1
|
Ghattas W, Mahy JP, Réglier M, Simaan AJ. Artificial Enzymes for Diels-Alder Reactions. Chembiochem 2020; 22:443-459. [PMID: 32852088 DOI: 10.1002/cbic.202000316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The Diels-Alder (DA) reaction is a cycloaddition of a conjugated diene and an alkene (dienophile) leading to the formation of a cyclohexene derivative through a concerted mechanism. As DA reactions generally proceed with a high degree of regio- and stereoselectivity, they are widely used in synthetic organic chemistry. Considering eco-conscious public and governmental movements, efforts are now directed towards the development of synthetic processes that meet environmental concerns. Artificial enzymes, which can be developed to catalyze abiotic reactions, appear to be important synthetic tools in the synthetic biology field. This review describes the different strategies used to develop protein-based artificial enzymes for DA reactions, including for in cellulo approaches.
Collapse
Affiliation(s)
- Wadih Ghattas
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, 91405 Cedex 8, France
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, 91405 Cedex 8, France
| | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Avenue Escadrille Normandie Niemen, Service 342, Marseille, 13397, France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Avenue Escadrille Normandie Niemen, Service 342, Marseille, 13397, France
| |
Collapse
|
2
|
Kariyawasam K, Ricoux R, Mahy JP. Recent advances in the field of artificial hemoproteins: New efficient eco-compatible biocatalysts for nitrene-, oxene- and carbene-transfer reactions. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619300222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the last few years, the field of artificial hemoproteins has been expanding through two main strategies involving either the incorporation of synthetic metalloporphyrin derivatives into the chiral cavity of a protein or the directed evolution of natural hemoproteins such as myoglobin and cytochromes P450. First, various synthetic water-soluble porphyrins including ions of transition metals such as iron and manganese have been inserted covalently or by supramolecular anchoring into non-specifically designed native proteins or into proteins modified by a minimum number of mutations. The obtained artificial hemoproteins were able to catalyze oxene transfer reactions such as epoxidation of alkenes or sulfoxidation of sulfides and cyclopropanation reactions with good activities and moderate enantioselectivities. Recently, a second approach, based on the design of the active site of already existing native hemoproteins such as myoglobin and cytochromes P450 by directed evolution, has led to new artificial hemoproteins that are able to catalyze oxene transfer reactions with improved activities as well as with abiological reactions. This approach thus provided promising tools for the catalysis of reactions such as intramolecular or intermolecular carbene and nitrene transfer reactions with high efficiencies. In addition, in all cases, after a few rounds of mutagenesis, mutants that were able to catalyze those reactions with a high enantioselectivity could be obtained. Finally, several groups showed that these new artificial metalloenzymes could also be used for the preparative scale-production of compounds with an excellent enantioselectivity, opening new pathways for the industrial synthesis of compounds of pharmaceutical interest.
Collapse
Affiliation(s)
- Kalani Kariyawasam
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-Sud, Université Paris Saclay, 91405 Orsay CEDEX, France
| | - Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-Sud, Université Paris Saclay, 91405 Orsay CEDEX, France
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-Sud, Université Paris Saclay, 91405 Orsay CEDEX, France
| |
Collapse
|
3
|
Chino M, Leone L, Zambrano G, Pirro F, D'Alonzo D, Firpo V, Aref D, Lista L, Maglio O, Nastri F, Lombardi A. Oxidation catalysis by iron and manganese porphyrins within enzyme-like cages. Biopolymers 2018; 109:e23107. [DOI: 10.1002/bip.23107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Linda Leone
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Gerardo Zambrano
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Fabio Pirro
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Vincenzo Firpo
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Diaa Aref
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Liliana Lista
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Ornella Maglio
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
- Institute of Biostructures and Bioimages-National Research Council, Via Mezzocannone 16; Napoli 80134 Italy
| | - Flavia Nastri
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Angela Lombardi
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| |
Collapse
|
4
|
Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. J Biol Inorg Chem 2017; 23:7-25. [DOI: 10.1007/s00775-017-1506-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
|
5
|
