1
|
Yang W, Chen X, Pang L, Tian H, Yang L, Xia B. Deciphering the Catalytic Proficiency and Mechanism of the N-Acetylglucosamine Deacetylase From Pantoea dispersa. Biotechnol Bioeng 2025; 122:495-508. [PMID: 39592864 DOI: 10.1002/bit.28894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Glucosamine (GlcN) is a widely utilized amino monosaccharide. It is traditionally synthesized from N-acetylglucosamine (GlcNAc) via chemical processes that pose environmental threats. In pursuit of a greener alternative, our investigation explored biocatalysis with a Pantoea dispersa derived deacetylase (Pd-nagA), showcasing its efficacy as a catalyst in GlcN production. As a result, this work provides a comprehensive characterization of Pd-nagA, scrutinizes its enzymatic behavior, and delves into the deacetylation mechanism in detail. Heterologous expression methods were utilized for the production and isolation of Pd-nagA, followed by a kinetic evaluation highlighting its enzymatic activity. The complex interactions between the enzyme and its substrate were investigated by integrating classical molecular dynamics, quantum mechanics/molecular mechanics simulations, funnel metadynamics, and on-the-fly probability enhanced sampling techniques, thereby elucidating the precise deacetylation pathway. Rigorous computational analysis results demonstrated that Pd-nagA exhibited promising specificity and efficiency for GlcNAc with a high turnover rate. The catalytic residues central to the reaction were identified, and the underlying quantum reaction mechanism was detailed. Our findings suggest an approach to GlcN production using eco-friendly biocatalysis, positioning Pd-nagA at the forefront of industrial application not only because of its remarkable catalytic capabilities but also due to its potential for enzyme optimization.
Collapse
Affiliation(s)
- Wentao Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Li Pang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Hong Tian
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Liang Yang
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
2
|
Shin J, Zielinski DC, Palsson BO. Deciphering nutritional stress responses via knowledge-enriched transcriptomics for microbial engineering. Metab Eng 2024; 84:34-47. [PMID: 38825177 DOI: 10.1016/j.ymben.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Understanding diverse bacterial nutritional requirements and responses is foundational in microbial research and biotechnology. In this study, we employed knowledge-enriched transcriptomic analytics to decipher complex stress responses of Vibrio natriegens to supplied nutrients, aiming to enhance microbial engineering efforts. We computed 64 independently modulated gene sets that comprise a quantitative basis for transcriptome dynamics across a comprehensive transcriptomics dataset containing a broad array of nutrient conditions. Our approach led to the i) identification of novel transporter systems for diverse substrates, ii) a detailed understanding of how trace elements affect metabolism and growth, and iii) extensive characterization of nutrient-induced stress responses, including osmotic stress, low glycolytic flux, proteostasis, and altered protein expression. By clarifying the relationship between the acetate-associated regulon and glycolytic flux status of various nutrients, we have showcased its vital role in directing optimal carbon source selection. Our findings offer deep insights into the transcriptional landscape of bacterial nutrition and underscore its significance in tailoring strain engineering strategies, thereby facilitating the development of more efficient and robust microbial systems for biotechnological applications.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Ichioka R, Kitazawa Y, Taguchi G, Shimosaka M. A novel N-acetylglucosamine-6-phosphate deacetylase that is essential for chitin utilization in the chitinolytic bacterium, Chitiniphilus shinanonensis. J Appl Microbiol 2024; 135:lxae117. [PMID: 38724455 DOI: 10.1093/jambio/lxae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
AIMS We aimed to investigate the function of an unidentified gene annotated as a PIG-L domain deacetylase (cspld) in Chitiniphilus shinanonensis SAY3. cspld was identified using transposon mutagenesis, followed by negatively selecting a mutant incapable of growing on chitin, a polysaccharide consisting of N-acetyl-d-glucosamine (GlcNAc). We focused on the physiological role of CsPLD protein in chitin utilization. METHODS AND RESULTS Recombinant CsPLD expressed in Escherichia coli exhibited GlcNAc-6-phosphate deacetylase (GPD) activity, which is involved in the metabolism of amino sugars. However, SAY3 possesses two genes (csnagA1 and csnagA2) in its genome that code for proteins whose primary sequences are homologous to those of typical GPDs. Recombinant CsNagA1 and CsNagA2 also exhibited GPD activity with 23 and 1.6% of catalytic efficiency (kcat/Km), respectively, compared to CsPLD. The gene-disrupted mutant, Δcspld was unable to grow on chitin or GlcNAc, whereas the three mutants, ΔcsnagA1, ΔcsnagA2, and ΔcsnagA1ΔcsnagA2 grew similarly to SAY3. The determination of GPD activity in the crude extracts of each mutant revealed that CsPLD is a major enzyme that accounts for almost all cellular activities. CONCLUSIONS Deacetylation of GlcNAc-6P catalyzed by CsPLD (but not by typical GPDs) is essential for the assimilation of chitin and its constituent monosaccharide, GlcNAc, as a carbon and energy source in C. shinanonensis.
