1
|
Jiang Z, Lu J, Tong Y, Yang H, Feng S. Enhancement of acid tolerance of Escherichia coli by introduction of molecule chaperone CbpA from extremophile. World J Microbiol Biotechnol 2023; 39:158. [PMID: 37046107 DOI: 10.1007/s11274-023-03613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Molecular chaperone CbpA from extreme acidophile Acidithiobacillus caldus was applied to improve acid tolerance of Escherichia coli via CRISPR/Cas9. Cell growth and viability of plasmid complementary strain indicated the importance of cbpAAc for bacteria acid tolerance. With in situ gene replacement by CRISPR/Cas9 system, colony formation unit (CFU) of genome recombinant strain BL21-ΔcbpA/AccbpA showed 7.7 times higher cell viability than deficient strain BL21-ΔcbpA and 2.3 times higher than wild type. Cell morphology observation using Field Emission Scanning Electron Microscopy (FESEM) revealed cell breakage of BL21-ΔcbpA and significant recovery of BL21-ΔcbpA/AccbpA. The intracellular ATP level of all strains gradually decreased along with the increased stress time. Particularly, the value of recombinant strain was 56.0% lower than that of deficient strain after 5 h, indicating that the recombinant strain consumed a lot of energy to resist acid stress. The arginine concentration in BL21-ΔcbpA/AccbpA was double that of BL21-ΔcbpA, while the aspartate and glutamate contents were 14.8% and 6.2% higher, respectively, compared to that of wild type. Moreover, RNA-Seq analysis examined 93 genes down-regulated in BL21-ΔcbpA compared to wild type strain, while 123 genes were up-regulated in BL21-ΔcbpA/AccbpA compared to BL21-ΔcbpA, with an emphasis on energy metabolism, transport, and cell components. Finally, the working model in response to acid stress of cbpA from A. caldus was developed. This study constructed a recombinant strain resistant to acid stress and also provided a reference for enhancing microorganisms' robustness to various conditions.
Collapse
Affiliation(s)
- Zhenming Jiang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jie Lu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Tao YM, Bu CY, Zou LH, Hu YL, Zheng ZJ, Ouyang J. A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:216. [PMID: 34794503 PMCID: PMC8600716 DOI: 10.1186/s13068-021-02067-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
1,2-Propanediol is an important building block as a component used in the manufacture of unsaturated polyester resin, antifreeze, biofuel, nonionic detergent, etc. Commercial production of 1,2-propanediol through microbial biosynthesis is limited by low efficiency, and chemical production of 1,2-propanediol requires petrochemically derived routes involving wasteful power consumption and high pollution emissions. With the development of various strategies based on metabolic engineering, a series of obstacles are expected to be overcome. This review provides an extensive overview of the progress in the microbial production of 1,2-propanediol, particularly the different micro-organisms used for 1,2-propanediol biosynthesis and microbial production pathways. In addition, outstanding challenges associated with microbial biosynthesis and feasible metabolic engineering strategies, as well as perspectives on the future microbial production of 1,2-propanediol, are discussed.
Collapse
Affiliation(s)
- Yuan-Ming Tao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chong-Yang Bu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li-Hua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yue-Li Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhao-Juan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
3
|
Knouse KW, Flood DT, Vantourout JC, Schmidt MA, Mcdonald IM, Eastgate MD, Baran PS. Nature Chose Phosphates and Chemists Should Too: How Emerging P(V) Methods Can Augment Existing Strategies. ACS CENTRAL SCIENCE 2021; 7:1473-1485. [PMID: 34584948 PMCID: PMC8461637 DOI: 10.1021/acscentsci.1c00487] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 05/27/2023]
Abstract
Phosphate linkages govern life as we know it. Their unique properties provide the foundation for many natural systems from cell biology and biosynthesis to the backbone of nucleic acids. Phosphates are ideal natural moieties; existing as ionized species in a stable P(V)-oxidation state, they are endowed with high stability but exhibit enzymatically unlockable potential. Despite intense interest in phosphorus catalysis and condensation chemistry, organic chemistry has not fully embraced the potential of P(V) reagents. To be sure, within the world of chemical oligonucleotide synthesis, modern approaches utilize P(III) reagent systems to create phosphate linkages and their analogs. In this Outlook, we present recent studies from our laboratories suggesting that numerous exciting opportunities for P(V) chemistry exist at the nexus of organic synthesis and biochemistry. Applications to the synthesis of stereopure antisense oligonucleotides, cyclic dinucleotides, methylphosphonates, and phosphines are reviewed as well as chemoselective modification to peptides, proteins, and nucleic acids. Finally, an outlook into what may be possible in the future with P(V) chemistry is previewed, suggesting these examples represent just the tip of the iceberg.
