1
|
Li Q, Yang X, Xia X, Xia XX, Yan D. Affibody-Functionalized Elastin-like Peptide-Drug Conjugate Nanomicelle for Targeted Ovarian Cancer Therapy. Biomacromolecules 2024; 25:6474-6484. [PMID: 39235966 DOI: 10.1021/acs.biomac.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Recombinant elastin-like polypeptides (ELPs) have emerged as an attractive nanoplatform for drug delivery due to their tunable genetically encoded sequence, biocompatibility, and stimuli-responsive self-assembly behaviors. Here, we designed and biosynthesized an HER2 (human epidermal growth factor receptor 2)-targeted affibody-ELP fusion protein (Z-ELP), which was subsequently conjugated with monomethyl auristatin E (MMAE) to build a protein-drug conjugate (Z-ELP-M). Due to its thermal response, Z-ELP-M can immediately self-assemble into a nanomicelle at physiological temperature. Benefiting from its active targeting and nanomorphology, Z-ELP-M exhibits enhanced cellular internalization and deep tumor penetration in vitro. Moreover, Z-ELP-M shows excellent tumor targeting and superior antitumor efficacy in HER2-positive ovarian cancer, demonstrating a relative tumor growth inhibition of 104.6%. These findings suggest that an affibody-functionalized elastin-like peptide-drug conjugate nanomicelle is an efficient strategy to improve antitumor efficacy and biosafety in cancer therapy.
Collapse
Affiliation(s)
- Qingrong Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
2
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Song S, Shi Q. Interface-Based Design of High-Affinity Affibody Ligands for the Purification of RBD from Spike Proteins. Molecules 2023; 28:6358. [PMID: 37687186 PMCID: PMC10489752 DOI: 10.3390/molecules28176358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has sparked an urgent demand for advanced diagnosis and vaccination worldwide. The discovery of high-affinity ligands is of great significance for vaccine and diagnostic reagent manufacturing. Targeting the receptor binding domain (RBD) from the spike protein of severe acute respiratory syndrome-coronavirus 2, an interface at the outer surface of helices on the Z domain from protein A was introduced to construct a virtual library for the screening of ZRBD affibody ligands. Molecular docking was performed using HADDOCK software, and three potential ZRBD affibodies, ZRBD-02, ZRBD-04, and ZRBD-07, were obtained. Molecular dynamics (MD) simulation verified that the binding of ZRBD affibodies to RBD was driven by electrostatic interactions. Per-residue free energy decomposition analysis further substantiated that four residues with negative-charge characteristics on helix α1 of the Z domain participated in this process. Binding affinity analysis by microscale thermophoresis showed that ZRBD affibodies had high affinity for RBD binding, and the lowest dissociation constant was 36.3 nmol/L for ZRBD-07 among the three potential ZRBD affibodies. Herein, ZRBD-02 and ZRBD-07 affibodies were selected for chromatographic verifications after being coupled to thiol-activated Sepharose 6 Fast Flow (SepFF) gel. Chromatographic experiments showed that RBD could bind on both ZRBD SepFF gels and was eluted by 0.1 mol/L NaOH. Moreover, the ZRBD-07 SepFF gel had a higher affinity for RBD. This research provided a new idea for the design of affibody ligands and validated the potential of affibody ligands in the application of RBD purification from complex feedstock.
Collapse
Affiliation(s)
- Siyuan Song
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Mestre Borras A, Dahlsson Leitao C, Ståhl S, Löfblom J. Generation of an anti-idiotypic affibody-based masking domain for conditional activation of EGFR-targeting. N Biotechnol 2023; 73:9-18. [PMID: 36526248 DOI: 10.1016/j.nbt.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Conditional activation of engineered affinity proteins by proteolytic processing is an interesting approach for a wide range of applications. We have generated an anti-idiotypic masking domain with specificity for the binding surface of an EGFR-targeting affibody molecule using an in-house developed staphylococcal display method. The masking domain could specifically abrogate EGFR-binding on cancer cells when fused to the EGFR-targeting affibody molecule via a linker comprising a protease cleavage site. EGFR-binding was restored by proteolytic cleavage of the linker region resulting in release of the masking domain. A saturation mutagenesis study provided detailed information on the interaction between the EGFR-targeting affibody molecule and the masking domain. Introducing an anti-idiotypic masking affibody domain is a viable approach for blocking EGFR-binding and allows for conditional activation by proteolytic processing. The results warrant further studies evaluating the therapeutic and diagnostic applicability both in vitro and in vivo.
Collapse
Affiliation(s)
- Anna Mestre Borras
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
5
|
Grindel BJ, Engel BJ, Ong JN, Srinivasamani A, Liang X, Zacharias NM, Bast RC, Curran MA, Takahashi TT, Roberts RW, Millward SW. Directed Evolution of PD-L1-Targeted Affibodies by mRNA Display. ACS Chem Biol 2022; 17:1543-1555. [PMID: 35611948 PMCID: PMC10691555 DOI: 10.1021/acschembio.2c00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Therapeutic monoclonal antibodies directed against PD-L1 (e.g., atezolizumab) disrupt PD-L1:PD-1 signaling and reactivate exhausted cytotoxic T-cells in the tumor compartment. Although anti-PD-L1 antibodies are successful as immune checkpoint inhibitor (ICI) therapeutics, there is still a pressing need to develop high-affinity, low-molecular-weight ligands for molecular imaging and diagnostic applications. Affibodies are small polypeptides (∼60 amino acids) that provide a stable molecular scaffold from which to evolve high-affinity ligands. Despite its proven utility in the development of imaging probes, this scaffold has never been optimized for use in mRNA display, a powerful in vitro selection platform incorporating high library diversity, unnatural amino acids, and chemical modification. In this manuscript, we describe the selection of a PD-L1-binding affibody by mRNA display. Following randomization of the 13 amino acids that define the binding interface of the well-described Her2 affibody, the resulting library was selected against recombinant human PD-L1 (hPD-L1). After four rounds, the enriched library was split and selected against either hPD-L1 or the mouse ortholog (mPD-L1). The dual target selection resulted in the identification of a human/mouse cross-reactive PD-L1 affibody (M1) with low nanomolar affinity for both targets. The M1 affibody bound with similar affinity to mPD-L1 and hPD-L1 expressed on the cell surface and inhibited signaling through the PD-L1:PD-1 axis at low micromolar concentrations in a cell-based functional assay. In vivo optical imaging with M1-Cy5 in an immune-competent mouse model of lymphoma revealed significant tumor uptake relative to a Cy5-conjugated Her2 affibody.