Collapse
Affiliation(s)
- Ryotaro Ichioka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Yuri Kitazawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Makoto Shimosaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
4
|
Zeng H, Cheng M, Liu J, Hu C, Lin S, Cui R, Li H, Ye W, Wang L, Huang W. Pyrimirhodomyrtone inhibits Staphylococcus aureus by affecting the activity of NagA. Biochem Pharmacol 2023; 210:115455. [PMID: 36780990 DOI: 10.1016/j.bcp.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The epidemic of methicillin-resistant Staphylococcus aureus (MRSA) infections has created a critical health threat. The drug resistance of MRSA makes the development of drugs with new modes of action particularly urgent. In this study, we found that a natural product derivative pyrimirhodomyrtone (PRM) exerted antibacterial activity against S. aureus, including MRSA, both in vitro and in vivo. Genetic and biochemical studies revealed the interaction between PRM and N-acetylglucosamine-6-phosphate deacetylase (NagA) and the inhibitory effect of PRM on its deacetylation activity. We also found that PRM causes depolarization and destroys the integrity of the cell membrane. The elucidation of the antibacterial mechanism will inspire the subsequent development of new anti-MRSA drugs based on PRM.
Collapse
Affiliation(s)
- Huan Zeng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China; Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Minjing Cheng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China
| | - Jingyi Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Chunxia Hu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shilin Lin
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China
| | - Ruiqin Cui
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Haibo Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Wencai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China.
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China.
| | - Wei Huang
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Department of Clinical Microbiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
5
|
N-Acetylglucosamine Sensing and Metabolic Engineering for Attenuating Human and Plant Pathogens. Bioengineering (Basel) 2022; 9:bioengineering9020064. [PMID: 35200417 PMCID: PMC8869657 DOI: 10.3390/bioengineering9020064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
During evolution, both human and plant pathogens have evolved to utilize a diverse range of carbon sources. N-acetylglucosamine (GlcNAc), an amino sugar, is one of the major carbon sources utilized by several human and phytopathogens. GlcNAc regulates the expression of many virulence genes of pathogens. In fact, GlcNAc catabolism is also involved in the regulation of virulence and pathogenesis of various human pathogens, including Candida albicans, Vibrio cholerae, Leishmania donovani, Mycobacterium, and phytopathogens such as Magnaporthe oryzae. Moreover, GlcNAc is also a well-known structural component of many bacterial and fungal pathogen cell walls, suggesting its possible role in cell signaling. Over the last few decades, many studies have been performed to study GlcNAc sensing, signaling, and metabolism to better understand the GlcNAc roles in pathogenesis in order to identify new drug targets. In this review, we provide recent insights into GlcNAc-mediated cell signaling and pathogenesis. Further, we describe how the GlcNAc metabolic pathway can be targeted to reduce the pathogens’ virulence in order to control the disease prevalence and crop productivity.