Collapse
Affiliation(s)
- Kyle W. Knouse
- Elsie
Biotechnologies, 4955
Directors Place, San Diego, California 92121, United States
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dillon T. Flood
- Elsie
Biotechnologies, 4955
Directors Place, San Diego, California 92121, United States
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Julien C. Vantourout
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael A. Schmidt
- Chemical
and Synthetic Development, Bristol Myers
Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ivar M. Mcdonald
- Small
Molecule Drug Discovery, Bristol Myers Squibb, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Martin D. Eastgate
- Chemical
and Synthetic Development, Bristol Myers
Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Phil S. Baran
- Elsie
Biotechnologies, 4955
Directors Place, San Diego, California 92121, United States
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
4
|
High Conversion of D-Fructose into D-Allulose by Enzymes Coupling with an ATP Regeneration System. Mol Biotechnol 2019; 61:432-441. [PMID: 30963480 DOI: 10.1007/s12033-019-00174-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
D-Allulose is a rare monosaccharide that exists in extremely small quantities in nature, and it is also hard to prepare at a large scale via chemical or enzyme synthetic route due to low conversion and downstream separation complexity. Using D-psicose epimerase and L-rhamnulose kinase, a method enabling high conversion of D-allulose from D-fructose without the need for a tedious isomer separation step was established recently. However, this method requires expensive ATP to facilitate the reaction. In the present study, an ATP regenerate system was developed coupling with polyphosphate kinase. In our optimized reaction with purified enzymes, the conversion rate of 99% D-fructose was achieved at the concentrations of 2 mM ATP, 5 mM polyphosphate, 20 mM D-fructose, and 20 mM Mg2+ when incubated at 50 °C and at pH 7.5. ATP usage can be reduced to 10% of the theoretical amount compared to that without the ATP regeneration system. A fed-batch mode was also studied to minimize the inhibitory effect of polyphosphate. The biosynthetic system reported here offers a potential and promising platform for the conversion of D-fructose into D-allulose at reduced ATP cost.
Collapse
|
5
|
Mus F, Eilers BJ, Alleman AB, Kabasakal BV, Wells JN, Murray JW, Nocek BP, DuBois JL, Peters JW. Structural Basis for the Mechanism of ATP-Dependent Acetone Carboxylation. Sci Rep 2017; 7:7234. [PMID: 28775283 PMCID: PMC5543143 DOI: 10.1038/s41598-017-06973-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/21/2017] [Indexed: 01/07/2023] Open
Abstract
Microorganisms use carboxylase enzymes to form new carbon-carbon bonds by introducing carbon dioxide gas (CO2) or its hydrated form, bicarbonate (HCO3-), into target molecules. Acetone carboxylases (ACs) catalyze the conversion of substrates acetone and HCO3- to form the product acetoacetate. Many bicarbonate-incorporating carboxylases rely on the organic cofactor biotin for the activation of bicarbonate. ACs contain metal ions but not organic cofactors, and use ATP to activate substrates through phosphorylation. How the enzyme coordinates these phosphorylation events and new C-C bond formation in the absence of biotin has remained a mystery since these enzymes were discovered. The first structural rationale for acetone carboxylation is presented here, focusing on the 360 kDa (αβγ)2 heterohexameric AC from Xanthobacter autotrophicus in the ligand-free, AMP-bound, and acetate coordinated states. These structures suggest successive steps in a catalytic cycle revealing that AC undergoes large conformational changes coupled to substrate activation by ATP to perform C-C bond ligation at a distant Mn center. These results illustrate a new chemical strategy for the conversion of CO2 into biomass, a process of great significance to the global carbon cycle.
Collapse
Affiliation(s)
- Florence Mus
- 0000 0001 2157 6568grid.30064.31Insitutite of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| | - Brian J. Eilers
- 0000 0001 2156 6108grid.41891.35Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Alexander B. Alleman
- 0000 0001 2157 6568grid.30064.31Insitutite of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| | - Burak V. Kabasakal
- 0000 0001 2113 8111grid.7445.2Department of Life Sciences, Imperial College, London, SW7 2AZ UK
| | - Jennifer N. Wells
- 0000 0001 2113 8111grid.7445.2Department of Life Sciences, Imperial College, London, SW7 2AZ UK
| | - James W. Murray
- 0000 0001 2113 8111grid.7445.2Department of Life Sciences, Imperial College, London, SW7 2AZ UK
| | - Boguslaw P. Nocek
- 0000 0001 1939 4845grid.187073.aStructural Biology Center, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Jennifer L. DuBois
- 0000 0001 2156 6108grid.41891.35Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - John W. Peters
- 0000 0001 2157 6568grid.30064.31Insitutite of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
6
|
Balogun EO, Inaoka DK, Shiba T, Tokuoka SM, Tokumasu F, Sakamoto K, Kido Y, Michels PAM, Watanabe YI, Harada S, Kita K. Glycerol kinase of African trypanosomes possesses an intrinsic phosphatase activity. Biochim Biophys Acta Gen Subj 2017; 1861:2830-2842. [PMID: 28778484 DOI: 10.1016/j.bbagen.2017.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND In general, glycerol kinases (GKs) are transferases that catalyze phospho group transfer from ATP to glycerol, and the mechanism was suggested to be random bi-bi. The reverse reaction i.e. phospho transfer from glycerol 3-phosphate (G3P) to ADP is only physiologically feasible by the African trypanosome GK. In contrast to other GKs the mechanism of Trypanosoma brucei gambiense glycerol kinase (TbgGK) was shown to be in an ordered fashion, and proceeding via autophosphorylation. From the unique reaction mechanism of TbgGK, we envisaged its potential to possess phosphatase activity in addition to being a kinase. METHODS Our hypothesis was tested by spectrophotometric and LC-MS/MS analyses using paranitrophenyl phosphate (pNPP) and TbgGK's natural substrate, G3P respectively. Furthermore, protein X-ray crystallography and site-directed mutagenesis were performed to examine pNPP binding, catalytic residues, and the possible reaction mechanism. RESULTS In addition to its widely known and expected phosphotransferase (class II) activity, TbgGK can efficiently facilitate the hydrolytic cleavage of phosphoric anhydride bonds (a class III property). This phosphatase activity followed the classical Michaelis-Menten pattern and was competitively inhibited by ADP and G3P, suggesting a common catalytic site for both activities (phosphatase and kinase). The structure of the TGK-pNPP complex, and structure-guided mutagenesis implicated T276 to be important for the catalysis. Remarkably, we captured a crystallographic molecular snapshot of the phosphorylated T276 reaction intermediate. CONCLUSION We conclude that TbgGK has both kinase and phosphatase activities. GENERAL SIGNIFICANCE This is the first report on a bifunctional kinase/phosphatase enzyme among members of the sugar kinase family.