Collapse
Affiliation(s)
- Brian J. Grindel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Brian J. Engel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Justin N. Ong
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA, 90089
| | | | - Xiaowen Liang
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Niki M. Zacharias
- Department of Urology, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Robert C. Bast
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Michael A. Curran
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Terry T. Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, California, USA, 90089
| | - Richard W. Roberts
- Department of Chemistry, University of Southern California, Los Angeles, California, USA, 90089
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA, 90089
- USC Norris Comprehensive Cancer Center, Los Angeles, California, USA, 90089
| | - Steven W. Millward
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| |
Collapse
|
6
|
Mravljak R, Stantič M, Bizjak O, Podgornik A. Noninvasive method for determination of immobilized protein A. J Chromatogr A 2022; 1671:462976. [DOI: 10.1016/j.chroma.2022.462976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
7
|
The Impact of Glycerol on an Affibody Conformation and Its Correlation to Chemical Degradation. Pharmaceutics 2021; 13:pharmaceutics13111853. [PMID: 34834267 PMCID: PMC8618440 DOI: 10.3390/pharmaceutics13111853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022] Open
Abstract
The addition of glycerol to protein solutions is often used to hinder the aggregation and denaturation of proteins. However, it is not a generalised practice against chemical degradation reactions. The chemical degradation of proteins, such as deamidation and isomerisation, is an important deteriorative mechanism that leads to a loss of functionality of pharmaceutical proteins. Here, the influence of glycerol on the chemical degradation of a protein and its correlation to glycerol-induced conformational changes is presented. The time-dependent chemical degradation of a pharmaceutical protein, GA-Z, in the absence and presence of glycerol was investigated in a stability study. The effect of glycerol on protein conformation and oligomerisation was characterised using asymmetric field-flow fractionation and small-angle neutron scattering in a wide glycerol concentration range of 0–90% v/v. The results from the stability study were connected to the observed glycerol-induced conformational changes in the protein. A correlation between protein conformation and the protective effect of glycerol against the degradation reactions deamidation, isomerisation, and hydrolysis was found. The study reveals that glycerol induces conformational changes of the protein, which favour a more compact and chemically stable state. It is also shown that the conformation can be changed by other system properties, e.g., protein concentration, leading to increased chemical stability.
Collapse
|
8
|
Nazari M, Minai-Tehrani A, Mousavi S, Zamani Koukhaloo S, Emamzadeh R. Development of recombinant biomimetic nano-carrier for targeted gene transfer to HER3 positive breast cancer. Int J Biol Macromol 2021; 189:948-955. [PMID: 34455002 DOI: 10.1016/j.ijbiomac.2021.08.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/09/2022]
Abstract
Human epidermal growth factor receptor 3 (HER3) has rapidly gained much attention as a promising target for cancer treatment. The increasing recognition of HER3 roles in a number of HER family-driven cancers has led to studies aimed at targeting this receptor and developing HER3-targeted platforms with the ability to deliver therapeutic genes. We have previously indicated that the flexible linker and one unit of RALA in affibody-based platform could target HER3 and deliver its cargo. Based on the previous finding, in a new class of affibody-based platforms, we used two different linkers and RALA units and then compared their effectiveness on targeting and delivering specified genes to HER3 positive cells. Our results clearly showed that our biopolymeric platforms can successfully condense DNA into nanoparticles and object the overexpressed HER3 receptors and then transfer specific genes. Our affibody-based platform containing a rigid linker and one RALA unit presents an adequate transfection efficacy and low toxicity (based on MTT and apoptosis assays), however, the platform containing two RALA units and a flexible linker demonstrated high transfection efficacy while having modest toxicity in HER3 positive breast cancer cells. This may pave the way for further innovative applications of recombinant biopolymer when stable and economical productions need to be definitely considered.