Collapse
|
6
|
Efficient production of d-glucosamine by diacetylchitobiose deacetylase catalyzed deacetylation of N-acetyl-d-glucosamine. Biotechnol Lett 2022; 44:473-483. [DOI: 10.1007/s10529-022-03225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
|
7
|
Manjunath L, Coombes D, Davies J, Dhurandhar M, Tiwari VR, Dobson RCJ, Sowdhamini R, Ramaswamy S, Bose S. Quaternary variations in the structural assembly of N-acetylglucosamine-6-phosphate deacetylase from Pasteurella multocida. Proteins 2020; 89:81-93. [PMID: 32865821 DOI: 10.1002/prot.25996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
N-acetylglucosamine 6-phosphate deacetylase (NagA) catalyzes the conversion of N-acetylglucosamine-6-phosphate to glucosamine-6-phosphate in amino sugar catabolism. This conversion is an essential step in the catabolism of sialic acid in several pathogenic bacteria, including Pasteurella multocida, and thus NagA is identified as a potential drug target. Here, we report the unique structural features of NagA from P. multocida (PmNagA) resolved to 1.95 Å. PmNagA displays an altered quaternary architecture with unique interface interactions compared to its close homolog, the Escherichia coli NagA (EcNagA). We confirmed that the altered quaternary structure is not a crystallographic artifact using single particle electron cryo-microscopy. Analysis of the determined crystal structure reveals a set of hot-spot residues involved in novel interactions at the dimer-dimer interface. PmNagA binds to one Zn2+ ion in the active site and demonstrates kinetic parameters comparable to other bacterial homologs. Kinetic studies reveal that at high substrate concentrations (~10-fold the KM ), the tetrameric PmNagA displays hysteresis similar to its distant neighbor, the dimeric Staphylococcus aureus NagA (SaNagA). Our findings provide key information on structural and functional properties of NagA in P. multocida that could be utilized to design novel antibacterials.
Collapse
Affiliation(s)
- Lavanyaa Manjunath
- Institute for Stem Cell Science and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Tiger Circle, Manipal, Karnataka, India
| | - David Coombes
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - James Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Mugdha Dhurandhar
- National Centre for Biological Sciences, GKVK Campus, Bangalore, Karnataka, India
| | - Vikas R Tiwari
- National Centre for Biological Sciences, GKVK Campus, Bangalore, Karnataka, India
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - R Sowdhamini
- National Centre for Biological Sciences, GKVK Campus, Bangalore, Karnataka, India
| | - S Ramaswamy
- Institute for Stem Cell Science and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka, India
- Department of Biological Sciences and Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Sucharita Bose
- Institute for Stem Cell Science and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka, India
| |
Collapse
|
8
|
Deng C, Lv X, Liu Y, Li J, Lu W, Du G, Liu L. Metabolic engineering of Corynebacterium glutamicum S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis. Synth Syst Biotechnol 2019; 4:120-129. [PMID: 31198861 PMCID: PMC6558094 DOI: 10.1016/j.synbio.2019.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Glucosamine (GlcN) and its acetylated derivative N-acetylglucosamine (GlcNAc) are widely used in the pharmaceutical industries. Here, we attempted to achieve efficient production of GlcNAc via genomic engineering of Corynebacterium glutamicum. Specifically, we ligated the GNA1 gene, which converts GlcN-6-phosphate to GlcNAc-6-phosphate by transferring the acetyl group in Acetyl-CoA to the amino group of GlcN-6-phosphate, into the plasmid pJYW4 and then transformed this recombinant vector into the C. glutamicum ATCC 13032, ATCC 13869, ATCC 14067, and S9114 strains, and we assessed the GlcNAc titers at 0.5 g/L, 1.2 g/L, 0.8 g/L, and 3.1 g/L from each strain, respectively. This suggested that there were likely to be significant differences among the key genes in the glutamate and GlcNAc synthesis pathways of these C. glutamicum strains. Therefore, we performed whole genome sequencing of the S9114 strain, which has not been previously published, and found that there are many differences among the genes in the glutamate and GlcNAc synthesis pathways among the four strains tested. Next, nagA (encoding GlcNAc-6-phosphate deacetylase) and gamA (encoding GlcN-6-phosphate deaminase) were deleted in C. glutamicum S9114 to block the catabolism of intracellular GlcNAc, leading to a 54.8% increase in GlcNAc production (from 3.1 to 4.8 g/L) when grown in a shaker flask. In addition, lactate synthesis was blocked by knockout of ldh (encoding lactate dehydrogenase); thus, further increasing the GlcNAc titer to 5.4 g/L. Finally, we added a key gene of the GlcN synthetic pathway, glmS, from different sources into the expression vector pJYW-4-ceN, and the resulting recombinant strain CGGN2-GNA1-CgglmS produced the GlcNAc titer of 6.9 g/L. This is the first report concerning the metabolic engineering of C. glutamicum, and the results of this study provide a good starting point for further metabolic engineering to achieve industrial-scale production of GlcNAc.