Collapse
Affiliation(s)
- Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria.
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; School of Tropical Medicine and Global Health, Nagasaki University 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| | - Fuyuki Tokumasu
- Department of Lipidomics, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| | - Kimitoshi Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Yoh-Ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; School of Tropical Medicine and Global Health, Nagasaki University 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
7
|
Hjelm A, Karyolaimos A, Zhang Z, Rujas E, Vikström D, Slotboom DJ, de Gier JW. Tailoring Escherichia coli for the l-Rhamnose P BAD Promoter-Based Production of Membrane and Secretory Proteins. ACS Synth Biol 2017; 6:985-994. [PMID: 28226208 DOI: 10.1021/acssynbio.6b00321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane and secretory protein production in Escherichia coli requires precisely controlled production rates to avoid the deleterious saturation of their biogenesis pathways. On the basis of this requirement, the E. coli l-rhamnose PBAD promoter (PrhaBAD) is often used for membrane and secretory protein production since PrhaBAD is thought to regulate protein production rates in an l-rhamnose concentration-dependent manner. By monitoring protein production in real-time in E. coli wild-type and an l-rhamnose catabolism deficient mutant, we demonstrate that the l-rhamnose concentration-dependent tunability of PrhaBAD-mediated protein production is actually due to l-rhamnose consumption rather than regulating production rates. Using this information, a RhaT-mediated l-rhamnose transport and l-rhamnose catabolism deficient double mutant was constructed. We show that this mutant enables the regulation of PrhaBAD-based protein production rates in an l-rhamnose concentration-dependent manner and that this is critical to optimize membrane and secretory protein production yields. The high precision of protein production rates provided by the PrhaBAD promoter in an l-rhamnose transport and catabolism deficient background could also benefit other applications in synthetic biology.
Collapse
Affiliation(s)
- Anna Hjelm
- Department
of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexandros Karyolaimos
- Department
of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Zhe Zhang
- Department
of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Edurne Rujas
- Department
of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Dirk Jan Slotboom
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Jan-Willem de Gier
- Department
of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Kelly CL, Liu Z, Yoshihara A, Jenkinson SF, Wormald MR, Otero J, Estévez A, Kato A, Marqvorsen MHS, Fleet GWJ, Estévez RJ, Izumori K, Heap JT. Synthetic Chemical Inducers and Genetic Decoupling Enable Orthogonal Control of the rhaBAD Promoter. ACS Synth Biol 2016; 5:1136-1145. [PMID: 27247275 DOI: 10.1021/acssynbio.6b00030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
External control of gene expression is crucial in synthetic biology and biotechnology research and applications, and is commonly achieved using inducible promoter systems. The E. coli rhamnose-inducible rhaBAD promoter has properties superior to more commonly used inducible expression systems, but is marred by transient expression caused by degradation of the native inducer, l-rhamnose. To address this problem, 35 analogues of l-rhamnose were screened for induction of the rhaBAD promoter, but no strong inducers were identified. In the native configuration, an inducer must bind and activate two transcriptional activators, RhaR and RhaS. Therefore, the expression system was reconfigured to decouple the rhaBAD promoter from the native rhaSR regulatory cascade so that candidate inducers need only activate the terminal transcription factor RhaS. Rescreening the 35 compounds using the modified rhaBAD expression system revealed several promising inducers. These were characterized further to determine the strength, kinetics, and concentration-dependence of induction; whether the inducer was used as a carbon source by E. coli; and the modality (distribution) of induction among populations of cells. l-Mannose was found to be the most useful orthogonal inducer, providing an even greater range of induction than the native inducer l-rhamnose, and crucially, allowing sustained induction instead of transient induction. These findings address the key limitation of the rhaBAD expression system and suggest it may now be the most suitable system for many applications.
Collapse
Affiliation(s)
- Ciarán L. Kelly
- Centre
for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Zilei Liu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - Akihide Yoshihara
- International
Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - Mark R. Wormald
- Glycobiology
Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, U.K
| | - Jose Otero
- Departamento
de Química Orgánica and Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Amalia Estévez
- Departamento
de Química Orgánica and Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Mikkel H. S. Marqvorsen
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - Ramón J. Estévez
- Departamento
de Química Orgánica and Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Ken Izumori
- International
Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - John T. Heap
- Centre
for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
9
|
Xie Y, Li M, Chang W. Crystal Structures of Putative Sugar Kinases from Synechococcus Elongatus PCC 7942 and Arabidopsis Thaliana. PLoS One 2016; 11:e0156067. [PMID: 27223615 PMCID: PMC4880283 DOI: 10.1371/journal.pone.0156067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
The genome of the Synechococcus elongatus strain PCC 7942 encodes a putative sugar kinase (SePSK), which shares 44.9% sequence identity with the xylulose kinase-1 (AtXK-1) from Arabidopsis thaliana. Sequence alignment suggests that both kinases belong to the ribulokinase-like carbohydrate kinases, a sub-family of FGGY family carbohydrate kinases. However, their exact physiological function and real substrates remain unknown. Here we solved the structures of SePSK and AtXK-1 in both their apo forms and in complex with nucleotide substrates. The two kinases exhibit nearly identical overall architecture, with both kinases possessing ATP hydrolysis activity in the absence of substrates. In addition, our enzymatic assays suggested that SePSK has the capability to phosphorylate D-ribulose. In order to understand the catalytic mechanism of SePSK, we solved the structure of SePSK in complex with D-ribulose and found two potential substrate binding pockets in SePSK. Using mutation and activity analysis, we further verified the key residues important for its catalytic activity. Moreover, our structural comparison with other family members suggests that there are major conformational changes in SePSK upon substrate binding, facilitating the catalytic process. Together, these results provide important information for a more detailed understanding of the cofactor and substrate binding mode as well as the catalytic mechanism of SePSK, and possible similarities with its plant homologue AtXK-1.