Collapse
Affiliation(s)
- Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samira Mousavi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
Woloschuk RM, Reed PMM, Jaikaran ASI, Demmans KZ, Youn J, Kanelis V, Uppalapati M, Woolley GA. Structure-based design of a photoswitchable affibody scaffold. Protein Sci 2021; 30:2359-2372. [PMID: 34590762 DOI: 10.1002/pro.4196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Photo-control of affinity reagents offers a general approach for high-resolution spatiotemporal control of diverse molecular processes. In an effort to develop general design principles for a photo-controlled affinity reagent, we took a structure-based approach to the design of a photoswitchable Z-domain, among the simplest of affinity reagent scaffolds. A chimera, designated Z-PYP, of photoactive yellow protein (PYP) and the Z-domain, was designed based on the concept of mutually exclusive folding. NMR analysis indicated that, in the dark, the PYP domain of the chimera was folded, and the Z-domain was unfolded. Blue light caused loss of structure in PYP and a two- to sixfold change in the apparent affinity of Z-PYP for its target as determined using size exclusion chromatography, UV-Vis based assays, and enyzme-linked immunosorbent assay (ELISA). A thermodynamic model indicated that mutations to decrease Z-domain folding energy would alter target affinity without loss of switching. This prediction was confirmed experimentally with a double alanine mutant in helix 3 of the Z-domain of the chimera (Z-PYP-AA) showing >30-fold lower dark-state binding and no loss in switching. The effect of decreased dark-state binding affinity was tested in a two-hybrid transcriptional control format and enabled pronounced light/dark differences in yeast growth in vivo. Finally, the design was transferable to the αZ-Taq affibody enabling tunable light-dependent binding both in vitro and in vivo to the Z-Taq target. This system thus provides a framework for the focused development of light switchable affibodies for a range of targets.
Collapse
Affiliation(s)
- Ryan M Woloschuk
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Anna S I Jaikaran
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Karl Z Demmans
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Youn
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Shibasaki S, Karasaki M, Matsui K, Iwasaki T. Functional Evaluation of Anti-TNF-α Affibody Molecules in Biochemical Detection and Inhibition to Signalling Pathways of a Synovial Cell. Curr Pharm Biotechnol 2021; 22:1228-1234. [PMID: 33069194 DOI: 10.2174/1389201021666201016143730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An affibody molecule obtained from a bioengineered staphylococcal protein was previously shown to act as an affinity binder for a wide range of targets and develop Tumour Necrosis Factor α (TNF-α)-binding clones. METHODS In this study, we demonstrated that affibody molecules against TNF-α could bind to recombinant TNF-α on the membrane for biochemical detection. In addition, we examined whether the affibody molecules could block binding between recombinant TNF-α and its receptor on MH7A synovial cells. RESULTS When a TNF-α-binding affibody was added, the production level of inflammatory mediators IL-6 and MMP-3 in MH7A were found to decrease up to 44%. Additionally, proliferation of synovial cells was also inhibited by the addition of TNF-α to cultivation media. CONCLUSION These results suggest that affibody molecules against TNF-α could be candidate molecules for the detection of TNF-α during biochemical analysis and pharmacotherapy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Seiji Shibasaki
- Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Miki Karasaki
- General Education Center, Hyogo University of Health Sciences, Minatojima 1-3-6, Kobe, 650-8530, Japan
| | - Kiyoshi Matsui
- Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Tsuyoshi Iwasaki
- Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, 663-8501, Japan
| |
Collapse
|
11
|
Wang H, Jia D, Yuan D, Yin X, Yuan F, Wang F, Shi W, Li H, Zhu LM, Fan Q. Dimeric Her2-specific affibody mediated cisplatin-loaded nanoparticles for tumor enhanced chemo-radiotherapy. J Nanobiotechnology 2021; 19:138. [PMID: 33985511 PMCID: PMC8120847 DOI: 10.1186/s12951-021-00885-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Solid tumor hypoxic conditions prevent the generation of reactive oxygen species (ROS) and the formation of DNA double-strand breaks (DSBs) induced by ionizing radiation, which ultimately contributes to radiotherapy (RT) resistance. Recently, there have been significant technical advances in nanomedicine to reduce hypoxia by facilitating in situ O2 production, which in turn serves as a "radiosensitizer" to increase the sensitivity of tumor cells to ionizing radiation. However, off-target damage to the tumor-surrounding healthy tissue by high-energy radiation is often unavoidable, and tumor cells that are further away from the focal point of ionizing radiation may avoid damage. Therefore, there is an urgent need to develop an intelligent targeted nanoplatform to enable precise enhanced RT-induced DNA damage and combined therapy. RESULTS Human epidermal growth factor receptor 2 (Her2)-specific dimeric affibody (ZHer2) mediated cisplatin-loaded mesoporous polydopamine/MnO2/polydopamine nanoparticles (Pt@mPDA/MnO2/PDA-ZHer2 NPs) for MRI and enhanced chemo-radiotherapy of Her2-positive ovarian tumors is reported. These NPs are biodegradable under a simulated tumor microenvironment, resulting in accelerated cisplatin release, as well as localized production of O2. ZHer2, produced using the E. coli expression system, endowed NPs with Her2-dependent binding ability in Her2-positive SKOV-3 cells. An in vivo MRI revealed obvious T1 contrast enhancement at the tumor site. Moreover, these NPs achieved efficient tumor homing and penetration via the efficient internalization and penetrability of ZHer2. These NPs exhibited excellent inhibition of tumor growth with X-ray irradiation. An immunofluorescence assay showed that these NPs significantly reduced the expression of HIF-1α and improved ROS levels, resulting in radiosensitization. CONCLUSIONS The nanocarriers described in the present study integrated Her2 targeting, diagnosis and RT sensitization into a single platform, thus providing a novel approach for translational tumor theranostics.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.,School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | - Dandan Yuan
- Department of Digestive Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaolei Yin
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Feifei Wang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | - Wenna Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
12
|
Barozzi A, Lavoie RA, Day KN, Prodromou R, Menegatti S. Affibody-Binding Ligands. Int J Mol Sci 2020; 21:ijms21113769. [PMID: 32471034 PMCID: PMC7312911 DOI: 10.3390/ijms21113769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/03/2023] Open
Abstract
While antibodies remain established therapeutic and diagnostic tools, other protein scaffolds are emerging as effective and safer alternatives. Affibodies in particular are a new class of small proteins marketed as bio-analytic reagents. They feature tailorable binding affinity, low immunogenicity, high tissue permeation, and high expression titer in bacterial hosts. This work presents the development of affibody-binding peptides to be utilized as ligands for their purification from bacterial lysates. Affibody-binding candidates were identified by screening a peptide library simultaneously against two model affibodies (anti-immunoglobulin G (IgG) and anti-albumin) with the aim of selecting peptides targeting the conserved domain of affibodies. An ensemble of homologous sequences identified from screening was synthesized on Toyopearl® resin and evaluated via binding studies to select sequences that afford high product binding and recovery. The affibody-peptide interaction was also evaluated by in silico docking, which corroborated the targeting of the conserved domain. Ligand IGKQRI was validated through purification of an anti-ErbB2 affibody from an Escherichia coli lysate. The values of binding capacity (~5 mg affibody per mL of resin), affinity (KD ~1 μM), recovery and purity (64-71% and 86-91%), and resin lifetime (100 cycles) demonstrate that IGKQRI can be employed as ligand in affibody purification processes.
