1
|
Glyde R, Ye F, Jovanovic M, Kotta-Loizou I, Buck M, Zhang X. Structures of Bacterial RNA Polymerase Complexes Reveal the Mechanism of DNA Loading and Transcription Initiation. Mol Cell 2018; 70:1111-1120.e3. [PMID: 29932903 PMCID: PMC6028918 DOI: 10.1016/j.molcel.2018.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
Gene transcription is carried out by multi-subunit RNA polymerases (RNAPs). Transcription initiation is a dynamic multi-step process that involves the opening of the double-stranded DNA to form a transcription bubble and delivery of the template strand deep into the RNAP for RNA synthesis. Applying cryoelectron microscopy to a unique transcription system using σ54 (σN), the major bacterial variant sigma factor, we capture a new intermediate state at 4.1 Å where promoter DNA is caught at the entrance of the RNAP cleft. Combining with new structures of the open promoter complex and an initial de novo transcribing complex at 3.4 and 3.7 Å, respectively, our studies reveal the dynamics of DNA loading and mechanism of transcription bubble stabilization that involves coordinated, large-scale conformational changes of the universally conserved features within RNAP and DNA. In addition, our studies reveal a novel mechanism of strand separation by σ54.
Collapse
Affiliation(s)
- Robert Glyde
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Fuzhou Ye
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Milija Jovanovic
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Wiesler SC, Burrows PC, Buck M. A dual switch controls bacterial enhancer-dependent transcription. Nucleic Acids Res 2012; 40:10878-92. [PMID: 22965125 PMCID: PMC3505966 DOI: 10.1093/nar/gks844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022] Open
Abstract
Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ(54) factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation.
Collapse
Affiliation(s)
- Simone C. Wiesler
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | - Martin Buck
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| |
Collapse
|
3
|
James E, Liu M, Sheppard C, Mekler V, Cámara B, Liu B, Simpson P, Cota E, Severinov K, Matthews S, Wigneshweraraj S. Structural and mechanistic basis for the inhibition of Escherichia coli RNA polymerase by T7 Gp2. Mol Cell 2012; 47:755-66. [PMID: 22819324 PMCID: PMC3778932 DOI: 10.1016/j.molcel.2012.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/04/2012] [Accepted: 06/12/2012] [Indexed: 11/27/2022]
Abstract
The T7 phage-encoded small protein Gp2 is a non-DNA-binding transcription factor that interacts with the jaw domain of the Escherichia coli (Ec) RNA polymerase (RNAp) β′ subunit and inhibits transcriptionally proficient promoter-complex (RPo) formation. Here, we describe the high-resolution solution structure of the Gp2-Ec β′ jaw domain complex and show that Gp2 and DNA compete for binding to the β′ jaw domain. We reveal that efficient inhibition of RPo formation by Gp2 requires the amino-terminal σ70 domain region 1.1 (R1.1), and that Gp2 antagonizes the obligatory movement of R1.1 during RPo formation. We demonstrate that Gp2 inhibits RPo formation not just by steric occlusion of the RNAp-DNA interaction but also through long-range antagonistic effects on RNAp-promoter interactions around the RNAp active center that likely occur due to repositioning of R1.1 by Gp2. The inhibition of Ec RNAp by Gp2 thus defines a previously uncharacterized mechanism by which bacterial transcription is regulated by a viral factor.
Collapse
Affiliation(s)
- Ellen James
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP) enzymes and is highly regulated through the action of gene regulatory complexes. Important mechanistic insights have been gained from structural studies on multisubunit RNAP from bacteria, yeast and archaea, although the initiation process that involves the conversion of the inactive transcription complex to an active one has yet to be fully understood. RNAPs are unambiguously closely related in structure and function across all kingdoms of life and have conserved mechanisms. In bacteria, sigma (sigma) factors direct RNAP to specific promoter sites and the RNAP/sigma holoenzyme can either form a stable closed complex that is incompetent for transcription (as in the case of sigma(54)) or can spontaneously proceed to an open complex that is competent for transcription (as in the case of sigma(70)). The conversion of the RNAP/sigma(54) closed complex to an open complex requires ATP hydrolysis by enhancer-binding proteins, hence providing an ideal model system for studying the initiation process biochemically and structurally. In this review, we present recent structural studies of the two major bacterial RNAP holoenzymes and focus on mechanistic advances in the transcription initiation process via enhancer-binding proteins.