Collapse
Affiliation(s)
- Yuan Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (WC); (ML)
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (WC); (ML)
| |
Collapse
|
10
|
Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis. J Bacteriol 2015; 198:830-45. [PMID: 26712933 DOI: 10.1128/jb.00856-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/15/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Bacillus subtilis rhaEWRBMA (formerly yuxG-yulBCDE) operon consists of four genes encoding enzymes for l-rhamnose catabolism and the rhaR gene encoding a DeoR-type transcriptional regulator. DNase I footprinting analysis showed that the RhaR protein specifically binds to the regulatory region upstream of the rhaEW gene, in which two imperfect direct repeats are included. Gel retardation analysis revealed that the direct repeat farther upstream is essential for the high-affinity binding of RhaR and that the DNA binding of RhaR was effectively inhibited by L-rhamnulose-1-phosphate, an intermediate of L-rhamnose catabolism. Moreover, it was demonstrated that the CcpA/P-Ser-HPr complex, primarily governing the carbon catabolite control in B. subtilis, binds to the catabolite-responsive element, which overlaps the RhaR binding site. In vivo analysis of the rhaEW promoter-lacZ fusion in the background of ccpA deletion showed that the L-rhamnose-responsive induction of the rhaEW promoter was negated by the disruption of rhaA or rhaB but not rhaEW or rhaM, whereas rhaR disruption resulted in constitutive rhaEW promoter activity. These in vitro and in vivo results clearly indicate that RhaR represses the operon by binding to the operator site, which is detached by L-rhamnulose-1-phosphate formed from L-rhamnose through a sequence of isomerization by RhaA and phosphorylation by RhaB, leading to the derepression of the operon. In addition, the lacZ reporter analysis using the strains with or without the ccpA deletion under the background of rhaR disruption supported the involvement of CcpA in the carbon catabolite repression of the operon. IMPORTANCE Since L-rhamnose is a component of various plant-derived compounds, it is a potential carbon source for plant-associating bacteria. Moreover, it is suggested that L-rhamnose catabolism plays a significant role in some bacteria-plant interactions, e.g., invasion of plant pathogens and nodulation of rhizobia. Despite the physiological importance of L-rhamnose catabolism for various bacterial species, the transcriptional regulation of the relevant genes has been poorly understood, except for the regulatory system of Escherichia coli. In this study, we show that, in Bacillus subtilis, one of the plant growth-promoting rhizobacteria, the rhaEWRBMA operon for L-rhamnose catabolism is controlled by RhaR and CcpA. This regulatory system can be another standard model for better understanding the regulatory mechanisms of L-rhamnose catabolism in other bacterial species.
Collapse
|
11
|
Sato M, Arakawa T, Nam YW, Nishimoto M, Kitaoka M, Fushinobu S. Open-close structural change upon ligand binding and two magnesium ions required for the catalysis of N-acetylhexosamine 1-kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:333-40. [PMID: 25644306 DOI: 10.1016/j.bbapap.2015.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/30/2014] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
Infant gut-associated bifidobacteria possess a metabolic pathway to utilize lacto-N-biose (Gal-β1,3-GlcNAc) and galacto-N-biose (Gal-β1,3-GalNAc) from human milk and glycoconjugates specifically. In this pathway, N-acetylhexosamine 1-kinase (NahK) catalyzes the phosphorylation of GlcNAc or GalNAc at the anomeric C1 position with ATP. Crystal structures of NahK have only been determined in the closed state. In this study, we determined open state structures of NahK in three different forms (apo, ADP complex, and ATP complex). A comparison of the open and closed state structures revealed an induced fit structural change defined by two rigid domains. ATP binds to the small N-terminal domain, and binding of the N-acetylhexosamine substrate to the large C-terminal domain induces a closing conformational change with a rotation angle of 16°. In the nucleotide binding site, two magnesium ions bridging the α-γ and β-γ phosphates were identified. A mutational analysis indicated that a residue coordinating both of the two magnesium ions (Asp228) is essential for catalysis. The involvement of two magnesium ions in the catalytic machinery is structurally similar to the catalytic structures of protein kinases and aminoglycoside phosphotransferases, but distinct from the structures of other anomeric kinases or sugar 6-kinases. These findings help to elucidate the possible evolutionary adaptation of substrate specificities and induced fit mechanism.
Collapse
Affiliation(s)
- Mayo Sato
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Young-Woo Nam
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Mamoru Nishimoto
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
12
|
Wang J, Wang W, Liu C, Zhao Y, Cao H, Liu Y, Liu R. Theoretical identification on the role of Lys15 for Sulfolobus tokodaii hexokinase. RSC Adv 2015. [DOI: 10.1039/c4ra16652c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
QM/MM studies indicate that the phosphate transfer process is rate-determining, while the existence of K15 facilitates the reaction to proceed.