Collapse
Affiliation(s)
- Annalisa Barozzi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - R. Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Kevin N. Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
- Correspondence: ; Tel.: +1-919-753-3276
| |
Collapse
|
13
|
Nazari M, Zamani Koukhaloo S, Mousavi S, Minai‐Tehrani A, Emamzadeh R, Cheraghi R. Development of a ZHER3‐Affibody‐Targeted Nano‐Vector for Gene Delivery to HER3‐Overexpressed Breast Cancer Cells. Macromol Biosci 2019; 19:e1900159. [DOI: 10.1002/mabi.201900159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/14/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Mahboobeh Nazari
- Monoclonal Antibody Research CenterAvicenna Research InstituteACECR Tehran 1936773493 Iran
| | | | - Samira Mousavi
- Monoclonal Antibody Research CenterAvicenna Research InstituteACECR Tehran 1936773493 Iran
| | - Arash Minai‐Tehrani
- Nanobiotechnology Research CenterAvicenna Research InstituteACECR Tehran 1936773493 Iran
| | - Rahman Emamzadeh
- Department of BiologyFaculty of SciencesUniversity of Isfahan Isfahan 8174673441 Iran
| | - Roya Cheraghi
- Department of NanobiotechnologyFaculty of Biological SciencesTarbiat Modares University Tehran 111‐14115 Iran
| |
Collapse
|
14
|
Kim S, Jo SD, Kwon KC, Won Y, Lee J. Genetic Assembly of Double-Layered Fluorescent Protein Nanoparticles for Cancer Targeting and Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600471. [PMID: 28546913 PMCID: PMC5441503 DOI: 10.1002/advs.201600471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/06/2017] [Indexed: 05/26/2023]
Abstract
Hepatitis B virus capsid (HBVC), a self-assembled protein nanoparticle comprised of 180 or 240 subunit proteins, is used as a cage for genetic encapsulation of fluorescent proteins (FPs). The self-quenching of FPs is controlled by varying the spacing between FPs within the capsid structure. Double-layered FP nanoparticle possessing cancer cell-targeting capabilities is also produced by additionally attaching FPs and cancer cell receptor-binding peptides (affibodies) to the outer surface of the capsid. The generically modified HBVC with double layers of mCardinal FPs and affibodies (mC-DL-HBVC) exhibit a high fluorescence intensity and a strong photostability, and is efficiently internalized by cancer cells and significantly stable against intracellular degradation. The mC-DL-HBVC effectively detects tumor in live mice with enhanced tumor targeting and imaging efficiency with far less accumulation in the liver, compared to a conventional fluorescent dye, Cy5.5. This suggests the great potential of mC-DL-HBVC as a promising contrast agent for in vivo tumor fluorescence imaging.
Collapse
Affiliation(s)
- Seong‐Eun Kim
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
- School of Chemical Engineering and Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIN47906USA
| | - Sung Duk Jo
- Center for TheragnosisKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Koo Chul Kwon
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| | - You‐Yeon Won
- School of Chemical Engineering and Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIN47906USA
- Center for TheragnosisKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
15
|
Woldring DR, Holec PV, Stern LA, Du Y, Hackel BJ. A Gradient of Sitewise Diversity Promotes Evolutionary Fitness for Binder Discovery in a Three-Helix Bundle Protein Scaffold. Biochemistry 2017; 56:1656-1671. [PMID: 28248518 DOI: 10.1021/acs.biochem.6b01142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineered proteins provide clinically and industrially impactful molecules and utility within fundamental research, yet inefficiencies in discovering lead variants with new desired functionality, while maintaining stability, hinder progress. Improved function, which can result from a few strategic mutations, is fundamentally separate from discovering novel function, which often requires large leaps in sequence space. While a highly diverse combinatorial library covering immense sequence space would empower protein discovery, the ability to sample only a minor subset of sequence space and the typical destabilization of random mutations preclude this strategy. A balance must be reached. At library scale, compounding several destabilizing mutations renders many variants unable to properly fold and devoid of function. Broadly searching sequence space while reducing the level of destabilization may enhance evolution. We exemplify this balance with affibody, a three-helix bundle protein scaffold. Using natural ligand data sets, stability and structural computations, and deep sequencing of thousands of binding variants, a protein library was designed on a sitewise basis with a gradient of mutational levels across 29% of the protein. In direct competition of biased and uniform libraries, both with 1 × 109 variants, for discovery of 6 × 104 ligands (5 × 103 clusters) toward seven targets, biased amino acid frequency increased ligand discovery 13 ± 3-fold. Evolutionarily favorable amino acids, both globally and site-specifically, are further elucidated. The sitewise amino acid bias aids evolutionary discovery by reducing the level of mutant destabilization as evidenced by a midpoint of denaturation (62 ± 4 °C) 15 °C higher than that of unbiased mutants (47 ± 11 °C; p < 0.001). Sitewise diversification, identified by high-throughput evolution and rational library design, improves discovery efficiency.