Collapse
Affiliation(s)
- Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Lu
- Shandong Runde Biotechnology CO., LTD, Taian, 271200, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Bürger M, Chory J. Structural and chemical biology of deacetylases for carbohydrates, proteins, small molecules and histones. Commun Biol 2018; 1:217. [PMID: 30534609 PMCID: PMC6281622 DOI: 10.1038/s42003-018-0214-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Deacetylation is the removal of an acetyl group and occurs on a plethora of targets and for a wide range of biological reasons. Several pathogens deacetylate their surface carbohydrates to evade immune response or to support biofilm formation. Furthermore, dynamic acetylation/deacetylation cycles govern processes from chromatin remodeling to posttranslational modifications that compete with phosphorylation. Acetylation usually occurs on nitrogen and oxygen atoms and are referred to as N- and O-acetylation, respectively. This review discusses the structural prerequisites that enzymes must have to catalyze the deacetylation reaction, and how they adapted by formation of specific substrate and metal binding sites.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
10
|
Davies JS, Coombes D, Horne CR, Pearce FG, Friemann R, North RA, Dobson RCJ. Functional and solution structure studies of amino sugar deacetylase and deaminase enzymes from Staphylococcus aureus. FEBS Lett 2018; 593:52-66. [PMID: 30411345 DOI: 10.1002/1873-3468.13289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
N-Acetylglucosamine-6-phosphate deacetylase (NagA) and glucosamine-6-phosphate deaminase (NagB) are branch point enzymes that direct amino sugars into different pathways. For Staphylococcus aureus NagA, analytical ultracentrifugation and small-angle X-ray scattering data demonstrate that it is an asymmetric dimer in solution. Initial rate experiments show hysteresis, which may be related to pathway regulation, and kinetic parameters similar to other bacterial isozymes. The enzyme binds two Zn2+ ions and is not substrate inhibited, unlike the Escherichia coli isozyme. S. aureus NagB adopts a novel dimeric structure in solution and shows kinetic parameters comparable to other Gram-positive isozymes. In summary, these functional data and solution structures are of use for understanding amino sugar metabolism in S. aureus, and will inform the design of inhibitory molecules.
Collapse
Affiliation(s)
- James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - David Coombes
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - F Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Sweden
| | - Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
11
|
Radhakrishnan A, Furze CM, Ahangar MS, Fullam E. A GFP-strategy for efficient recombinant protein overexpression and purification in Mycobacterium smegmatis. RSC Adv 2018; 8:33087-33095. [PMID: 30319771 PMCID: PMC6180428 DOI: 10.1039/c8ra06237d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/14/2018] [Indexed: 12/02/2022] Open
Abstract
One of the major obstacles to obtaining a complete structural and functional understanding of proteins encoded by the Mycobacterium tuberculosis (Mtb) pathogen is due to significant difficulties in producing recombinant mycobacterial proteins. Recent advances that have utilised the closely related Mycobacterium smegmatis species as a native host have been effective. Here we have developed a method for the rapid screening of both protein production and purification strategies of mycobacterial proteins in whole M. smegmatis cells following green fluorescent protein (GFP) fluorescence as an indicator. We have adapted the inducible T7-promoter based pYUB1062 shuttle vector by the addition of a tobacco etch virus (TEV) cleavable C-terminal GFP enabling the target protein to be produced as a GFP-fusion with a poly-histidine tag for affinity purification. We illustrate the advantages of a fluorescent monitoring approach with the production and purification of the mycobacterial N-acetylglucosamine-6-phosphate deacetylase (NagA)-GFP fusion protein. The GFP system described here will accelerate the production of mycobacterial proteins that can be used to understand the molecular mechanisms of Mtb proteins and facilitate drug discovery efforts. A GFP-strategy to monitor protein expression and purification in Mycobacterium smegmatis to overcome the obstacle of producing recombinant mycobacterial proteins.![]()
Collapse
Affiliation(s)
- Anjana Radhakrishnan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| | - Christopher M Furze
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| | - Mohd Syed Ahangar
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| | - Elizabeth Fullam
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| |
Collapse
|
12
|
Ahangar MS, Furze CM, Guy CS, Cooper C, Maskew KS, Graham B, Cameron AD, Fullam E. Structural and functional determination of homologs of the Mycobacterium tuberculosis N-acetylglucosamine-6-phosphate deacetylase (NagA). J Biol Chem 2018; 293:9770-9783. [PMID: 29728457 PMCID: PMC6016474 DOI: 10.1074/jbc.ra118.002597] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