Ghattas W, Cotchico-Alonso L, Maréchal JD, Urvoas A, Rousseau M, Mahy JP, Ricoux R. Artificial Metalloenzymes with the Neocarzinostatin Scaffold: Toward a Biocatalyst for the Diels-Alder Reaction. Chembiochem 2016; 17:433-40. [DOI: 10.1002/cbic.201500445] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Wadih Ghattas
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Lur Cotchico-Alonso
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193, Cerdonyola del Vallès Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193, Cerdonyola del Vallès Barcelona Spain
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC); UMR 9198, CEA, CNRS, Université Paris-Sud; Bât. 430, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Maëva Rousseau
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Jean-Pierre Mahy
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Rémy Ricoux
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| |
Collapse
|
6
|
Construction of a genetically engineered chimeric apoprotein consisting of sequences derived from lidamycin and neocarzinostatin. Anticancer Drugs 2016; 27:24-8. [DOI: 10.1097/cad.0000000000000300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Abstract
We report the performance of our approaches for protein-protein docking and interface analysis in CAPRI rounds 20-26. At the core of our pipeline was the ZDOCK program for rigid-body protein-protein docking. We then reranked the ZDOCK predictions using the ZRANK or IRAD scoring functions, pruned and analyzed energy landscapes using clustering, and analyzed the docking results using our interface prediction approach RCF. When possible, we used biological information from the literature to apply constraints to the search space during or after the ZDOCK runs. For approximately half of the standard docking challenges we made at least one prediction that was acceptable or better. For the scoring challenges we made acceptable or better predictions for all but one target. This indicates that our scoring functions are generally able to select the correct binding mode.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | | | | | | |
Collapse
|
8
|
The αRep artificial repeat protein scaffold: a new tool for crystallization and live cell applications. Biochem Soc Trans 2015; 43:819-24. [DOI: 10.1042/bst20150075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have designed a new family of artificial proteins, named αRep, based on HEAT (acronym for Huntingtin, elongation factor 3 (EF3), protein pphosphatase 2A (PP2A), yeast kinase Tor1) repeat proteins containing an α-helical repeated motif. The sequence of the repeated motifs, first identified in a thermostable archae protein was optimized using a consensus design strategy and used for the construction of a library of artificial proteins. All proteins from this library share the same general fold but differ both in the number of repeats and in five highly randomized amino acid positions within each repeat. The randomized side chains altogether provide a hypervariable surface on αRep variants. Sequences from this library are efficiently expressed as soluble, folded and very stable proteins. αRep binders with high affinity for various protein targets were selected by phage display. Low micromolar to nanomolar dissociation constants between partners were measured and the structures of several complexes (specific αRep/protein target) were solved by X-ray crystallography. Using GFP as a model target, it was demonstrated that αReps can be used as bait in pull-down experiments. αReps can be expressed in eukaryotic cells and specifically interact with their target addressed to different cell compartments.
Collapse
|
9
|
Sansiaume-Dagousset E, Urvoas A, Chelly K, Ghattas W, Maréchal JD, Mahy JP, Ricoux R. Neocarzinostatin-based hybrid biocatalysts for oxidation reactions. Dalton Trans 2015; 43:8344-54. [PMID: 24728274 DOI: 10.1039/c4dt00151f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An anionic iron(III)-porphyrin-testosterone conjugate 1-Fe has been synthesized and fully characterized. It has been further associated with a neocarzinostatin variant, NCS-3.24, to generate a new artificial metalloenzyme following the so-called 'Trojan Horse' strategy. This new 1-Fe-NCS-3.24 biocatalyst showed an interesting catalytic activity as it was found able to catalyze the chemoselective and slightly enantioselective (ee = 13%) sulfoxidation of thioanisole by H2O2. Molecular modelling studies show that a synergy between the binding of the steroid moiety and that of the porphyrin macrocycle into the protein binding site can explain the experimental results, indicating a better affinity of 1-Fe for the NCS-3.24 variant than testosterone and testosterone-hemisuccinate themselves. They also show that the Fe-porphyrin complex is sandwiched between the two subdomains of the protein providing with good complementarities. However, the artificial cofactor entirely fills the cavity and its metal ion remains widely exposed to the solvent which explains the moderate enantioselectivity observed. Some possible improvements in the "Trojan Horse" strategy for obtaining better catalysts of selective oxidations are presented.