Collapse
Affiliation(s)
- Daniel R Woldring
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| | - Patrick V Holec
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| | - Lawrence A Stern
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University , 279 Campus Drive, Stanford, California 94305, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Tippmann S, Anfelt J, David F, Rand JM, Siewers V, Uhlén M, Nielsen J, Hudson EP. Affibody Scaffolds Improve Sesquiterpene Production in Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:19-28. [PMID: 27560952 DOI: 10.1021/acssynbio.6b00109] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enzyme fusions have been widely used as a tool in metabolic engineering to increase pathway efficiency by reducing substrate loss and accumulation of toxic intermediates. Alternatively, enzymes can be colocalized through attachment to a synthetic scaffold via noncovalent interactions. Here we describe the use of affibodies for enzyme tagging and scaffolding. The scaffolding is based on the recognition of affibodies to their anti-idiotypic partners in vivo, and was first employed for colocalization of farnesyl diphosphate synthase and farnesene synthase in S. cerevisiae. Different parameters were modulated to improve the system, and the enzyme:scaffold ratio was most critical for its functionality. Ultimately, the yield of farnesene on glucose YSFar could be improved by 135% in fed-batch cultivations using a 2-site affibody scaffold. The scaffolding strategy was then extended to a three-enzyme polyhydroxybutyrate (PHB) pathway, heterologously expressed in E. coli. Within a narrow range of enzyme and scaffold induction, the affibody tagging and scaffolding increased PHB production 7-fold. This work demonstrates how the versatile affibody can be used for metabolic engineering purposes.
Collapse
Affiliation(s)
- Stefan Tippmann
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Josefine Anfelt
- Division
of Proteomics and Nanobiotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Science for Life Laboratory, SE171 21 Stockholm, Sweden
| | - Florian David
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jacqueline M. Rand
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Verena Siewers
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Mathias Uhlén
- Division
of Proteomics and Nanobiotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Science for Life Laboratory, SE171 21 Stockholm, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| | - Elton P. Hudson
- Division
of Proteomics and Nanobiotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Science for Life Laboratory, SE171 21 Stockholm, Sweden
| |
Collapse
|
17
|
Jeong WH, Lee H, Song DH, Eom JH, Kim SC, Lee HS, Lee H, Lee JO. Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker. Nat Commun 2016; 7:11031. [PMID: 26980593 PMCID: PMC4799363 DOI: 10.1038/ncomms11031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 02/15/2016] [Indexed: 11/23/2022] Open
Abstract
Building a sophisticated protein nano-assembly requires a method for linking protein components in a predictable and stable structure. Most of the cross linkers available have flexible spacers. Because of this, the linked hybrids have significant structural flexibility and the relative structure between their two components is largely unpredictable. Here we describe a method of connecting two proteins via a ‘fusion α helix' formed by joining two pre-existing helices into a single extended helix. Because simple ligation of two helices does not guarantee the formation of a continuous helix, we used EY-CBS, a synthetic cross linker that has been shown to react selectively with cysteines in α-helices, to stabilize the connecting helix. Formation and stabilization of the fusion helix was confirmed by determining the crystal structures of the fusion proteins with and without bound EY-CBS. Our method should be widely applicable for linking protein building blocks to generate predictable structures. Linking protein components in a controlled manner is crucial for assembling protein nanostructures with pre-determined architecture. Here, the authors use a chemical cross-linker to fuse the terminal helices of two proteins into a single one, forcing the protein domains in a specific orientation.
Collapse
Affiliation(s)
| | - Haerim Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | | | - Jae-Hoon Eom
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Hee-Seung Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jie-Oh Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
18
|
Abstract
Programmed connection of amino acids or nucleotides into chains introduced a revolution in control of biological function. Reacting proteins together is more complex because of the number of reactive groups and delicate stability. Here we achieved sequence-programmed irreversible connection of protein units, forming polyprotein teams by sequential amidation and transamidation. SpyTag peptide is engineered to spontaneously form an isopeptide bond with SpyCatcher protein. By engineering the adhesin RrgA from Streptococcus pneumoniae, we developed the peptide SnoopTag, which formed a spontaneous isopeptide bond to its protein partner SnoopCatcher with >99% yield and no cross-reaction to SpyTag/SpyCatcher. Solid-phase attachment followed by sequential SpyTag or SnoopTag reaction between building-blocks enabled iterative extension. Linear, branched, and combinatorial polyproteins were synthesized, identifying optimal combinations of ligands against death receptors and growth factor receptors for cancer cell death signal activation. This simple and modular route to programmable "polyproteams" should enable exploration of a new area of biological space.
