Tanaka A, Choi J, Kim SK, Majima T. Interaction of G-quadruplex with RecA protein studied in bulk phase and at the single-molecule level.
J Phys Chem B 2013;
117:6711-7. [PMID:
23662701 DOI:
10.1021/jp4036277]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As in the human genome there are numerous repeat DNA sequences to adopt into non-B DNA structures such as hairpin, triplex, Z-DNA, G-quadruplex, and so on, an understanding of the interaction between DNA repair proteins and a non-B DNA forming sequence is very important. In this regard, the interaction between RecA protein and human telomeric 5'-TAGGG-(TTAGGG)3-TT-3' sequence and the G-quadruplex formed from this sequence has been investigated in bulk phase and at the single-molecule level. The RecA@ssDNA filament, which is formed by the interaction between RecA protein and a G-rich sequence, was dissociated by the addition of K(+) ions, and the dissociated G-rich sequence was quickly folded to a G-quadruplex structure, indicating that the G-quadruplex structure is more favorable than the RecA@ssDNA filament in the presence of K(+) ions. In addition, we demonstrate that the conformation of the G-quadruplex, which is heterogeneous in the absence of RecA, converged to the specific G-quadruplex with one double-chain-reversal loop upon association of RecA protein.
Collapse