Collapse
Affiliation(s)
- Tamaswati Ghosh
- Department of Life Sciences, Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, London, UK
| | | | | |
Collapse
|
5
|
Xiao Y, Wigneshweraraj SR, Weinzierl R, Wang YP, Buck M. Construction and functional analyses of a comprehensive sigma54 site-directed mutant library using alanine-cysteine mutagenesis. Nucleic Acids Res 2009; 37:4482-97. [PMID: 19474350 PMCID: PMC2715252 DOI: 10.1093/nar/gkp419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sigma(54) factor associates with core RNA polymerase (RNAP) to form a holoenzyme that is unable to initiate transcription unless acted on by an activator protein. sigma(54) is closely involved in many steps of activator-dependent transcription, such as core RNAP binding, promoter recognition, activator interaction and open complex formation. To systematically define sigma(54) residues that contribute to each of these functions and to generate a resource for site specific protein labeling, a complete mutant library of sigma(54) was constructed by alanine-cysteine scanning mutagenesis. Amino acid residues from 3 to 476 of Cys(-)sigma(54) were systematically mutated to alanine and cysteine in groups of two adjacent residues at a time. The influences of each substitution pair upon the functions of sigma(54) were analyzed in vivo and in vitro and the functions of many residues were revealed for the first time. Increased sigma(54) isomerization activity seldom corresponded with an increased transcription activity of the holoenzyme, suggesting the steps after sigma(54) isomerization, likely to be changes in core RNAP structure, are also strictly regulated or rate limiting to open complex formation. A linkage between core RNAP-binding activity and activator responsiveness indicates that the sigma(54)-core RNAP interface changes upon activation.
Collapse
Affiliation(s)
- Yan Xiao
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
6
|
Burrows PC, Joly N, Cannon WV, Cámara BP, Rappas M, Zhang X, Dawes K, Nixon BT, Wigneshweraraj SR, Buck M. Coupling sigma factor conformation to RNA polymerase reorganisation for DNA melting. J Mol Biol 2009; 387:306-19. [PMID: 19356588 DOI: 10.1016/j.jmb.2009.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/24/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022]
Abstract
ATP-driven remodelling of initial RNA polymerase (RNAP) promoter complexes occurs as a major post recruitment strategy used to control gene expression. Using a model-enhancer-dependent bacterial system (sigma54-RNAP, Esigma54) and a slowly hydrolysed ATP analogue (ATPgammaS), we provide evidence for a nucleotide-dependent temporal pathway leading to DNA melting involving a small set of sigma54-DNA conformational states. We demonstrate that the ATP hydrolysis-dependent remodelling of Esigma54 occurs in at least two distinct temporal steps. The first detected remodelling phase results in changes in the interactions between the promoter specificity sigma54 factor and the promoter DNA. The second detected remodelling phase causes changes in the relationship between the promoter DNA and the core RNAP catalytic beta/beta' subunits, correlating with the loading of template DNA into the catalytic cleft of RNAP. It would appear that, for Esigma54 promoters, loading of template DNA within the catalytic cleft of RNAP is dependent on fast ATP hydrolysis steps that trigger changes in the beta' jaw domain, thereby allowing acquisition of the open complex status.
Collapse
Affiliation(s)
- Patricia C Burrows
- Division of Biology, Department of Life Sciences, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wigneshweraraj S, Bose D, Burrows PC, Joly N, Schumacher J, Rappas M, Pape T, Zhang X, Stockley P, Severinov K, Buck M. Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Mol Microbiol 2008; 68:538-46. [PMID: 18331472 DOI: 10.1111/j.1365-2958.2008.06181.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial sigma (sigma) factors confer gene specificity upon the RNA polymerase, the central enzyme that catalyses gene transcription. The binding of the alternative sigma factor sigma(54) confers upon the RNA polymerase special functional and regulatory properties, making it suited for control of several major adaptive responses. Here, we summarize our current understanding of the interactions the sigma(54) factor makes with the bacterial transcription machinery.
Collapse
Affiliation(s)
- Sivaramesh Wigneshweraraj
- Department of Microbiology, Division of Investigative Sciences, Faculty of Medicine and Centre for Molecular Microbiology and Infection, Imperial College London, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation. J Mol Biol 2007; 375:43-58. [PMID: 18005983 DOI: 10.1016/j.jmb.2007.10.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/04/2007] [Accepted: 10/04/2007] [Indexed: 11/24/2022]
Abstract
Transcriptional control at the promoter melting step is not yet well understood. In this study, a site-directed photo-cross-linking method was used to systematically analyse component protein-DNA interactions that govern promoter melting by the enhancer-dependent Escherichia coli RNA polymerase (RNAP) containing the sigma(54) promoter specificity factor (E sigma(54)) at a single base pair resolution in three functional states. The sigma(54)-factor imposes tight control upon the RNAP by creating a regulatory switch where promoter melting nucleates, approximately 12 bp upstream of the transcription start site. Promoter melting by E sigma(54) is only triggered upon remodelling of this regulatory switch by a specialised activator protein in an ATP-hydrolysing reaction. We demonstrate that prior to DNA melting, only the sigma(54)-factor directly interacts with the promoter in the regulatory switch within the initial closed E sigma(54)-promoter complex and one intermediate E sigma(54)-promoter complex. We establish that activator-induced conformational rearrangements in the regulatory switch are a prerequisite to allow the promoter to enter the catalytic cleft of the RNAP and hence establish the transcriptionally competent open complex, where full promoter melting occurs. These results significantly advance our current understanding of the structural transitions occurring at bacterial promoters, where regulation occurs at the DNA melting step.