Collapse
|
19
|
Lindborg M, Dubnovitsky A, Olesen K, Bjorkman T, Abrahmsen L, Feldwisch J, Hard T. High-affinity binding to staphylococcal protein A by an engineered dimeric Affibody molecule. Protein Eng Des Sel 2013; 26:635-44. [DOI: 10.1093/protein/gzt038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
New concepts and aids to facilitate crystallization. Curr Opin Struct Biol 2013; 23:409-16. [PMID: 23578532 DOI: 10.1016/j.sbi.2013.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 12/20/2022]
Abstract
Novel tools and technologies are required to obtain structural information of difficult to crystallize complex biological systems such as membrane proteins, multiprotein assemblies, transient conformational states and intrinsically disordered proteins. One promising approach is to select a high affinity and specificity-binding partner (crystallization chaperone), form a complex with the protein of interest and crystallize the complex. Often the chaperone reduces the conformational freedom of the target protein and additionally facilitates the formation of well-ordered crystals. This review provides an update on the recent successes in chaperone-assisted crystallography. We also stress the importance of synergistic approaches involving protein engineering, crystallization chaperones and crystallization additives. Recent examples demonstrate that investment in such approaches can be key to success.
Collapse
|
21
|
Gilbreth RN, Koide S. Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr Opin Struct Biol 2012; 22:413-20. [PMID: 22749196 DOI: 10.1016/j.sbi.2012.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022]
Abstract
Engineered binding proteins derived from non-antibody scaffolds constitute an increasingly prominent class of reagents in both research and therapeutic applications. The growing number of crystal structures of these 'alternative' scaffold-based binding proteins in complex with their targets illustrate the mechanisms of molecular recognition that are common among these systems and those unique to each. This information is useful for critically assessing and improving/expanding engineering strategies. Furthermore, the structural features of these synthetic proteins produced under tightly controlled, directed evolution deepen our understanding of the underlying principles governing molecular recognition.
Collapse
Affiliation(s)
- Ryan N Gilbreth
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
22
|
Grimm S, Salahshour S, Nygren PÅ. Monitored whole gene in vitro evolution of an anti-hRaf-1 affibody molecule towards increased binding affinity. N Biotechnol 2011; 29:534-42. [PMID: 22027369 DOI: 10.1016/j.nbt.2011.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 01/02/2023]
Abstract
The use of library technologies for the generation of affinity proteins often includes an affinity maturation step, based on the construction of secondary libraries from which second generation variants with improved affinities are selected. Here, we describe for the first time the affinity maturation of affibody molecules based on step-wise in vitro molecular evolution, involving cycles of error-prone PCR (epPCR) amplification for the introduction of diversity over the entire 58-residue three-helix bundle structure and ribosome display (RD) for the selection of improved variants. The model affibody molecule for the process was Z(RAF322), binding with a 1.9μm equilibrium dissociation constant (K(D)) to human Raf-1 (hRaf-1), a protein kinase of central importance in the MAPK/ERK proliferation pathway. The molecular evolution process was followed on both gene and protein levels via DNA sequencing and a biosensor-based binding analysis of pools of selected variants. After two cycles of diversification and selection, a significant increase in binding response of selected pools was seen. DNA sequencing showed that a dominant alanine to valine substitution had been effectively enriched, and was found in 83% of all selected clones, either alone or in combination with other enriched substitutions. The evolution procedure resulted in variants showing up to 26-fold increases in affinity to the hRaf-1 target. Noteworthy, for the two variants showing the highest affinities, substitutions were also found in affibody framework positions, corresponding to regions of the protein domain not addressed by traditional affibody molecule affinity maturation strategies. Interestingly, thermal melting point (T(m)) analyses showed that an increased affinity could be associated with both higher and lower T(m) values. All investigated variants showed excellent refolding properties and selective binding to hRaf-1, as analysed using a multiplexed bead-based binding assay, making them potentially valuable affinity reagents for cell biology studies.
Collapse
Affiliation(s)
- Sebastian Grimm
- Division of Molecular Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
23
|
Petrovskaya LE, Shingarova LN, Dolgikh DA, Kirpichnikov MP. Alternative scaffold proteins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:581-91. [DOI: 10.1134/s1068162011050141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Cavalli A, Montalvao RW, Vendruscolo M. Using Chemical Shifts to Determine Structural Changes in Proteins upon Complex Formation. J Phys Chem B 2011; 115:9491-4. [DOI: 10.1021/jp202647q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andrea Cavalli
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Rinaldo W. Montalvao
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
25
|
Cochran R, Cochran F. Phage display and molecular imaging: expanding fields of vision in living subjects. Biotechnol Genet Eng Rev 2011; 27:57-94. [PMID: 21415893 DOI: 10.1080/02648725.2010.10648145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vivo molecular imaging enables non-invasive visualization of biological processes within living subjects, and holds great promise for diagnosis and monitoring of disease. The ability to create new agents that bind to molecular targets and deliver imaging probes to desired locations in the body is critically important to further advance this field. To address this need, phage display, an established technology for the discovery and development of novel binding agents, is increasingly becoming a key component of many molecular imaging research programs. This review discusses the expanding role played by phage display in the field of molecular imaging with a focus on in vivo applications. Furthermore, new methodological advances in phage display that can be directly applied to the discovery and development of molecular imaging agents are described. Various phage library selection strategies are summarized and compared, including selections against purified target, intact cells, and ex vivo tissue, plus in vivo homing strategies. An outline of the process for converting polypeptides obtained from phage display library selections into successful in vivo imaging agents is provided, including strategies to optimize in vivo performance. Additionally, the use of phage particles as imaging agents is also described. In the latter part of the review, a survey of phage-derived in vivo imaging agents is presented, and important recent examples are highlighted. Other imaging applications are also discussed, such as the development of peptide tags for site-specific protein labeling and the use of phage as delivery agents for reporter genes. The review concludes with a discussion of how phage display technology will continue to impact both basic science and clinical applications in the field of molecular imaging.
