophobic cluster within SPRY1 that is crucial for FKBP binding. A RyR1 disease mutation, N760D, appears to directly impact FKBP binding through interfering with SPRY1 folding. The ryanodine receptor (RyR) is a large multi-domain ion channel that functions to release calcium from the endoplasmic or sarcoplasmic reticulum. Here the authors present crystal structures of the SPRY1 and tandem repeat domains of RyR, allowing precise positioning of the domains and linking disease mutations to RyR function.
Collapse
Affiliation(s)
- Zhiguang Yuchi
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Siobhan M Wong King Yuen
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Kelvin Lau
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Ainsley Q Underhill
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - James D Fessenden
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| |
Collapse
|
25
|
FRET-based trilateration of probes bound within functional ryanodine receptors. Biophys J 2015; 107:2037-48. [PMID: 25418089 DOI: 10.1016/j.bpj.2014.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 02/05/2023] Open
Abstract
To locate the biosensor peptide DPc10 bound to ryanodine receptor (RyR) Ca(2+) channels, we developed an approach that combines fluorescence resonance energy transfer (FRET), simulated-annealing, cryo-electron microscopy, and crystallographic data. DPc10 is identical to the 2460-2495 segment within the cardiac muscle RyR isoform (RyR2) central domain. DPc10 binding to RyR2 results in a pathologically elevated Ca(2+) leak by destabilizing key interactions between the RyR2 N-terminal and central domains (unzipping). To localize the DPc10 binding site within RyR2, we measured FRET between five single-cysteine variants of the FK506-binding protein (FKBP) labeled with a donor probe, and DPc10 labeled with an acceptor probe (A-DPc10). Effective donor positions were calculated from simulated-annealing constrained by both the RyR cryo-EM map and the FKBP atomic structure docked to the RyR. FRET to A-DPc10 was measured in permeabilized cardiomyocytes via confocal microscopy, converted to distances, and used to trilaterate the acceptor locus within RyR. Additional FRET measurements between donor-labeled calmodulin and A-DPc10 were used to constrain the trilaterations. Results locate the DPc10 probe within RyR domain 3, ?35 Å from the previously docked N-terminal domain crystal structure. This multiscale approach may be useful in mapping other RyR sites of mechanistic interest within FRET range of FKBP.
Collapse
|
26
|
Cabra V, Samsó M. Do's and don'ts of cryo-electron microscopy: a primer on sample preparation and high quality data collection for macromolecular 3D reconstruction. J Vis Exp 2015:52311. [PMID: 25651412 PMCID: PMC4354528 DOI: 10.3791/52311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level.
Collapse
Affiliation(s)
- Vanessa Cabra
- Department of Physiology and Biophysics, Virginia Commonwealth University
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University;
| |
Collapse
|
27
|
Van Petegem F. Ryanodine Receptors: Allosteric Ion Channel Giants. J Mol Biol 2015; 427:31-53. [DOI: 10.1016/j.jmb.2014.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 01/27/2023]
|
28
|
Efremov RG, Leitner A, Aebersold R, Raunser S. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 2014; 517:39-43. [DOI: 10.1038/nature13916] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
|
29
|
Venturi E, Galfré E, O'Brien F, Pitt SJ, Bellamy S, Sessions RB, Sitsapesan R. FKBP12.6 activates RyR1: investigating the amino acid residues critical for channel modulation. Biophys J 2014; 106:824-33. [PMID: 24559985 PMCID: PMC3945099 DOI: 10.1016/j.bpj.2013.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/25/2013] [Accepted: 12/19/2013] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that FKBP12 associates with RyR2 in cardiac muscle and that it modulates RyR2 function differently to FKBP12.6. We now investigate how these proteins affect the single-channel behavior of RyR1 derived from rabbit skeletal muscle. Our results show that FKBP12.6 activates and FKBP12 inhibits RyR1. It is likely that both proteins compete for the same binding sites on RyR1 because channels that are preactivated by FKBP12.6 cannot be subsequently inhibited by FKBP12. We produced a mutant FKBP12 molecule (FKBP12E31Q/D32N/W59F) where the residues Glu(31), Asp(32), and Trp(59) were converted to the corresponding residues in FKBP12.6. With respect to the functional regulation of RyR1 and RyR2, the FKBP12E31Q/D32N/W59F mutant lost all ability to behave like FKBP12 and instead behaved like FKBP12.6. FKBP12E31Q/D32N/W59F activated RyR1 but was not capable of activating RyR2. In conclusion, FKBP12.6 activates RyR1, whereas FKBP12 activates RyR2 and this selective activator phenotype is determined within the amino acid residues Glu(31), Asp(32), and Trp(59) in FKBP12 and Gln(31), Asn(32), and Phe(59) in FKBP12.6. The opposing but different effects of FKBP12 and FKBP12.6 on RyR1 and RyR2 channel gating provide scope for diversity of regulation in different tissues.