The Mycobacterium tuberculosis (Mtb) pathogen encodes a GlcNAc-6-phosphate deacetylase enzyme, NagA (Rv3332), that belongs to the amidohydrolase superfamily. NagA enzymes catalyze the deacetylation of GlcNAc-6-phosphate (GlcNAc6P) to glucosamine-6-phosphate (GlcN6P). NagA is a potential antitubercular drug target because it represents the key enzymatic step in the generation of essential amino-sugar precursors required for Mtb cell wall biosynthesis and also influences recycling of cell wall peptidoglycan fragments. Here, we report the structural and functional characterization of NagA from Mycobacterium smegmatis (MSNagA) and Mycobacterium marinum (MMNagA), close relatives of Mtb. Using a combination of X-ray crystallography, site-directed mutagenesis, and biochemical and biophysical assays, we show that these mycobacterial NagA enzymes are selective for GlcNAc6P. Site-directed mutagenesis studies revealed crucial roles of conserved residues in the active site that underpin stereoselective recognition, binding, and catalysis of substrates. Moreover, we report the crystal structure of MSNagA in both ligand-free form and in complex with the GlcNAc6P substrate at 2.6 and 2.0 Å resolutions, respectively. The GlcNAc6P complex structure disclosed the precise mode of GlcNAc6P binding and the structural framework of the active site, including two divalent metals located in the α/β binuclear site. Furthermore, we observed a cysteine residue located on a flexible loop region that occludes the active site. This cysteine is unique to mycobacteria and may represent a unique subsite for targeting mycobacterial NagA enzymes. Our results provide critical insights into the structural and mechanistic properties of mycobacterial NagA enzymes having an essential role in amino-sugar and nucleotide metabolism in mycobacteria.
Collapse
Affiliation(s)
| | | | - Collette S Guy
- From the School of Life Sciences and.,the Department of Chemistry, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | - Ben Graham
- the Department of Chemistry, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom
| | | | | |
Collapse
|
13
|
|
14
|
Plumbridge J. Regulation of the Utilization of Amino Sugars by Escherichia coli and Bacillus subtilis: Same Genes, Different Control. J Mol Microbiol Biotechnol 2015; 25:154-67. [DOI: 10.1159/000369583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amino sugars are dual-purpose compounds in bacteria: they are essential components of the outer wall peptidoglycan (PG) and the outer membrane of Gram-negative bacteria and, in addition, when supplied exogenously their catabolism contributes valuable supplies of energy, carbon and nitrogen to the cell. The enzymes for both the synthesis and degradation of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) are highly conserved but during evolution have become subject to different regulatory regimes. <i>Escherichia coli</i> grows more rapidly using GlcNAc as a carbon source than with GlcN. On the other hand, <i>Bacillus subtilis,</i> but not other <i>Bacilli</i> tested, grows more efficiently on GlcN than GlcNAc. The more rapid growth on this sugar is associated with the presence of a second, GlcN-specific operon, which is unique to this species. A single locus is associated with the genes for catabolism of GlcNAc and GlcN in <i>E. coli,</i> although they enter the cell via different transporters. In <i>E. coli</i> the amino sugar transport and catabolic genes have also been requisitioned as part of the PG recycling process. Although PG recycling likely occurs in <i>B. subtilis,</i> it appears to have different characteristics.
Collapse
|
15
|
Gaugué I, Oberto J, Putzer H, Plumbridge J. The use of amino sugars by Bacillus subtilis: presence of a unique operon for the catabolism of glucosamine. PLoS One 2013; 8:e63025. [PMID: 23667565 PMCID: PMC3648570 DOI: 10.1371/journal.pone.0063025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/27/2013] [Indexed: 11/20/2022] Open
Abstract
B. subtilis grows more rapidly using the amino sugar glucosamine as carbon source, than with N-acetylglucosamine. Genes for the transport and metabolism of N-acetylglucosamine (nagP and nagAB) are found in all the sequenced Bacilli (except Anoxybacillus flavithermus). In B. subtilis there is an additional operon (gamAP) encoding second copies of genes for the transport and catabolism of glucosamine. We have developed a method to make multiple deletion mutations in B. subtilis employing an excisable spectinomycin resistance cassette. Using this method we have analysed the contribution of the different genes of the nag and gam operons for their role in utilization of glucosamine and N-acetylglucosamine. Faster growth on glucosamine is due to the presence of the gamAP operon, which is strongly induced by glucosamine. Although the gamA and nagB genes encode isozymes of GlcN6P deaminase, catabolism of N-acetylglucosamine relies mostly upon the gamA gene product. The genes for use of N-acetylglucosamine, nagAB and nagP, are repressed by YvoA (NagR), a GntR family regulator, whose gene is part of the nagAB yvoA(nagR) operon. The gamAP operon is repressed by YbgA, another GntR family repressor, whose gene is expressed divergently from gamAP. The nagAB yvoA synton is found throughout the Bacilli and most firmicutes. On the other hand the ybgA-gamAP synton, which includes the ybgB gene for a small protein of unknown provenance, is only found in B. subtilis (and a few very close relatives). The origin of ybgBA-gamAP grouping is unknown but synteny analysis suggests lateral transfer from an unidentified donor. The presence of gamAP has enabled B. subtilis to efficiently use glucosamine as carbon source.