Collapse
Affiliation(s)
- Jinhu Wang
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
- College of Chemistry Chemical Engineering and Material Science
| | - Wen Wang
- College of Chemistry Chemical Engineering and Material Science
- Zaozhuang University
- Zaozhuang
- China
| | - Chunli Liu
- College of Chemistry Chemical Engineering and Material Science
- Zaozhuang University
- Zaozhuang
- China
| | - Yuliang Zhao
- College of Chemistry Chemical Engineering and Material Science
- Zaozhuang University
- Zaozhuang
- China
| | - Han Cao
- College of Chemistry Chemical Engineering and Material Science
- Zaozhuang University
- Zaozhuang
- China
| | - Yongjun Liu
- Key Lab of Theoretical and Computational Chemistry in University of Shandong
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Rutao Liu
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
13
|
Wang KC, Lyu SY, Liu YC, Chang CY, Wu CJ, Li TL. Insights into the binding specificity and catalytic mechanism of N-acetylhexosamine 1-phosphate kinases through multiple reaction complexes. ACTA ACUST UNITED AC 2014; 70:1401-10. [PMID: 24816108 DOI: 10.1107/s1399004714004209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/23/2014] [Indexed: 11/10/2022]
Abstract
Utilization of N-acetylhexosamine in bifidobacteria requires the specific lacto-N-biose/galacto-N-biose pathway, a pathway differing from the Leloir pathway while establishing symbiosis between humans and bifidobacteria. The gene lnpB in the pathway encodes a novel hexosamine kinase NahK, which catalyzes the formation of N-acetylhexosamine 1-phosphate (GlcNAc-1P/GalNAc-1P). In this report, seven three-dimensional structures of NahK in complex with GlcNAc, GalNAc, GlcNAc-1P, GlcNAc/AMPPNP and GlcNAc-1P/ADP from both Bifidobacterium longum (JCM1217) and B. infantis (ATCC15697) were solved at resolutions of 1.5-2.2 Å. NahK is a monomer in solution, and its polypeptide folds in a crescent-like architecture subdivided into two domains by a deep cleft. The NahK structures presented here represent the first multiple reaction complexes of the enzyme. This structural information reveals the molecular basis for the recognition of the given substrates and products, GlcNAc/GalNAc, GlcNAc-1P/GalNAc-1P, ATP/ADP and Mg(2+), and provides insights into the catalytic mechanism, enabling NahK and mutants thereof to form a choice of biocatalysts for enzymatic and chemoenzymatic synthesis of carbohydrates.
Collapse
Affiliation(s)
- Kuei-Chen Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Syue-Yi Lyu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chen Liu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chin-Yuan Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
14
|
Higgins MA, Suits MD, Marsters C, Boraston AB. Structural and Functional Analysis of Fucose-Processing Enzymes from Streptococcus pneumoniae. J Mol Biol 2014; 426:1469-82. [DOI: 10.1016/j.jmb.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
15
|
Bacik JP, Tavassoli M, Patel TR, McKenna SA, Vocadlo DJ, Khajehpour M, Mark BL. Conformational itinerary of Pseudomonas aeruginosa 1,6-anhydro-N-acetylmuramic acid kinase during its catalytic cycle. J Biol Chem 2014; 289:4504-14. [PMID: 24362022 PMCID: PMC3924312 DOI: 10.1074/jbc.m113.521633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/29/2013] [Indexed: 11/06/2022] Open
Abstract
Anhydro-sugar kinases are unique from other sugar kinases in that they must cleave the 1,6-anhydro ring of their sugar substrate to phosphorylate it using ATP. Here we show that the peptidoglycan recycling enzyme 1,6-anhydro-N-acetylmuramic acid kinase (AnmK) from Pseudomonas aeruginosa undergoes large conformational changes during its catalytic cycle, with its two domains rotating apart by up to 32° around two hinge regions to expose an active site cleft into which the substrates 1,6-anhydroMurNAc and ATP can bind. X-ray structures of the open state bound to a nonhydrolyzable ATP analog (AMPPCP) and 1,6-anhydroMurNAc provide detailed insight into a ternary complex that forms preceding an operative Michaelis complex. Structural analysis of the hinge regions demonstrates a role for nucleotide binding and possible cross-talk between the bound ligands to modulate the opening and closing of AnmK. Although AnmK was found to exhibit similar binding affinities for ATP, ADP, and AMPPCP according to fluorescence spectroscopy, small angle x-ray scattering analyses revealed that AnmK adopts an open conformation in solution in the absence of ligand and that it remains in this open state after binding AMPPCP, as we had observed for our crystal structure of this complex. In contrast, the enzyme favored a closed conformation when bound to ADP in solution, consistent with a previous crystal structure of this complex. Together, our findings show that the open conformation of AnmK facilitates binding of both the sugar and nucleotide substrates and that large structural rearrangements must occur upon closure of the enzyme to correctly align the substrates and residues of the enzyme for catalysis.
Collapse
Affiliation(s)
| | - Marjan Tavassoli
- Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | - Trushar R. Patel
- Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | - Sean A. McKenna
- Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | - David J. Vocadlo
- the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5S 1P6, Canada
| | - Mazdak Khajehpour
- Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | | |
Collapse
|
16
|
Rodionova IA, Li X, Thiel V, Stolyar S, Stanton K, Fredrickson JK, Bryant DA, Osterman AL, Best AA, Rodionov DA. Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in bacteria. Front Microbiol 2013; 4:407. [PMID: 24391637 PMCID: PMC3870299 DOI: 10.3389/fmicb.2013.00407] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/09/2013] [Indexed: 12/29/2022] Open
Abstract
L-rhamnose (L-Rha) is a deoxy-hexose sugar commonly found in nature. L-Rha catabolic pathways were previously characterized in various bacteria including Escherichia coli. Nevertheless, homology searches failed to recognize all the genes for the complete L-Rha utilization pathways in diverse microbial species involved in biomass decomposition. Moreover, the regulatory mechanisms of L-Rha catabolism have remained unclear in most species. A comparative genomics approach was used to reconstruct the L-Rha catabolic pathways and transcriptional regulons in the phyla Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Thermotogae. The reconstructed pathways include multiple novel enzymes and transporters involved in the utilization of L-Rha and L-Rha-containing polymers. Large-scale regulon inference using bioinformatics revealed remarkable variations in transcriptional regulators for L-Rha utilization genes among bacteria. A novel bifunctional enzyme, L-rhamnulose-phosphate aldolase (RhaE) fused to L-lactaldehyde dehydrogenase (RhaW), which is not homologous to previously characterized L-Rha catabolic enzymes, was identified in diverse bacteria including Chloroflexi, Bacilli, and Alphaproteobacteria. By using in vitro biochemical assays we validated both enzymatic activities of the purified recombinant RhaEW proteins from Chloroflexus aurantiacus and Bacillus subtilis. Another novel enzyme of the L-Rha catabolism, L-lactaldehyde reductase (RhaZ), was identified in Gammaproteobacteria and experimentally validated by in vitro enzymatic assays using the recombinant protein from Salmonella typhimurium. C. aurantiacus induced transcription of the predicted L-Rha utilization genes when L-Rha was present in the growth medium and consumed L-Rha from the medium. This study provided comprehensive insights to L-Rha catabolism and its regulation in diverse Bacteria.