Collapse
Affiliation(s)
- Elodie Sansiaume-Dagousset
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Muñoz Robles V, Ortega-Carrasco E, Alonso-Cotchico L, Rodriguez-Guerra J, Lledós A, Maréchal JD. Toward the Computational Design of Artificial Metalloenzymes: From Protein–Ligand Docking to Multiscale Approaches. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Victor Muñoz Robles
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Elisabeth Ortega-Carrasco
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Lur Alonso-Cotchico
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Jaime Rodriguez-Guerra
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| |
Collapse
|
11
|
Mahy JP, Maréchal JD, Ricoux R. Various strategies for obtaining oxidative artificial hemoproteins with a catalytic oxidative activity: from "Hemoabzymes" to "Hemozymes"? J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424614500813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The design of artificial hemoproteins that could lead to new biocatalysts for selective oxidation reactions using clean oxidants such as O 2 or H 2 O 2 under ecocompatible conditions constitutes a really promising challenge for a wide range of industrial applications. In vivo, such reactions are performed by heme-thiolate proteins, cytochromes P450, that catalyze the oxidation of drugs by dioxygen in the presence of electrons delivered from NADPH by cytochrome P450 reductase. Several strategies were used to design new artificial hemoproteins to mimic these enzymes, that associate synthetic metalloporphyrin derivatives to a protein that is supposed to induce a selectivity in the catalyzed reaction. A first generation of artificial hemoproteins or "hemoabzymes" was obtained by the non-covalent association of synthetic hemes such as N-methyl-mesoporphyrin IX, Fe(III) -α3β-tetra-o-carboxyphenylporphyrin or microperoxidase 8 with monoclonal antibodies raised against these cofactors. The obtained antibody-metalloporphyrin complexes displayed a peroxidase activity and some of them catalyzed the regio-selective nitration of phenols by H 2 O 2/ NO 2 and the stereo-selective oxidation of sulphides by H 2 O 2. A second generation of artificial hemoproteins or "hemozymes", was obtained by the non-covalent association of non-relevant proteins with metalloporphyrin derivatives. Several strategies were used, the most successful of which, named "host-guest" strategy involved the non-covalent incorporation of metalloporphyrin derivatives into easily affordable proteins. The artificial hemoproteins obtained were found to be able to perform efficiently the stereoselective oxidation of organic compounds such as sulphides and alkenes by H 2 O 2 and KHSO 5.
Collapse
Affiliation(s)
- Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie, Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola del Vallès, Barcelona, Spain
| | - Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie, Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| |
Collapse
|
12
|
Mahy JP, Maréchal JD, Ricoux R. From “hemoabzymes” to “hemozymes”: towards new biocatalysts for selective oxidations. Chem Commun (Camb) 2015; 51:2476-94. [DOI: 10.1039/c4cc08169b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two generations of artificial hemoproteins have been obtained: “hemoabzymes”, by non-covalent association of synthetic hemes with monoclonal antibodies raised against these cofactors and “hemozymes”, by non-covalent association of non-relevant proteins with metalloporphyrin derivatives. A review of the different strategies employed as well as their structural and catalytic properties is presented here.
Collapse
Affiliation(s)
- J.-P. Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- UMR 8182 CNRS
- Laboratoire de Chimie Bioorganique et Bioinorganique
- 91435 Orsay Cedex
- France
| | - J.-D. Maréchal
- Departament de Química
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
| | - R. Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- UMR 8182 CNRS
- Laboratoire de Chimie Bioorganique et Bioinorganique
- 91435 Orsay Cedex
- France
| |
Collapse
|
13
|
Urvoas A, Ghattas W, Maréchal JD, Avenier F, Bellande F, Mao W, Ricoux R, Mahy JP. Neocarzinostatin-based hybrid biocatalysts with a RNase like activity. Bioorg Med Chem 2014; 22:5678-86. [PMID: 24984934 DOI: 10.1016/j.bmc.2014.05.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/24/2014] [Accepted: 05/28/2014] [Indexed: 11/16/2022]
Abstract
A new zinc(II)-cofactor coupled to a testosterone anchor, zinc(II)-N,N-bis(2-pyridylmethyl)-1,3-diamino-propa-2-ol-N'(17'-succinimidyltestosterone) (Zn-Testo-BisPyPol) 1-Zn has been synthesized and fully characterized. It has been further associated with a neocarzinostatin variant, NCS-3.24, to generate a new artificial metalloenzyme following the so-called 'Trojan horse' strategy. This new 1-Zn-NCS-3.24 biocatalyst showed an interesting catalytic activity as it was found able to catalyze the hydrolysis of the RNA model HPNP with a good catalytic efficiency (kcat/KM=13.6M(-1)s(-1) at pH 7) that places it among the best artificial catalysts for this reaction. Molecular modeling studies showed that a synergy between the binding of the steroid moiety and that of the BisPyPol into the protein binding site can explain the experimental results, indicating a better affinity of 1-Zn for the NCS-3.24 variant than testosterone and testosterone-hemisuccinate themselves. They also show that the artificial cofactor entirely fills the cavity, the testosterone part of 1-Zn being bound to one the two subdomains of the protein providing with good complementarities whereas its metal ion remains widely exposed to the solvent which made it a valuable tool for the catalysis of hydrolysis reactions, such as that of HPNP. Some possible improvements in the 'Trojan horse' strategy for obtaining better catalysts of selective reactions will be further studied.