Collapse
Affiliation(s)
- Isabelle Gaugué
- CNRS-UPR9073 (affiliated with Université Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Jacques Oberto
- CNRS-UMR8621 Institut de Génétique et Microbiologie, Université Paris XI, Orsay, France
| | - Harald Putzer
- CNRS-UPR9073 (affiliated with Université Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Jacqueline Plumbridge
- CNRS-UPR9073 (affiliated with Université Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Yadav V, Panilaitis B, Shi H, Numuta K, Lee K, Kaplan DL. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus. PLoS One 2011; 6:e18099. [PMID: 21655093 PMCID: PMC3107205 DOI: 10.1371/journal.pone.0018099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/25/2011] [Indexed: 11/18/2022] Open
Abstract
Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tet(r); named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
| | - Bruce Panilaitis
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
| | - Hai Shi
- Department of Chemical and Biological Engineering, Tufts University,
Medford, Massachusetts, United States of America
| | - Keiji Numuta
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University,
Medford, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering , Tufts University, Medford,
Massachusetts, United States of America
- Department of Chemical and Biological Engineering, Tufts University,
Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fischer H, de Oliveira Neto M, Napolitano HB, Polikarpov I, Craievich AF. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J Appl Crystallogr 2009. [DOI: 10.1107/s0021889809043076] [Citation(s) in RCA: 357] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This paper describes a new and simple method to determine the molecular weight of proteins in dilute solution, with an error smaller than ∼10%, by using the experimental data of a single small-angle X-ray scattering (SAXS) curve measured on a relative scale. This procedure does not require the measurement of SAXS intensity on an absolute scale and does not involve a comparison with another SAXS curve determined from a known standard protein. The proposed procedure can be applied to monodisperse systems of proteins in dilute solution, either in monomeric or multimeric state, and it has been successfully tested on SAXS data experimentally determined for proteins with known molecular weights. It is shown here that the molecular weights determined by this procedure deviate from the known values by less than 10% in each case and the average error for the test set of 21 proteins was 5.3%. Importantly, this method allows for an unambiguous determination of the multimeric state of proteins with known molecular weights.
Collapse
|
18
|
Kress D, Alhapel A, Pierik AJ, Essen LO. The crystal structure of enamidase: a bifunctional enzyme of the nicotinate catabolism. J Mol Biol 2008; 384:837-47. [PMID: 18805424 DOI: 10.1016/j.jmb.2008.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/22/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
The hydrolysis of 1,4,5,6-tetrahydro-6-oxonicotinate to 2-formylglutarate is a central step in the catabolism of nicotinate in several Clostridia and Proteobacteria. This reaction is catalyzed by the novel enzyme enamidase, a new member of the amidohydrolase superfamily as indicated by its unique reaction, sequence relationship, and the stoichiometric binding of iron and zinc. A hallmark of enamidase is its capability to catalyze a two-step reaction: the initial decyclization of 1,4,5,6-tetrahydro-6-oxonicotinate leading to 2-(enamine)glutarate followed by an additional hydrolysis step yielding (S)-2-formylglutarate. Here, we present the crystal structure of enamidase from Eubacterium barkeri at 1.9 A resolution, providing a structural basis for catalysis and suggesting a mechanism for its exceptional activity and enantioselectivity. The enzyme forms a 222-symmetric tetramer built up by a dimer of dimers. Each enamidase monomer consists of a composite beta-sandwich domain and an (alpha/beta)(8)-TIM-barrel domain harboring the active site. With its catalytic binuclear metal center comprising both zinc and iron ions, enamidase represents a special case of subtype II amidohydrolases.