Collapse
Affiliation(s)
| | - Xiaoqing Li
- Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | - Vera Thiel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park PA, USA
| | - Sergey Stolyar
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | | | - James K Fredrickson
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park PA, USA ; Department of Chemistry and Biochemistry, Montana State University Bozeman, MT, USA
| | | | - Aaron A Best
- Department of Biology, Hope College Holland, MI, USA
| | - Dmitry A Rodionov
- Sanford-Burnham Medical Research Institute La Jolla, CA, USA ; A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
17
|
Schacherl M, Waltersperger S, Baumann U. Structural characterization of the ribonuclease H-like type ASKHA superfamily kinase MK0840 from Methanopyrus kandleri. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2440-50. [PMID: 24311585 DOI: 10.1107/s0907444913022683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/12/2013] [Indexed: 11/10/2022]
Abstract
Murein recycling is a process in which microorganisms recover peptidoglycan-degradation products in order to utilize them in cell wall biosynthesis or basic metabolic pathways. Methanogens such as Methanopyrus kandleri contain pseudomurein, which differs from bacterial murein in its composition and branching. Here, four crystal structures of the putative sugar kinase MK0840 from M. kandleri in apo and nucleotide-bound states are reported. MK0840 shows high similarity to bacterial anhydro-N-acetylmuramic acid kinase, which is involved in murein recycling. The structure shares a common fold with panthothenate kinase and the 2-hydroxyglutaryl-CoA dehydratase component A, both of which are members of the ASKHA (acetate and sugar kinases/Hsc70/actin) superfamily of phosphotransferases. Local conformational changes in the nucleotide-binding site between the apo and holo forms are observed upon nucleotide binding. Further insight is given into domain movements and putative active-site residues are identified.
Collapse
Affiliation(s)
- Magdalena Schacherl
- Institute of Biochemistry, University of Cologne, Otto-Fischer-Strasse 12-14, 50674 Cologne, Germany
| | | | | |
Collapse
|
18
|
Michalska K, Cuff ME, Tesar C, Feldmann B, Joachimiak A. Structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:678-89. [PMID: 21795809 PMCID: PMC3144851 DOI: 10.1107/s0907444911021834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022]
Abstract
In most organisms, efficient D-galactose utilization requires the highly conserved Leloir pathway that converts D-galactose to D-glucose 1-phosphate. However, in some bacterial and fungal species alternative routes of D-galactose assimilation have been identified. In the so-called De Ley-Doudoroff pathway, D-galactose is metabolized into pyruvate and D-glyceraldehyde 3-phosphate in five consecutive reactions carried out by specific enzymes. The penultimate step in this pathway involves the phosphorylation of 2-oxo-3-deoxygalactonate to 2-oxo-3-deoxygalactonate 6-phosphate catalyzed by 2-oxo-3-deoxygalactonate kinase, with ATP serving as a phosphoryl-group donor. Here, a crystal structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae determined at 2.1 Å resolution is reported, the first structure of an enzyme from the De Ley-Doudoroff pathway. Structural comparison indicates that the enzyme belongs to the ASKHA (acetate and sugar kinases/hsc70/actin) family of phosphotransferases. The protein is composed of two α/β domains, each of which contains a core common to all family members. Additional elements introduced between conserved structural motifs define the unique features of 2-oxo-3-deoxygalactonate kinase and possibly determine the biological function of the protein.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
| | - Marianne E. Cuff
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Christine Tesar
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
| | - Brian Feldmann
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, USA
| |
Collapse
|
19
|
Bacik JP, Whitworth GE, Stubbs KA, Yadav AK, Martin DR, Bailey-Elkin BA, Vocadlo DJ, Mark BL. Molecular basis of 1,6-anhydro bond cleavage and phosphoryl transfer by Pseudomonas aeruginosa 1,6-anhydro-N-acetylmuramic acid kinase. J Biol Chem 2011; 286:12283-91. [PMID: 21288904 DOI: 10.1074/jbc.m110.198317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anhydro-N-acetylmuramic acid kinase (AnmK) catalyzes the ATP-dependent conversion of the Gram-negative peptidoglycan (PG) recycling intermediate 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) to N-acetylmuramic acid-6-phosphate (MurNAc-6-P). Here we present crystal structures of Pseudomonas aeruginosa AnmK in complex with its natural substrate, anhMurNAc, and a product of the reaction, ADP. AnmK is homodimeric, with each subunit comprised of two subdomains that are separated by a deep active site cleft, which bears similarity to the ATPase core of proteins belonging to the hexokinase-hsp70-actin superfamily of proteins. The conversion of anhMurNAc to MurNAc-6-P involves both cleavage of the 1,6-anhydro ring of anhMurNAc along with addition of a phosphoryl group to O6 of the sugar, and thus represents an unusual enzymatic mechanism involving the formal addition of H3PO4 to anhMurNAc. The structural complexes and NMR analysis of the reaction suggest that a water molecule, activated by Asp-182, attacks the anomeric carbon of anhMurNAc, aiding cleavage of the 1,6-anhydro bond and facilitating the capture of the γ phosphate of ATP by O6 via an in-line phosphoryl transfer. AnmK is active only against anhMurNAc and not the metabolically related 1,6-anhydro-N-acetylmuramyl peptides, suggesting that the cytosolic N-acetyl-anhydromuramyl-l-alanine amidase AmpD must first remove the stem peptide from these PG muropeptide catabolites before anhMurNAc can be acted upon by AnmK. Our studies provide the foundation for a mechanistic model for the dual activities of AnmK as a hydrolase and a kinase of an unusual heterocyclic monosaccharide.
