1
|
Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK. Thermozymes: Adaptive strategies and tools for their biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 278:372-382. [PMID: 30709766 DOI: 10.1016/j.biortech.2019.01.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.
Collapse
Affiliation(s)
- Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arun K Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
2
|
Lameira J, Kupchencko I, Warshel A. Enhancing Paradynamics for QM/MM Sampling of Enzymatic Reactions. J Phys Chem B 2016; 120:2155-64. [PMID: 26866994 PMCID: PMC5380004 DOI: 10.1021/acs.jpcb.5b11966] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the enormous increase in computer power, it is still extremely challenging to obtain computationally converging sampling of ab initio QM/MM (QM(ai)/MM) free energy surfaces in condensed phases. The sampling problem can be significantly reduced by the use of the reference potential paradynamics (PD) approach, but even this approach still requires major computer time in studies of enzymatic reactions. To further reduce the sampling problem we developed here a new PD version where we use an empirical valence bond reference potential that has a minimum rather than a maximum at the transition state region of the target potential (this is accomplished conveniently by shifting the EVB of the product state). Hence, we can map the TS region in a more efficient way. Here, we introduce and validate the inverted EVB PD approach. The validation involves the study of the S(N)2 step of the reaction catalyzed by haloakene dehalogenase (DhlA) and the GTP hydrolysis in the RasGAP system. In addition, we have also studied the corresponding reaction in water for each of the systems described here and the reaction involving trimethylsulfonium and dimethylamine in solution. The results are encouraging and the new strategy appears to provide a powerful way of evaluating QM(ai)/MM activation free energies.
Collapse
Affiliation(s)
- Jerônimo Lameira
- Department of Chemistry (SGM418), University of Southern California , 3620 McClintock Avenue, Los Angeles, California 90089, United States
- Faculdade de Biotecnologia e Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará , 66075-110, Belém, Pará, Brazil
| | - Ilya Kupchencko
- Department of Chemistry (SGM418), University of Southern California , 3620 McClintock Avenue, Los Angeles, California 90089, United States
| | - Arieh Warshel
- Department of Chemistry (SGM418), University of Southern California , 3620 McClintock Avenue, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Ying SH, Wang XH, Feng MG. Characterization of a thioredoxin (BbTrx) from the entomopathogenic fungus Beauveria bassiana and its expression in response to thermal stress. Can J Microbiol 2011; 56:934-42. [PMID: 21076484 DOI: 10.1139/w10-081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A thioredoxin (BbTrx) was identified from the entomopathogenic fungus Beauveria bassiana. The cloned nucleotide sequence consisted of a 423-bp open reading frame encoding a 141-amino-acid thioredoxin, a 1011-bp 5' region, and a 419-bp 3' region. The deduced protein sequence of BbTrx, including a common 95-amino-acid conserved domain and a unique 46-amino-acid carboxy terminal region, was similar (≤38% identity) to that of other thioredoxins and phylogenetically closest to that from Neurospora crassa. In insulin solution containing dithiothreitol at 25 °C, recombinant BbTrx or a truncated form lacking the carboxy terminal region (BbTrxD) exhibited disulfide reduction activity. BbTrxD was more active after pre-incubation at 40-75 °C, and cells expressing BbTrxD showed significantly higher tolerance to thermal stress (51 °C). The BbTrx expression in B. bassiana was greatly elevated when stressed at 40 °C. The results indicate that the new thioredoxin is a potential target for improving the thermotolerance of B. bassiana formulations.
Collapse
Affiliation(s)
- Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | | | | |
Collapse
|
4
|
Fajardo-Sanchez E, Stricher F, Pâques F, Isalan M, Serrano L. Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences. Nucleic Acids Res 2008; 36:2163-73. [PMID: 18276641 PMCID: PMC2367722 DOI: 10.1093/nar/gkn059] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Meganucleases cut long (>12 bp) unique sequences in genomes and can be used to induce targeted genome engineering by homologous recombination in the vicinity of their cleavage site. However, the use of natural meganucleases is limited by the repertoire of their target sequences, and considerable efforts have been made to engineer redesigned meganucleases cleaving chosen targets. Homodimeric meganucleases such as I-CreI have provided a scaffold, but can only be modified to recognize new quasi-palindromic DNA sequences, limiting their general applicability. Other groups have used dimer-interface redesign and peptide linkage to control heterodimerization between related meganucleases such as I-DmoI and I-CreI, but until now there has been no application of this aimed specifically at the scaffolds from existing combinatorial libraries of I-CreI. Here, we show that engineering meganucleases to form obligate heterodimers results in functional endonucleases that cut non-palindromic sequences. The protein design algorithm (FoldX v2.7) was used to design specific heterodimer interfaces between two meganuclease monomers, which were themselves engineered to recognize different DNA sequences. The new monomers favour functional heterodimer formation and prevent homodimer site recognition. This design massively increases the potential repertoire of DNA sequences that can be specifically targeted by designed I-CreI meganucleases and opens the way to safer targeted genome engineering.