Collapse
Affiliation(s)
- Daniel Kress
- Philipps-Universität Marburg, Fachbereich Chemie, Marburg, Germany
| | | | | | | |
Collapse
|
19
|
Omi R, Goto M, Miyahara I, Manzoku M, Ebihara A, Hirotsu K. Crystal structure of monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8. Biochemistry 2007; 46:12618-27. [PMID: 17929834 DOI: 10.1021/bi701204r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8, which catalyzes the dephosphorylation of l-histidinol phosphate, belongs to the PHP family, together with the PHP domain of bacterial DNA polymerase III and family X DNA polymerase. We have determined the structures of the complex with a sulfate ion, the complex with a phosphate ion, and the unliganded form at 1.6, 2.1, and 1.8 A resolution, respectively. The enzyme exists as a tetramer, and the subunit consists of a distorted (betaalpha)7 barrel with one linker and one C-terminal tail. Three metal sites located on the C-terminal side of the barrel are occupied by Fe1, Fe2, and Zn ions, respectively, forming a trinuclear metal center liganded by seven histidines, one aspartate, one glutamate, and one hydroxide with two Fe ions bridged by the hydroxide. In the complexes, the sulfate or phosphate ion is coordinated to three metal ions, resulting in octahedral, trigonal bipyramidal, and tetrahedral geometries around the Fe1, Fe2, and Zn ions, respectively. The ligand residues are derived from the four motifs that characterize the PHP family and from two motifs conserved in histidinol phosphate phosphatases. The (betaalpha)7 barrel and the metal cluster are closely related in nature and architecture to the (betaalpha)8 barrel and the mononuclear or dinuclear metal center in the amidohydrolase superfamily, respectively. The coordination behavior of the phosphate ion toward the metal center supports the mechanism in which the bridging hydroxide makes a direct attack on the substrate phosphate tridentately bound to the two Fe ions and Zn ion to hydrolyze the phosphoester bond.
Collapse
Affiliation(s)
- Rie Omi
- RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Hall RS, Xiang DF, Xu C, Raushel FM. N-Acetyl-D-glucosamine-6-phosphate deacetylase: substrate activation via a single divalent metal ion. Biochemistry 2007; 46:7942-52. [PMID: 17567047 PMCID: PMC2533526 DOI: 10.1021/bi700543x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NagA is a member of the amidohydrolase superfamily and catalyzes the deacetylation of N-acetyl-d-glucosamine-6-phosphate. The catalytic mechanism of this enzyme was addressed by the characterization of the catalytic properties of metal-substituted derivatives of NagA from Escherichia coli with a variety of substrate analogues. The reaction mechanism is of interest since NagA from bacterial sources is found with either one or two divalent metal ions in the active site. This observation indicates that there has been a divergence in the evolution of NagA and suggests that there are fundamental differences in the mechanistic details for substrate activation and hydrolysis. NagA from E. coli was inactivated by the removal of the zinc bound to the active site and the apoenzyme reactivated upon incubation with 1 equiv of Zn2+, Cd2+, Co2+, Mn2+, Ni2+, or Fe2+. In the proposed catalytic mechanism the reaction is initiated by the polarization of the carbonyl group of the substrate via a direct interaction with the divalent metal ion and His-143. The invariant aspartate (Asp-273) found at the end of beta-strand 8 in all members of the amidohydrolase superfamily abstracts a proton from the metal-bound water molecule (or hydroxide) to promote the hydrolytic attack on the carbonyl group of the substrate. A tetrahedral intermediate is formed and then collapses with cleavage of the C-N bond after proton transfer to the leaving group amine by Asp-273. The lack of a solvent isotope effect by D2O and the absence of any changes to the kinetic constants with increases in solvent viscosity indicate that net product formation is not limited to any significant extent by proton-transfer steps or the release of products. N-Trifluoroacetyl-d-glucosamine-6-phosphate is hydrolyzed by NagA 26-fold faster than the corresponding N-acetyl derivative. This result is consistent with the formation or collapse of the tetrahedral intermediate as the rate limiting step in the catalytic mechanism of NagA.
Collapse
Affiliation(s)
- Richard S Hall
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012, USA
| | | | | | | |
Collapse
|