Collapse
Affiliation(s)
- John-Paul Bacik
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Retraction: Open and closed conformations reveal induced fit movements in butyrate kinase 2 activation. J. Diao, Y. D. Ma, and M. S. Hasson. Proteins 2009; 80:1712. [DOI: 10.1002/prot.22610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/22/2009] [Accepted: 08/26/2009] [Indexed: 11/08/2022]
|
21
|
Crystal structure of butyrate kinase 2 from Thermotoga maritima, a member of the ASKHA superfamily of phosphotransferases. J Bacteriol 2009; 191:2521-9. [PMID: 19201797 DOI: 10.1128/jb.00906-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzymatic transfer of phosphoryl groups is central to the control of many cellular processes. One of the phosphoryl transfer mechanisms, that of acetate kinase, is not completely understood. Besides better understanding of the mechanism of acetate kinase, knowledge of the structure of butyrate kinase 2 (Buk2) will aid in the interpretation of active-site structure and provide information on the structural basis of substrate specificity. The gene buk2 from Thermotoga maritima encodes a member of the ASKHA (acetate and sugar kinases/heat shock cognate/actin) superfamily of phosphotransferases. The encoded protein Buk2 catalyzes the phosphorylation of butyrate and isobutyrate. We have determined the 2.5-A crystal structure of Buk2 complexed with (beta,gamma-methylene) adenosine 5'-triphosphate. Buk2 folds like an open-shelled clam, with each of the two domains representing one of the two shells. In the open active-site cleft between the N- and C-terminal domains, the active-site residues consist of two histidines, two arginines, and a cluster of hydrophobic residues. The ATP binding region of Buk2 in the C-terminal domain consists of abundant glycines for nucleotide binding, and the ATP binding motif is similar to those of other members of the ASKHA superfamily. The enzyme exists as an octamer, in which four disulfide bonds form between intermolecular cysteines. Sequence alignment and structure superposition identify the simplicity of the monomeric Buk2 structure, a probable substrate binding site, the key residues in catalyzing phosphoryl transfer, and the substrate specificity differences among Buk2, acetate, and propionate kinases. The possible enzyme mechanisms are discussed.
Collapse
|
22
|
Amino acid substitutions in the sugar kinase/hsp70/actin superfamily conserved ATPase core of E. coli glycerol kinase modulate allosteric ligand affinity but do not alter allosteric coupling. Arch Biochem Biophys 2008; 481:151-6. [PMID: 19056335 DOI: 10.1016/j.abb.2008.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/13/2008] [Accepted: 11/16/2008] [Indexed: 11/23/2022]
Abstract
IIA(Glc), the glucose-specific phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system, is an allosteric inhibitor of Escherichia coli glycerol kinase. A linked-functions initial-velocity enzyme kinetics approach is used to define the MgATP-IIA(Glc) heterotropic allosteric interaction. The interaction is measured by the allosteric coupling constants Q and W, which describe the mutual effect of the ligands on binding affinity and the effect of the allosteric ligand on V(max), respectively. Allosteric interactions between these ligands display K-type activation and V-type inhibition. The allosteric coupling constant Q is about 3, showing cooperative coupling such that each ligand increases the affinity for binding of the other. The allosteric coupling constant W is about 0.1, showing that the allosteric inhibition is partial such that binding of IIA(Glc) at saturation does not reduce V(max) to zero. E. coli glycerol kinase is a member of the sugar kinase/heat shock protein 70/actin superfamily, and an element of the superfamily conserved ATPase catalytic core was identified as part of the IIA(Glc) inhibition network because it is required to transplant IIA(Glc) allosteric control into a non-allosteric glycerol kinase [A.C. Pawlyk, D.W. Pettigrew, Proc. Natl. Acad. Sci. USA 99 (2002) 11115-11120]. Two of the amino acids at this locus of E. coli glycerol kinase are replaced with those from the non-allosteric enzyme to enable determination of its contributions to MgATP-IIA(Glc) allosteric coupling. The substitutions reduce the affinity for IIA(Glc) by about 5-fold without changing significantly the allosteric coupling constants Q and W. The insensitivity of the allosteric coupling constants to the substitutions may indicate that the allosteric network is robust or the locus is not an element of that network. These possibilities may arise from differences of E. coli glycerol kinase relative to other superfamily members with respect to oligomeric structure and location of the allosteric site in a single domain far from the catalytic site.