Collapse
Affiliation(s)
- Agathe Urvoas
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619 CNRS, Laboratoire de Modélisation et d'Ingénierie des Protéines, Bât. 430, Université Paris XI, 91405 Orsay Cedex, France
| | - Wadih Ghattas
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., Cerdonyola del Vallès, 08193 Barcelona, Spain
| | - Frédéric Avenier
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| | - Felix Bellande
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| | - Wei Mao
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| | - Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France.
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France.
| |
Collapse
|
14
|
Huang SY, Yan C, Grinter SZ, Chang S, Jiang L, Zou X. Inclusion of the orientational entropic effect and low-resolution experimental information for protein-protein docking in Critical Assessment of PRedicted Interactions (CAPRI). Proteins 2013; 81:2183-91. [PMID: 24227686 PMCID: PMC3916956 DOI: 10.1002/prot.24435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/20/2023]
Abstract
Inclusion of entropy is important and challenging for protein-protein binding prediction. Here, we present a statistical mechanics-based approach to empirically consider the effect of orientational entropy. Specifically, we globally sample the possible binding orientations based on a simple shape-complementarity scoring function using an FFT-type docking method. Then, for each generated orientation, we calculate the probability through the partition function of the ensemble of accessible states, which are assumed to be represented by the set of nearby binding modes. For each mode, the interaction energy is calculated using our ITScorePP scoring function that was developed in our laboratory based on principles of statistical mechanics. Using the above protocol, we present the results of our participation in Rounds 22-27 of the Critical Assessment of PRedicted Interactions (CAPRI) experiment for 10 targets (T46-T58). Additional experimental information, such as low-resolution small-angle X-ray scattering data, was used when available. In the prediction (or docking) experiments of the 10 target complexes, we achieved correct binding modes for six targets: one with high accuracy (T47), two with medium accuracy (T48 and T57), and three with acceptable accuracy (T49, T50, and T58). In the scoring experiments of seven target complexes, we obtained correct binding modes for six targets: one with high accuracy (T47), two with medium accuracy (T49 and T50), and three with acceptable accuracy (T46, T51, and T53).
Collapse
Affiliation(s)
- Sheng-You Huang
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211
| | | | | | - Shan Chang
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211
| | - Lin Jiang
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211
| | - Xiaoqin Zou
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211
| |
Collapse
|
15
|
Guellouz A, Valerio-Lepiniec M, Urvoas A, Chevrel A, Graille M, Fourati-Kammoun Z, Desmadril M, van Tilbeurgh H, Minard P. Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep). PLoS One 2013; 8:e71512. [PMID: 24014183 PMCID: PMC3754942 DOI: 10.1371/journal.pone.0071512] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022] Open
Abstract
We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a “filtration” procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×109 independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties.