Collapse
Affiliation(s)
- R Cochran
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford CA, USA
| | | |
Collapse
|
26
|
Wållberg H, Löfdahl PÅ, Tschapalda K, Uhlén M, Tolmachev V, Nygren PÅ, Ståhl S. Affinity recovery of eight HER2-binding affibody variants using an anti-idiotypic affibody molecule as capture ligand. Protein Expr Purif 2011; 76:127-35. [DOI: 10.1016/j.pep.2010.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
27
|
Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci U S A 2010; 107:15039-44. [PMID: 20696930 DOI: 10.1073/pnas.1005025107] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is specifically overexpressed in tumors of several cancers, including an aggressive form of breast cancer. It is therefore a target for both cancer diagnostics and therapy. The 58 amino acid residue Zher2 affibody molecule was previously engineered as a high-affinity binder of HER2. Here we determined the structure of Zher2 in solution and the crystal structure of Zher2 in complex with the HER2 extracellular domain. Zher2 binds to a conformational epitope on HER2 that is distant from those recognized by the therapeutic antibodies trastuzumab and pertuzumab. Its small size and lack of interference may provide Zher2 with advantages for diagnostic use or even for delivery of therapeutic agents to HER2-expressing tumors when trastuzumab or pertuzumab are already employed. Biophysical characterization shows that Zher2 is thermodynamically stable in the folded state yet undergoing conformational interconversion on a submillisecond time scale. The data suggest that it is the HER2-binding conformation that is formed transiently prior to binding. Still, binding is very strong with a dissociation constant K(D) = 22 pM, and perfect conformational homogeneity is therefore not necessarily required in engineered binding proteins. A comparison of the original Z domain scaffold to free and bound Zher2 structures reveals how high-affinity binding has evolved during selection and affinity maturation and suggests how a compromise between binding surface optimization and stability and dynamics of the unbound state has been reached.
Collapse
|
28
|
Feldwisch J, Tolmachev V, Lendel C, Herne N, Sjöberg A, Larsson B, Rosik D, Lindqvist E, Fant G, Höidén-Guthenberg I, Galli J, Jonasson P, Abrahmsén L. Design of an optimized scaffold for affibody molecules. J Mol Biol 2010; 398:232-47. [PMID: 20226194 DOI: 10.1016/j.jmb.2010.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/26/2010] [Accepted: 03/03/2010] [Indexed: 12/15/2022]
Abstract
Affibody molecules are non-immunoglobulin-derived affinity proteins based on a three-helical bundle protein domain. Here, we describe the design process of an optimized Affibody molecule scaffold with improved properties and a surface distinctly different from that of the parental scaffold. The improvement was achieved by applying an iterative process of amino acid substitutions in the context of the human epidermal growth factor receptor 2 (HER2)-specific Affibody molecule Z(HER2:342). Replacements in the N-terminal region, loop 1, helix 2 and helix 3 were guided by extensive structural modeling using the available structures of the parent Z domain and Affibody molecules. The effect of several single substitutions was analyzed followed by combination of up to 11 different substitutions. The two amino acid substitutions N23T and S33K accounted for the most dramatic improvements, including increased thermal stability with elevated melting temperatures of up to +12 degrees C. The optimized scaffold contains 11 amino acid substitutions in the nonbinding surface and is characterized by improved thermal and chemical stability, as well as increased hydrophilicity, and enables generation of identical Affibody molecules both by chemical peptide synthesis and by recombinant bacterial expression. A HER2-specific Affibody tracer, [MMA-DOTA-Cys61]-Z(HER2:2891)-Cys (ABY-025), was produced by conjugating MMA-DOTA (maleimide-monoamide-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to the peptide produced either chemically or in Escherichia coli. ABY-025 showed high affinity and specificity for HER2 (equilibrium dissociation constant, K(D), of 76 pM) and detected HER2 in tissue sections of SKOV-3 xenograft and human breast tumors. The HER2-binding capacity was fully retained after three cycles of heating to 90 degrees C followed by cooling to room temperature. Furthermore, the binding surfaces of five Affibody molecules targeting other proteins (tumor necrosis factor alpha, insulin, Taq polymerase, epidermal growth factor receptor or platelet-derived growth factor receptor beta) were grafted onto the optimized scaffold, resulting in molecules with improved thermal stability and a more hydrophilic nonbinding surface.
Collapse
|
29
|
Fujii I. MicroAntibodies: Directed Evolution of Molecular Targeting Peptides in Phage-displayed Libraries of Conformationally Constrained Peptides. J SYN ORG CHEM JPN 2010. [DOI: 10.5059/yukigoseikyokaishi.68.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
FUJII I. Beyond Antibodies: Generation of Conformationally Constrained Peptides for Molecular-Targeting Therapy. YAKUGAKU ZASSHI 2009; 129:1303-9. [DOI: 10.1248/yakushi.129.1303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ikuo FUJII
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University
| |
Collapse
|
31
|
Ekblad T, Tolmachev V, Orlova A, Lendel C, Abrahmsén L, Karlström AE. Synthesis and chemoselective intramolecular crosslinking of a HER2-binding affibody. Biopolymers 2009; 92:116-23. [PMID: 19140162 DOI: 10.1002/bip.21142] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The human epidermal growth factor receptor HER2 has emerged as an important target for molecular imaging of breast cancer. This article presents the design and synthesis of a HER2-targeting affibody molecule with improved stability and tumor targeting capacity, and with potential use as an imaging agent. The 58 aa three-helix bundle protein was assembled using solid-phase peptide synthesis, and a chemoselective ligation strategy was used to establish an intramolecular thioether bond between the side chain thiol group of a cysteine residue, positioned in the loop between helices I and II, and a chloroacetyl group on the side chain amino group of the C-terminal lysine residue. The tethered protein offered an increased thermal stability, with a melting temperature of 64 degrees C, compared to 54 degrees C for the linear control. The ligation did not have a major influence on the HER2 binding affinity, which was 320 and 380 pM for the crosslinked and linear molecules, respectively. Biodistribution studies were performed both in normal and tumor-bearing mice to evaluate the impact of the crosslinking on the in vivo behavior and on the tumor targeting performance. The distribution pattern was characterized by a low uptake in all organs except kidney, and rapid clearance from blood and normal tissue. Crosslinking of the protein resulted in a significantly increased tumor accumulation, rendering the tethered HER2-binding affibody molecule a valuable lead in the development of superior HER2 imaging agents.