Collapse
Affiliation(s)
- Elisa Venturi
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Elena Galfré
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Fiona O'Brien
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha J Pitt
- School of Medicine, University of St. Andrews, St. Andrew, United Kingdom
| | - Stuart Bellamy
- Centre for Nanoscience and Quantum Information (NSQI), University of Bristol, Bristol, United Kingdom
| | | | - Rebecca Sitsapesan
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
30
|
Mahalingam M, Girgenrath T, Svensson B, Thomas DD, Cornea RL, Fessenden JD. Structural mapping of divergent regions in the type 1 ryanodine receptor using fluorescence resonance energy transfer. Structure 2014; 22:1322-1332. [PMID: 25132084 DOI: 10.1016/j.str.2014.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/26/2014] [Accepted: 07/13/2014] [Indexed: 12/16/2022]
Abstract
Ryanodine receptors (RyRs) release Ca(2+) to initiate striated muscle contraction. Three highly divergent regions (DRs) in the RyR protein sequence (DR1, DR2, and DR3) may confer isoform-specific functional properties to the RyRs. We used cell-based fluorescence resonance energy transfer (FRET) measurements to localize these DRs to the cryoelectron microscopic (cryo-EM) map of the skeletal muscle RyR isoform (RyR1). FRET donors were targeted to RyR1 using five different FKBP12.6 variants labeled with Alexa Fluor 488. FRET was then measured to the FRET acceptors, Cy3NTA or Cy5NTA, targeted to decahistidine tags introduced within the DRs. DR2 and DR3 were localized to separate positions within the "clamp" region of the RyR1 cryo-EM map, which is presumed to interface with Cav1.1. DR1 was localized to the "handle" region, near the regulatory calmodulin-binding site on the RyR. These localizations provide insights into the roles of DRs in RyR allosteric regulation during excitation contraction coupling.
Collapse
Affiliation(s)
- Mohana Mahalingam
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tanya Girgenrath
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - James D Fessenden
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Abstract
The advent of the polymerase chain reaction and the availability of data from various global human genome projects should make it possible, using a DNA sample isolated from white blood cells, to diagnose rapidly and accurately almost any monogenic condition resulting from single nucleotide changes. DNA-based diagnosis for malignant hyperthermia (MH) is an attractive proposition, because it could replace the invasive and morbid caffeine-halothane/in vitro contracture tests of skeletal muscle biopsy tissue. Moreover, MH is preventable if an accurate diagnosis of susceptibility can be made before general anesthesia, the most common trigger of an MH episode. Diagnosis of MH using DNA was suggested as early as 1990 when the skeletal muscle ryanodine receptor gene (RYR1), and a single point mutation therein, was linked to MH susceptibility. In 1994, a single point mutation in the α 1 subunit of the dihydropyridine receptor gene (CACNA1S) was identified and also subsequently shown to be causative of MH. In the succeeding years, the number of identified mutations in RYR1 has grown, as has the number of potential susceptibility loci, although no other gene has yet been definitively associated with MH. In addition, it has become clear that MH is associated with either of these 2 genes (RYR1 and CACNA1S) in only 50% to 70% of affected families. While DNA testing for MH susceptibility has now become widespread, it still does not replace the in vitro contracture tests. Whole exome sequence analysis makes it potentially possible to identify all variants within human coding regions, but the complexity of the genome, the heterogeneity of MH, the limitations of bioinformatic tools, and the lack of precise genotype/phenotype correlations are all confounding factors. In addition, the requirement for demonstration of causality, by in vitro functional analysis, of any familial mutation currently precludes DNA-based diagnosis as the sole test for MH susceptibility. Nevertheless, familial DNA testing for MH susceptibility is now widespread although limited to a positive diagnosis and to those few mutations that have been functionally characterized. Identification of new susceptibility genes remains elusive. When new genes are identified, it will be the role of the biochemists, physiologists, and biophysicists to devise functional assays in appropriate systems. This will remain the bottleneck unless high throughput platforms can be designed for functional work. Analysis of entire genomes from several individuals simultaneously is a reality. DNA testing for MH, based on current criteria, remains the dream.