Collapse
Affiliation(s)
- Asma Guellouz
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Marie Valerio-Lepiniec
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Agathe Urvoas
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Anne Chevrel
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Marc Graille
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Zaineb Fourati-Kammoun
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Michel Desmadril
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Herman van Tilbeurgh
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Philippe Minard
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
- * E-mail:
| |
Collapse
|
16
|
Luisi I, Pavan S, Fontanive G, Tossi A, Benedetti F, Savoini A, Maurizio E, Sgarra R, Sblattero D, Berti F. An albumin-derived peptide scaffold capable of binding and catalysis. PLoS One 2013; 8:e56469. [PMID: 23451052 PMCID: PMC3579865 DOI: 10.1371/journal.pone.0056469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/09/2013] [Indexed: 11/18/2022] Open
Abstract
We have identified a 101-amino-acid polypeptide derived from the sequence of the IIA binding site of human albumin. The polypeptide contains residues that make contact with IIA ligands in the parent protein, and eight cysteine residues to form disulfide bridges, that stabilize the polypeptide structure. Seventy-four amino acids are located in six α-helical regions, while the remaining thirty-seven amino acids form six connecting coil/loop regions. A soluble GST fusion protein was expressed in E. coli in yields as high as 4 mg/l. This protein retains the IIA fragment's capacity to bind typical ligands such as warfarin and efavirenz and other albumin's functional properties such as aldolase activity and the ability to direct the stereochemical outcome of a diketone reduction. This newly cloned polypeptide thus represents a valuable starting point for the construction of libraries of binders and catalysts with improved proficiency.
Collapse
Affiliation(s)
- Immacolata Luisi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Silvia Pavan
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
| | - Giampaolo Fontanive
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
| | - Alessandro Tossi
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Fabio Benedetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
| | | | - Elisa Maurizio
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Riccardo Sgarra
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Daniele Sblattero
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Federico Berti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste, Italy
| |
Collapse
|
17
|
Short peptides as biosensor transducers. Anal Bioanal Chem 2011; 402:3055-70. [DOI: 10.1007/s00216-011-5589-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/25/2011] [Accepted: 11/20/2011] [Indexed: 12/27/2022]
|
18
|
Urvoas A, Guellouz A, Valerio-Lepiniec M, Graille M, Durand D, Desravines DC, van Tilbeurgh H, Desmadril M, Minard P. Design, Production and Molecular Structure of a New Family of Artificial Alpha-helicoidal Repeat Proteins (αRep) Based on Thermostable HEAT-like Repeats. J Mol Biol 2010; 404:307-27. [DOI: 10.1016/j.jmb.2010.09.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 01/07/2023]
|
19
|
Liang ZX. Complexity and simplicity in the biosynthesis of enediyne natural products. Nat Prod Rep 2010; 27:499-528. [DOI: 10.1039/b908165h] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Drevelle A, Urvoas A, Hamida-Rebaï MB, Van Vooren G, Nicaise M, Valerio-Lepiniec M, Desmadril M, Robert CH, Minard P. Disulfide Bond Substitution by Directed Evolution in an Engineered Binding Protein. Chembiochem 2009; 10:1349-59. [DOI: 10.1002/cbic.200800745] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Baker JR, Woolfson DN, Muskett FW, Stoneman RG, Urbaniak MD, Caddick S. Protein–Small Molecule Interactions in Neocarzinostatin, the Prototypical Enediyne Chromoprotein Antibiotic. Chembiochem 2007; 8:704-17. [PMID: 17451164 DOI: 10.1002/cbic.200600534] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The enediyne chromoproteins are a class of potent antitumour antibiotics comprising a 1:1 complex of a protein and a noncovalently bound chromophore. The protein is required to protect and transport the highly labile chromophore, which acts as the cytotoxic component by reacting with DNA leading to strand cleavage. A derivative of the best-studied member of this class, neocarzinostatin (NCS), is currently in use as a chemotherapeutic in Japan. The application of the chromoproteins as therapeutics along with their unique mode of action has prompted widespread interest in this area. Notable developments include the discovery of non-natural ligands for the apoproteins and the observation that multiple binding modes are available for these ligands in the binding site. Mutation studies on the apoproteins have revealed much about their stability and variability, and the application of an in vitro evolution method has conferred new binding specificity for unrelated ligands. These investigations hold great promise for the application of the apoproteins for drug-delivery, transport and stabilisation systems.
Collapse
Affiliation(s)
- James R Baker
- University College London, Department of Chemistry, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ, UK
| | | | | | | | | | | |
Collapse
|