Collapse
Affiliation(s)
- Emmanuel Fajardo-Sanchez
- Structural Biology and Biocomputing Program, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
5
|
Redondo P, Prieto J, Ramos E, Blanco FJ, Montoya G. Crystallization and preliminary X-ray diffraction analysis on the homing endonuclease I-Dmo-I in complex with its target DNA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:1017-20. [PMID: 18084082 DOI: 10.1107/s1744309107049706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 10/10/2007] [Indexed: 11/10/2022]
Abstract
Homing endonucleases are highly specific DNA-cleaving enzymes that recognize long stretches of base pairs. The availability of these enzymes has opened novel perspectives for genome engineering in a wide range of fields, including gene therapy, by taking advantage of the homologous gene-targeting enhancement induced by a double-strand break. I-Dmo-I is a well characterized homing endonuclease from the archaeon Desulfurococcus mobilis. The enzyme was cloned and overexpressed in Escherichia coli. Crystallization experiments of I-Dmo-I in complex with its DNA target in the presence of Ca(2+) and Mg(2+) yielded crystals that were suitable for X-ray diffraction analysis. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a = 106.75, b = 70.18, c = 106.85 A, alpha = gamma = 90, beta = 119.93 degrees . The self-rotation function and the Matthews coefficient suggested the presence of three protein-DNA complexes per asymmetric unit. The crystals diffracted to a resolution limit of 2.6 A using synchrotron radiation at the Swiss Light Source (SLS) and the European Synchrotron Radiation Facility (ESRF).
Collapse
Affiliation(s)
- Pilar Redondo
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Prieto J, Epinat JC, Redondo P, Ramos E, Padró D, Cédrone F, Montoya G, Pâques F, Blanco FJ. Generation and analysis of mesophilic variants of the thermostable archaeal I-DmoI homing endonuclease. J Biol Chem 2007; 283:4364-74. [PMID: 17999959 DOI: 10.1074/jbc.m706323200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophilic archaeon Desulfurococcus mobilis I-DmoI protein belongs to the family of proteins known as homing endonucleases (HEs). HEs are highly specific DNA-cleaving enzymes that recognize long stretches of DNA and are powerful tools for genome engineering. Because of its monomeric nature, I-DmoI is an ideal scaffold for generating mutant enzymes with novel DNA specificities, similarly reported for homodimeric HEs, but providing single chain endonucleases instead of dimers. However, this would require the use of a mesophilic variant cleaving its substrate at temperatures of 37 degrees C and below. We have generated mesophilic mutants of I-DmoI, using a single round of directed evolution that relies on a functional assay in yeast. The effect of mutations identified in the novel proteins has been investigated. These mutations are located distant to the DNA-binding site and cause changes in the size and polarity of buried residues, suggesting that they act by destabilizing the protein. Two of the novel proteins have been produced and analyzed in vitro. Their overall structures are similar to that of the parent protein, but they are destabilized against thermal and chemical denaturation. The temperature-dependent activity profiles for the mutants shifted toward lower temperatures with respect to the wild-type activity profile. However, the most destabilized mutant was not the most active at low temperatures, suggesting that other effects, like local structural distortions and/or changes in the protein dynamics, also influence their activity. These mesophilic I-DmoI mutants form the basis for generating new variants with tailored DNA specificities.
Collapse
Affiliation(s)
- Jesús Prieto
- Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, Spanish National Cancer Center, c/Melchor Fernández Almagro 3, 28029-Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Prieto J, Redondo P, Padró D, Arnould S, Epinat JC, Pâques F, Blanco FJ, Montoya G. The C-terminal loop of the homing endonuclease I-CreI is essential for site recognition, DNA binding and cleavage. Nucleic Acids Res 2007; 35:3262-71. [PMID: 17452357 PMCID: PMC1904291 DOI: 10.1093/nar/gkm183] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Meganucleases are sequence-specific endonucleases with large cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These enzymes open novel perspectives for genome engineering in a wide range of fields, including gene therapy. A new crystal structure of the I-CreI dimer without DNA has allowed the comparison with the DNA-bound protein. The C-terminal loop displays a different conformation, which suggests its implication in DNA binding. A site-directed mutagenesis study in this region demonstrates that whereas the C-terminal helix is negligible for DNA binding, the final C-terminal loop is essential in DNA binding and cleavage. We have identified two regions that comprise the Ser138-Lys139 and Lys142-Thr143 pairs whose double mutation affect DNA binding in vitro and abolish cleavage in vivo. However, the mutation of only one residue in these sites allows DNA binding in vitro and cleavage in vivo. These findings demonstrate that the C-terminal loop of I-CreI endonuclease plays a fundamental role in its catalytic mechanism and suggest this novel site as a region to take into account for engineering new endonucleases with tailored specificity.
Collapse
Affiliation(s)
- Jesús Prieto
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Pilar Redondo
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Daniel Padró
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Sylvain Arnould
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Jean-Charles Epinat
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Frédéric Pâques
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Francisco J. Blanco
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Guillermo Montoya
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
- *To whom correspondence should be addressed. Tel:00 34 912246900; Fax: 00 34 912246976;
| |
Collapse
|