Collapse
Affiliation(s)
- Kathryn M Stowell
- From the Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
32
|
Girgenrath T, Mahalingam M, Svensson B, Nitu FR, Cornea RL, Fessenden JD. N-terminal and central segments of the type 1 ryanodine receptor mediate its interaction with FK506-binding proteins. J Biol Chem 2013; 288:16073-84. [PMID: 23585572 DOI: 10.1074/jbc.m113.463299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used site-directed labeling of the type 1 ryanodine receptor (RyR1) and fluorescence resonance energy transfer (FRET) measurements to map RyR1 sequence elements forming the binding site of the 12-kDa binding protein for the immunosuppressant drug, FK506. This protein, FKBP12, promotes the RyR1 closed state, thereby inhibiting Ca(2+) leakage in resting muscle. Although FKBP12 function is well established, its binding determinants within the RyR1 protein sequence remain unresolved. To identify these sequence determinants using FRET, we created five single-Cys FKBP variants labeled with Alexa Fluor 488 (denoted D-FKBP) and then targeted these D-FKBPs to full-length RyR1 constructs containing decahistidine (His10) "tags" placed within N-terminal (amino acid residues 76-619) or central (residues 2157-2777) regions of RyR1. The FRET acceptor Cy3NTA bound specifically and saturably to these His tags, allowing distance analysis of FRET measured from each D-FKBP variant to Cy3NTA bound to each His tag. Results indicate that D-FKBP binds proximal to both N-terminal and central domains of RyR1, thus suggesting that the FKBP binding site is composed of determinants from both regions. These findings further imply that the RyR1 N-terminal and central domains are proximal to one another, a core premise of the domain-switch hypothesis of RyR function. We observed FRET from GFP fused at position 620 within the N-terminal domain to central domain His-tagged sites, thus further supporting this hypothesis. Taken together, these results support the conclusion that N-terminal and central domain elements are closely apposed near the FKBP binding site within the RyR1 three-dimensional structure.
Collapse
Affiliation(s)
- Tanya Girgenrath
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
33
|
Strauss JD, Wagenknecht T. Structure of glutaraldehyde cross-linked ryanodine receptor. J Struct Biol 2013; 181:300-6. [PMID: 23333333 PMCID: PMC3587655 DOI: 10.1016/j.jsb.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 01/01/2023]
Abstract
The ryanodine receptor (RyR) family of calcium release channels plays a vital role in excitation-contraction coupling (ECC). Along with the dihydropyridine receptor (DHPR), calsequestrin, and several other smaller regulatory and adaptor proteins, RyRs form a large dynamic complex referred to as ECC machinery. Here we describe a simple cross-linking procedure that can be used to stabilize fragile components of the ECC machinery, for the purpose of structural elucidation by single particle cryo-electron microscopy (cryo-EM). As a model system, the complex of the FK506-binding protein (FKBP12) and RyR1 was used to test the cross-linking protocol. Glutaraldehyde fixation led to complete cross-linking of receptor-bound FKBP12 to RyR1, and also to extensive cross-linking of the four subunits comprising RyR to one another without compromising the RyR1 ultrastructure. FKBP12 cross-linked with RyR1 was visualized in 2D averages by single particle cryo-EM. Comparison of control RyR1 and cross-linked RyR1 3D reconstructions revealed minor conformational changes at the transmembrane assembly and at the cytoplasmic region. Intersubunit cross-linking enhanced [(3)H]ryanodine binding to RyR1. Based on our findings we propose that intersubunit cross-linking of RyR1 by glutaraldehyde induced RyR1 to adopt an open like conformation.