Collapse
|
9
|
Davis CA, Bingman CA, Landick R, Record MT, Saecker RM. Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2007; 104:7833-8. [PMID: 17470797 PMCID: PMC1876533 DOI: 10.1073/pnas.0609888104] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The architecture of cellular RNA polymerases (RNAPs) dictates that transcription can begin only after promoter DNA bends into a deep channel and the start site nucleotide (+1) binds in the active site located on the channel floor. Formation of this transcriptionally competent "open" complex (RP(o)) by Escherichia coli RNAP at the lambdaP(R) promoter is greatly accelerated by DNA upstream of base pair -47 (with respect to +1). Here we report real-time hydroxyl radical (*OH) and potassium permanganate (KMnO4) footprints obtained under conditions selected for optimal characterization of the first kinetically significant intermediate (I(1)) in RP(o) formation. .OH footprints reveal that the DNA backbone from -71 to -81 is engulfed by RNAP in I(1) but not in RP(o); downstream protection extends to approximately +20 in both complexes. KMnO4 footprinting detects solvent-accessible thymine bases in RP(o), but not in I(1). We conclude that upstream DNA wraps more extensively on RNAP in I(1) than in RP(o) and that downstream DNA (-11 to +20) occupies the active-site channel in I(1) but is not yet melted. Mapping of the footprinting data onto available x-ray structures provides a detailed model of a kinetic intermediate in bacterial transcription initiation and suggests how transient contacts with upstream DNA in I(1) might rearrange the channel to favor entry of downstream duplex DNA.
Collapse
Affiliation(s)
| | - Craig A. Bingman
- Departments of *Biochemistry
- Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706
| | | | - M. Thomas Record
- Departments of *Biochemistry
- Chemistry and
- To whom correspondence may be addressed at:
University of Wisconsin, 433 Babcock Drive, Madison, WI 53706.E-mail: or
| | - Ruth M. Saecker
- Chemistry and
- To whom correspondence may be addressed at:
University of Wisconsin, 433 Babcock Drive, Madison, WI 53706.E-mail: or
| |
Collapse
|
10
|
Buck M, Bose D, Burrows P, Cannon W, Joly N, Pape T, Rappas M, Schumacher J, Wigneshweraraj S, Zhang X. A second paradigm for gene activation in bacteria. Biochem Soc Trans 2007; 34:1067-71. [PMID: 17073752 DOI: 10.1042/bst0341067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Control of gene expression is key to development and adaptation. Using purified transcription components from bacteria, we employ structural and functional studies in an integrative manner to elaborate a detailed description of an obligatory step, the accessing of the DNA template, in gene expression. Our work focuses on a specialized molecular machinery that utilizes ATP hydrolysis to initiate DNA opening and permits a description of how the events triggered by ATP hydrolysis within a transcriptional activator can lead to DNA opening and transcription. The bacterial EBPs (enhancer binding proteins) that belong to the AAA(+) (ATPases associated with various cellular activities) protein family remodel the RNAP (RNA polymerase) holoenzyme containing the sigma(54) factor and convert the initial, transcriptionally silent promoter complex into a transcriptionally proficient open complex using transactions that reflect the use of ATP hydrolysis to establish different functional states of the EBP. A molecular switch within the model EBP we study [called PspF (phage shock protein F)] is evident, and functions to control the exposure of a solvent-accessible flexible loop that engages directly with the initial RNAP promoter complex. The sigma(54) factor then controls the conformational changes in the RNAP required to form the open promoter complex.
Collapse
Affiliation(s)
- M Buck
- Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dago AE, Wigneshweraraj SR, Buck M, Morett E. A role for the conserved GAFTGA motif of AAA+ transcription activators in sensing promoter DNA conformation. J Biol Chem 2006; 282:1087-97. [PMID: 17090527 DOI: 10.1074/jbc.m608715200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription from sigma54-dependent bacterial promoters can be regarded as a second paradigm for bacterial gene transcription. The initial sigma54-RNA polymerase (RNAP).promoter complex, the closed complex, is transcriptionally silent. The transcriptionally proficient sigma54-RNAP.promoter complex, the open complex, is formed upon remodeling of the closed complex by actions of a specialized activator protein that belongs to the AAA (ATPases associated with various cellular activities) protein family in an ATP hydrolysis-dependent reaction. The integrity of a highly conserved signature motif in the AAA activator (known as the GAFTGA motif) is important for the remodeling activity of the AAA activator and for open complex formation. We now provide evidence that the invariant threo-nine residue of the GAFTGA motif plays a role in sensing the DNA downstream of the sigma54-RNAP-binding site and in coupling this information to sigma54-RNAP via the conserved regulatory Region I domain of sigma54 during open complex formation.
Collapse
Affiliation(s)
- Angel Ernesto Dago
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62210, México
| | | | | | | |
Collapse
|