Collapse
|
23
|
Goldschmidt L, Cooper DR, Derewenda ZS, Eisenberg D. Toward rational protein crystallization: A Web server for the design of crystallizable protein variants. Protein Sci 2007; 16:1569-76. [PMID: 17656576 PMCID: PMC2203352 DOI: 10.1110/ps.072914007] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Growing well-diffracting crystals constitutes a serious bottleneck in structural biology. A recently proposed crystallization methodology for "stubborn crystallizers" is to engineer surface sequence variants designed to form intermolecular contacts that could support a crystal lattice. This approach relies on the concept of surface entropy reduction (SER), i.e., the replacement of clusters of flexible, solvent-exposed residues with residues with lower conformational entropy. This strategy minimizes the loss of conformational entropy upon crystallization and renders crystallization thermodynamically favorable. The method has been successfully used to crystallize more than 15 novel proteins, all stubborn crystallizers. But the choice of suitable sites for mutagenesis is not trivial. Herein, we announce a Web server, the surface entropy reduction prediction server (SERp server), designed to identify mutations that may facilitate crystallization. Suggested mutations are predicted based on an algorithm incorporating a conformational entropy profile, a secondary structure prediction, and sequence conservation. Minor considerations include the nature of flanking residues and gaps between mutation candidates. While designed to be used with default values, the server has many user-controlled parameters allowing for considerable flexibility. Within, we discuss (1) the methodology of the server, (2) how to interpret the results, and (3) factors that must be considered when selecting mutations. We also attempt to benchmark the server by comparing the server's predictions with successful SER structures. In most cases, the structure yielding mutations were easily identified by the SERp server. The server can be accessed at http://www.doe-mbi.ucla.edu/Services/SER.
Collapse
Affiliation(s)
- Lukasz Goldschmidt
- Howard Hughes Medical Institute, University of California, Los Angeles-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, USA
| | | | | | | |
Collapse
|
24
|
Yu P, Lasagna M, Pawlyk AC, Reinhart GD, Pettigrew DW. IIAGlc Inhibition of Glycerol Kinase: A Communications Network Tunes Protein Motions at the Allosteric Site. Biochemistry 2007; 46:12355-65. [DOI: 10.1021/bi7010948] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Yu
- Department of Biochemistry and Biophysics and Texas Agricultural Experiment Station, Texas A&M University, College Station, Texas 77843-2128
| | - Mauricio Lasagna
- Department of Biochemistry and Biophysics and Texas Agricultural Experiment Station, Texas A&M University, College Station, Texas 77843-2128
| | - Aaron C. Pawlyk
- Department of Biochemistry and Biophysics and Texas Agricultural Experiment Station, Texas A&M University, College Station, Texas 77843-2128
| | - Gregory D. Reinhart
- Department of Biochemistry and Biophysics and Texas Agricultural Experiment Station, Texas A&M University, College Station, Texas 77843-2128
| | - Donald W. Pettigrew
- Department of Biochemistry and Biophysics and Texas Agricultural Experiment Station, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
25
|
Grueninger D, Schulz GE. Substrate spectrum of L-rhamnulose kinase related to models derived from two ternary complex structures. FEBS Lett 2007; 581:3127-30. [PMID: 17568582 DOI: 10.1016/j.febslet.2007.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/29/2007] [Accepted: 05/29/2007] [Indexed: 11/18/2022]
Abstract
The enzyme L-rhamnulose kinase from Escherichia coli participates in the degradation pathway of L-rhamnose, a common natural deoxy-hexose. The structure of the enzyme in a ternary complex with its substrates ADP and L-rhamnulose has been determined at 1.55A resolution and refined to R(cryst)/R(free) values of 0.179/0.209. The result was compared with the lower resolution structure of a corresponding complex containing L-fructose instead of L-rhamnulose. In light of the two established sugar positions and conformations, a number of rare sugars have been modeled into the active center of L-rhamnulose kinase and the model structures have been compared with the known enzymatic phosphorylation rates. Rare sugars are of rising interest for the synthesis of bioactive compounds.
Collapse
Affiliation(s)
- Dirk Grueninger
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | | |
Collapse
|
26
|
Nishimasu H, Fushinobu S, Shoun H, Wakagi T. Crystal structures of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. J Biol Chem 2007; 282:9923-9931. [PMID: 17229727 DOI: 10.1074/jbc.m610678200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hexokinase catalyzes the phosphorylation of glucose to glucose 6-phosphate by using ATP as a phosphoryl donor. Recently, we identified and characterized an ATP-dependent hexokinase (StHK) from the hyperthermophilic archaeon Sulfolobus tokodaii, which can phosphorylate a broad range of sugar substrates, including glucose, mannose, glucosamine, and N-acetylglucosamine. Here we present the crystal structures of StHK in four different forms: (i) apo-form, (ii) binary complex with glucose, (iii) binary complex with ADP, and (iv) quaternary complex with xylose, Mg(2+), and ADP. Forms i and iii are in the open state, and forms ii and iv are in the closed state, indicating that sugar binding induces a large conformational change, whereas ADP binding does not. The four different crystal structures of the same enzyme provide "snapshots" of the conformational changes during the catalytic cycle. StHK exhibits a core fold characteristic of the hexokinase family, but the structures of several loop regions responsible for substrate binding are significantly different from those of other known hexokinase family members. Structural comparison of StHK with human N-acetylglucosamine kinase and other hexokinases provides an explanation for the ability of StHK to phosphorylate both glucose and N-acetylglucosamine. A Mg(2+) ion and coordinating water molecules are well defined in the electron density of the quaternary complex structure. This structure represents the first direct visualization of the binding mode for magnesium to hexokinase and thus allows for a better understanding of the catalytic mechanism proposed for the entire hexokinase family.
Collapse
Affiliation(s)
- Hiroshi Nishimasu
- Department of Biotechnology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirofumi Shoun
- Department of Biotechnology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayoshi Wakagi
- Department of Biotechnology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|