Collapse
Affiliation(s)
- Joshua D. Strauss
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201
| | - Terence Wagenknecht
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201
| |
Collapse
|
34
|
Kimlicka L, Lau K, Tung CC, Van Petegem F. Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface. Nat Commun 2013; 4:1506. [PMID: 23422674 PMCID: PMC3586727 DOI: 10.1038/ncomms2501] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/15/2013] [Indexed: 11/14/2022] Open
Abstract
Ryanodine receptors are large channels that release Ca(2+) from the endoplasmic and sarcoplasmic reticulum. Hundreds of RyR mutations can cause cardiac and skeletal muscle disorders, yet detailed mechanisms explaining their effects have been lacking. Here we compare pseudo-atomic models and propose that channel opening coincides with widening of a cytoplasmic vestibule formed by the N-terminal region, thus altering an interface targeted by 20 disease mutations. We solve crystal structures of several disease mutants that affect intrasubunit domain-domain interfaces. Mutations affecting intrasubunit ionic pairs alter relative domain orientations, and thus couple to surrounding interfaces. Buried disease mutations cause structural changes that also connect to the intersubunit contact area. These results suggest that the intersubunit contact region between N-terminal domains is a prime target for disease mutations, direct or indirect, and we present a model whereby ryanodine receptors and inositol-1,4,5-trisphosphate receptors are activated by altering domain arrangements in the N-terminal region.
Collapse
Affiliation(s)
- Lynn Kimlicka
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Kelvin Lau
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Ching-Chieh Tung
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
35
|
FK506 binding proteins: Cellular regulators of intracellular Ca2+ signalling. Eur J Pharmacol 2013; 700:181-93. [DOI: 10.1016/j.ejphar.2012.12.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/04/2012] [Accepted: 12/18/2012] [Indexed: 02/04/2023]
|
36
|
Oda T, Yang Y, Nitu FR, Svensson B, Lu X, Fruen BR, Cornea RL, Bers DM. In cardiomyocytes, binding of unzipping peptide activates ryanodine receptor 2 and reciprocally inhibits calmodulin binding. Circ Res 2012; 112:487-97. [PMID: 23233753 DOI: 10.1161/circresaha.111.300290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE One hypothesis for elevated Ca(2+) leak through cardiac ryanodine receptors (ryanodine receptor 2 [RyR2]) in heart failure is interdomain unzipping that can enhance aberrant channel activation. A peptide (domain peptide corresponding to RyR2 residues 2460-2495 [DPc10]) corresponding to RyR2 central domain residues 2460-2495 recapitulates this arrhythmogenic RyR2 leakiness by unzipping N-terminal and central domains. Calmodulin (CaM) and FK506-binding protein (FKBP12.6) bind to RyR2 and stabilize the closed channel. Little is known about DPc10 binding to the RyR2 and how that may interact with binding (and effects) of CaM and FKBP12.6 to RyR2. OBJECTIVE To measure, directly in cardiac myocytes, the kinetics and binding affinity of DPc10 to RyR2 and how that affects RyR2 interaction with FKBP12.6 and CaM. METHODS AND RESULTS We used permeabilized rat ventricular myocytes and fluorescently labeled DPc10, FKBP12.6, and CaM. DPc10 access to its binding site is extremely slow in resting RyR2 but is accelerated by promoting RyR opening or unzipping (by unlabeled DPc10). RyR2-bound CaM (but not FKBP12.6) drastically slowed DPc10 binding. Conversely, DPc10 binding significantly reduced CaM (but not FKBP12.6) binding to the RyR2. Fluorescence resonance energy transfer measurements indicate that DPc10-binding and CaM-binding sites are separate and allow triangulation of the structural DPc10 binding locus on RyR2 vs FKBP12.6-binding and CaM-binding sites. CONCLUSIONS DPc10-RyR2 binding is sterically limited by the resting zipped RyR2 state. CaM binding to RyR2 stabilizes this zipped state, whereas RyR2 activation or prebound DPc10 enhances DPc10 access. DPc10-binding and CaM-binding sites are distinct but are allosterically interacting RyR2 sites. Neither DPc10 nor FKBP12.6 influences RyR2 binding of the other.