Collapse
Affiliation(s)
- Torun Ekblad
- School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 2009; 13:245-55. [DOI: 10.1016/j.cbpa.2009.04.627] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 04/20/2009] [Indexed: 12/26/2022]
|
33
|
Grönwall C, Ståhl S. Engineered affinity proteins—Generation and applications. J Biotechnol 2009; 140:254-69. [DOI: 10.1016/j.jbiotec.2009.01.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 12/05/2008] [Accepted: 01/26/2009] [Indexed: 12/11/2022]
|
34
|
Nygren PÅ. Alternative binding proteins: Affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 2008; 275:2668-76. [DOI: 10.1111/j.1742-4658.2008.06438.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Hoyer W, Härd T. Interaction of Alzheimer’s Aβ Peptide with an Engineered Binding Protein—Thermodynamics and Kinetics of Coupled Folding–Binding. J Mol Biol 2008; 378:398-411. [DOI: 10.1016/j.jmb.2008.02.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 12/20/2022]
|
36
|
Stabilization of a beta-hairpin in monomeric Alzheimer's amyloid-beta peptide inhibits amyloid formation. Proc Natl Acad Sci U S A 2008; 105:5099-104. [PMID: 18375754 DOI: 10.1073/pnas.0711731105] [Citation(s) in RCA: 349] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-beta (Abeta) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Abeta assemblies is accompanied by a conformational change toward a high content of beta-structure. Here, we report the solution structure of Abeta(1-40) in complex with the phage-display selected affibody protein Z(Abeta3), a binding protein of nanomolar affinity. Bound Abeta(1-40) features a beta-hairpin comprising residues 17-36, providing the first high-resolution structure of Abeta in beta conformation. The positions of the secondary structure elements strongly resemble those observed for fibrillar Abeta. Z(Abeta3) stabilizes the beta-sheet by extending it intermolecularly and by burying both of the mostly nonpolar faces of the Abeta hairpin within a large hydrophobic tunnel-like cavity. Consequently, Z(Abeta3) acts as a stoichiometric inhibitor of Abeta fibrillation. The selected Abeta conformation allows us to suggest a structural mechanism for amyloid formation based on soluble oligomeric hairpin intermediates.
Collapse
|
37
|
Update: Affibody Molecules for Molecular Imaging and Therapy for Cancer. Cancer Biother Radiopharm 2007; 22:573-84. [DOI: 10.1089/cbr.2006.004-u] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
38
|
Dogan J, Lendel C, Härd T. Thermodynamics of Folding and Binding in an Affibody:Affibody Complex. J Mol Biol 2006; 359:1305-15. [PMID: 16701696 DOI: 10.1016/j.jmb.2006.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/13/2006] [Accepted: 04/20/2006] [Indexed: 11/24/2022]
Abstract
Affibody binding proteins are selected from phage-displayed libraries of variants of the 58 residue Z domain. Z(Taq) is an affibody originally selected as a binder to Taq DNA polymerase. The anti-Z(Taq) affibody was selected as a binder to Z(Taq) and the Z(Taq):anti-Z(Taq) complex is formed with a dissociation constant K(d)=0.1 microM. We have determined the structure of the Z(Taq):anti-Z(Taq) complex as well as the free state structures of Z(Taq) and anti-Z(Taq) using NMR. Here we complement the structural data with thermodynamic studies of Z(Taq) and anti-Z(Taq) folding and complex formation. Both affibody proteins show cooperative two-state thermal denaturation at melting temperatures T(M) approximately 56 degrees C. Z(Taq):anti-Z(Taq) complex formation at 25 degrees C in 50 mM NaCl and 20 mM phosphate buffer (pH 6.4) is enthalpy driven with DeltaH degrees (bind) = -9.0 (+/-0.1) kcal mol(-1)(.) The heat capacity change DeltaC(P) degrees (,bind)=-0.43 (+/-0.01) kcal mol(-1) K(-1) is in accordance with the predominantly non-polar character of the binding surface, as judged from calculations based on changes in accessible surface areas. A further dissection of the small binding entropy at 25 degrees C (-TDeltaS degrees (bind) = -0.6 (+/-0.1) kcal mol(-1)) suggests that a favourable desolvation of non-polar surface is almost completely balanced by unfavourable conformational entropy changes and loss of rotational and translational entropy. Such effects can therefore be limiting for strong binding also when interacting protein components are stable and homogeneously folded. The combined structure and thermodynamics data suggest that protein properties are not likely to be a serious limitation for the development of engineered binding proteins based on the Z domain.
Collapse
Affiliation(s)
- Jakob Dogan
- School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | |
Collapse
|