Collapse
Affiliation(s)
- Tetsuro Oda
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhu L, Zhong X, Chen SRW, Banavali N, Liu Z. Modeling a ryanodine receptor N-terminal domain connecting the central vestibule and the corner clamp region. J Biol Chem 2012. [PMID: 23204524 DOI: 10.1074/jbc.m112.429670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ryanodine receptors (RyRs) form a class of intracellular calcium release channels in various excitable tissues and cells such as muscles and neurons. They are the major cellular mediators of the release of calcium ions from the sarcoplasmic reticulum, an essential step in muscle excitation-contraction coupling. Several crystal structures of skeletal muscle RyR1 peptide fragments have been solved, but these cover less than 15% of the full-length RyR1 sequence. In this study, by combining modeling techniques with sub-nanometer resolution cryo-electron microscopy (cryo-EM) maps, we obtained pseudo-atomic models for RyR fragments consisting of residues 850-1,056 in rabbit RyR1 or residues 861-1,067 in mouse RyR2. These fragments are docked into a domain that connects the central vestibule and corner clamp region of RyR, resulting in a good match of the secondary structure elements in the cryo-EM map and the pseudo-atomic models, which is also consistent with our previous mappings of GFP insertions by cryo-EM and with FRET measurements involving RyR and FK506-binding protein (FKBP). A combined model of the RyR fragment and FKBP docked into the cryo-EM map suggests that the fragment is positioned adjacent to the FKBP-binding site. Its predicted binding interface with FKBP consists primarily of electrostatic contacts and contains several disease-associated mutations. A dynamic interaction between the fragment and an RyR phosphorylation domain, characterized by FRET experiments, also supports the structural predictions of the pseudo-atomic models.
Collapse
Affiliation(s)
- Li Zhu
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
38
|
Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for Ca2+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart. Biochem J 2012; 447:371-9. [DOI: 10.1042/bj20120705] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structural proximity and functional coupling between the SR (sarcoplasmic reticulum) and mitochondria have been suggested to occur in the heart. However, the molecular architecture involved in the SR–mitochondrial coupling remains unclear. In the present study, we performed various genetic and Ca2+-probing studies to resolve the proteins involved in the coupling process. By using the bacterial 2-hybrid, glutathione transferase pull-down, co-immunoprecipitation and immunocytochemistry assays, we found that RyR2 (ryanodine receptor type 2), which is physically associated with VDAC2 (voltage-dependent anion channel 2), was co-localized in SR–mitochondrial junctions. Furthermore, a fractionation study revealed that VDAC2 was co-localized with RyR2 only in the subsarcolemmal region. VDAC2 knockdown by targeted short hairpin RNA led to an increased diastolic [Ca2+] (calcium concentration) and abolishment of mitochondrial Ca2+ uptake. Collectively, the present study suggests that the coupling of VDAC2 with RyR2 is essential for Ca2+ transfer from the SR to mitochondria in the heart.
Collapse
|
39
|
Abstract
Ryanodine receptors (RyRs) are huge ion channels that are responsible for the release of Ca(2+) from the sarco/endoplasmic reticulum. RyRs form homotetramers with a mushroom-like shape, consisting of a large cytoplasmic head and transmembrane stalk. Ca(2+) is a major physiological ligand that triggers opening of RyRs, but a plethora of modulatory proteins and small molecules in the cytoplasm and sarco/endoplasmic reticulum lumen have been recognized. Over 300 mutations in RyRs are associated with severe skeletal muscle disorders or triggered cardiac arrhythmias. With the advent of high-resolution structures of individual domains, many of these can be mapped onto the three-dimensional structure.
Collapse
Affiliation(s)
- Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
40
|
Boncompagni S, Thomas M, Lopez JR, Allen PD, Yuan Q, Kranias EG, Franzini-Armstrong C, Perez CF. Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis. PLoS One 2012; 7:e39962. [PMID: 22768324 PMCID: PMC3388061 DOI: 10.1371/journal.pone.0039962] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca(2+) imaging and Ca(2+) selective microelectrodes we found that changes in e-c coupling, SR Ca(2+)content and resting [Ca(2+)] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca(2+) regulation than Jct/CASQ association.
Collapse
Affiliation(s)
- Simona Boncompagni
- DNI-Department of Neuroscience and Imaging, CeSI-Center for Research on Ageing, University of G. D'Annunzio, Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Galfré E, Pitt SJ, Venturi E, Sitsapesan M, Zaccai NR, Tsaneva-Atanasova K, O'Neill S, Sitsapesan R. FKBP12 activates the cardiac ryanodine receptor Ca2+-release channel and is antagonised by FKBP12.6. PLoS One 2012; 7:e31956. [PMID: 22363773 PMCID: PMC3283708 DOI: 10.1371/journal.pone.0031956] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/16/2012] [Indexed: 11/18/2022] Open
Abstract
Changes in FKBP12.6 binding to cardiac ryanodine receptors (RyR2) are implicated in mediating disturbances in Ca(2+)-homeostasis in heart failure but there is controversy over the functional effects of FKBP12.6 on RyR2 channel gating. We have therefore investigated the effects of FKBP12.6 and another structurally similar molecule, FKBP12, which is far more abundant in heart, on the gating of single sheep RyR2 channels incorporated into planar phospholipid bilayers and on spontaneous waves of Ca(2+)-induced Ca(2+)-release in rat isolated permeabilised cardiac cells. We demonstrate that FKBP12 is a high affinity activator of RyR2, sensitising the channel to cytosolic Ca(2+), whereas FKBP12.6 has very low efficacy, but can antagonise the effects of FKBP12. Mathematical modelling of the data shows the importance of the relative concentrations of FKBP12 and FKBP12.6 in determining RyR2 activity. Consistent with the single-channel results, physiological concentrations of FKBP12 (3 µM) increased Ca(2+)-wave frequency and decreased the SR Ca(2+)-content in cardiac cells. FKBP12.6, itself, had no effect on wave frequency but antagonised the effects of FKBP12.We provide a biophysical analysis of the mechanisms by which FK-binding proteins can regulate RyR2 single-channel gating. Our data indicate that FKBP12, in addition to FKBP12.6, may be important in regulating RyR2 function in the heart. In heart failure, it is possible that an alteration in the dual regulation of RyR2 by FKBP12 and FKBP12.6 may occur. This could contribute towards a higher RyR2 open probability, 'leaky' RyR2 channels and Ca(2+)-dependent arrhythmias.
Collapse
Affiliation(s)
- Elena Galfré
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Samantha J. Pitt
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Elisa Venturi
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Mano Sitsapesan
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Nathan R. Zaccai
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | | | - Stephen O'Neill
- Cardiovascular Research Group, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Rebecca Sitsapesan
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
42
|
Techniques and Methodologies to Study the Ryanodine Receptor at the Molecular, Subcellular and Cellular Level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:183-215. [DOI: 10.1007/978-94-007-2888-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Wen H, Kang S, Song Y, Song Y, Yang HJ, Kim MH, Park S. Characterization of the binding sites for the interactions between FKBP12 and intracellular calcium release channels. Arch Biochem Biophys 2012; 517:37-42. [DOI: 10.1016/j.abb.2011.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 11/30/2022]
|
44
|
Perálvarez-Marín A, Tae H, Board PG, Casarotto MG, Dulhunty AF, Samsó M. 3D Mapping of the SPRY2 domain of ryanodine receptor 1 by single-particle cryo-EM. PLoS One 2011; 6:e25813. [PMID: 21998699 PMCID: PMC3187800 DOI: 10.1371/journal.pone.0025813] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/11/2011] [Indexed: 01/26/2023] Open
Abstract
The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca(2+) release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform.
Collapse
Affiliation(s)
- Alex Perálvarez-Marín
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Centre d'Estudis Biofísics, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - HanShen Tae
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Philip G. Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Marco G. Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Angela F. Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Montserrat Samsó
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
45
|
The structural biology of ryanodine receptors. SCIENCE CHINA-LIFE SCIENCES 2011; 54:712-24. [DOI: 10.1007/s11427-011-4198-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
|
46
|
LI YM, JI GJ. Evolution in Research of Ryanodine Receptors and Its Subtype 2 Regulators*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Capes EM, Loaiza R, Valdivia HH. Ryanodine receptors. Skelet Muscle 2011; 1:18. [PMID: 21798098 PMCID: PMC3156641 DOI: 10.1186/2044-5040-1-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/04/2011] [Indexed: 12/31/2022] Open
Abstract
Excitation-contraction coupling involves the faithful conversion of electrical stimuli to mechanical shortening in striated muscle cells, enabled by the ubiquitous second messenger, calcium. Crucial to this process are ryanodine receptors (RyRs), the sentinels of massive intracellular calcium stores contained within the sarcoplasmic reticulum. In response to sarcolemmal depolarization, RyRs release calcium into the cytosol, facilitating mobilization of the myofilaments and enabling cell contraction. In order for the cells to relax, calcium must be rapidly resequestered or extruded from the cytosol. The sustainability of this cycle is crucially dependent upon precise regulation of RyRs by numerous cytosolic metabolites and by proteins within the lumen of the sarcoplasmic reticulum and those directly associated with the receptors in a macromolecular complex. In addition to providing the majority of the calcium necessary for contraction of cardiac and skeletal muscle, RyRs act as molecular switchboards that integrate a multitude of cytosolic signals such as dynamic and steady calcium fluctuations, β-adrenergic stimulation (phosphorylation), nitrosylation and metabolic states, and transduce these signals to the channel pore to release appropriate amounts of calcium. Indeed, dysregulation of calcium release via RyRs is associated with life-threatening diseases in both skeletal and cardiac muscle. In this paper, we briefly review some of the most outstanding structural and functional attributes of RyRs and their mechanism of regulation. Further, we address pathogenic RyR dysfunction implicated in cardiovascular disease and skeletal myopathies.
Collapse
Affiliation(s)
- E Michelle Capes
- Department of Cellular and Regenerative Biology, University of Wisconsin Medical School, Madison, WI 53711, USA.
| | | | | |
Collapse
|
48
|
Song DW, Lee JG, Youn HS, Eom SH, Kim DH. Ryanodine receptor assembly: A novel systems biology approach to 3D mapping. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 105:145-61. [DOI: 10.1016/j.pbiomolbio.2010.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/14/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
|
49
|
Wang R, Zhong X, Meng X, Koop A, Tian X, Jones PP, Fruen BR, Wagenknecht T, Liu Z, Chen SRW. Localization of the dantrolene-binding sequence near the FK506-binding protein-binding site in the three-dimensional structure of the ryanodine receptor. J Biol Chem 2011; 286:12202-12. [PMID: 21262961 PMCID: PMC3069424 DOI: 10.1074/jbc.m110.194316] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/07/2011] [Indexed: 11/06/2022] Open
Abstract
Dantrolene is believed to stabilize interdomain interactions between the NH2-terminal and central regions of ryanodine receptors by binding to the NH2-terminal residues 590-609 in skeletal ryanodine receptor (RyR1) and residues 601-620 in cardiac ryanodine receptor (RyR2). To gain further insight into the structural basis of dantrolene action, we have attempted to localize the dantrolene-binding sequence in RyR1/RyR2 by using GFP as a structural marker and three-dimensional cryo-EM. We inserted GFP into RyR2 after residues Arg-626 and Tyr-846 to generate GFP-RyR2 fusion proteins, RyR2Arg-626-GFP and RyR2Tyr-846-GFP. Insertion of GFP after residue Arg-626 abolished the binding of a bulky GST- or cyan fluorescent protein-tagged FKBP12.6 but not the binding of a smaller, nontagged FKBP12.6, suggesting that residue Arg-626 and the dantrolene-binding sequence are located near the FKBP12.6-binding site. Using cryo-EM, we have mapped the three-dimensional location of Tyr-846-GFP to domain 9, which is also adjacent to the FKBP12.6-binding site. To further map the three-dimensional location of the dantrolene-binding sequence, we generated 10 FRET pairs based on four known three-dimensional locations (FKBP12.6, Ser-437-GFP, Tyr-846-GFP, and Ser-2367-GFP). Based on the FRET efficiencies of these FRET pairs and the corresponding distance relationships, we mapped the three-dimensional location of Arg-626-GFP or -cyan fluorescent protein, hence the dantrolene-binding sequence, to domain 9 near the FKBP12.6-binding site but distant to the central region around residue Ser-2367. An allosteric mechanism by which dantrolene stabilizes interdomain interactions between the NH2-terminal and central regions is proposed.
Collapse
Affiliation(s)
- Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiaowei Zhong
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xing Meng
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Andrea Koop
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xixi Tian
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Peter P. Jones
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bradley R. Fruen
- the Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Terence Wagenknecht
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
- the Department of Biomedical Sciences, School of Public Health, State University of New York, at Albany, Albany, New York 12201
| | - Zheng Liu
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - S. R. Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
50
|
Dulhunty AF, Hewawasam R, Liu D, Casarotto MG, Board PG. Regulation of the cardiac muscle ryanodine receptor by glutathione transferases. Drug Metab Rev 2011; 43:236-52. [DOI: 10.3109/03602532.2010.549134] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|