1
|
Cho JE, Shaltz S, Yakovleva L, Shuman S, Jinks-Robertson S. Deletions initiated by the vaccinia virus TopIB protein in yeast. DNA Repair (Amst) 2024; 137:103664. [PMID: 38484460 PMCID: PMC10994728 DOI: 10.1016/j.dnarep.2024.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The type IB topoisomerase of budding yeast (yTop1) generates small deletions in tandem repeats through a sequential cleavage mechanism and larger deletions with random endpoints through the nonhomologous end-joining (NHEJ) pathway. Vaccinia virus Top1 (vTop1) is a minimized version of the eukaryal TopIB enzymes and uniquely has a strong consensus cleavage sequence: the pentanucleotide (T/C)CCTTp↓. To define the relationship between the position of TopIB cleavage and mutagenic outcomes, we expressed vTop1 in yeast top1Δ strains containing reporter constructs with a single CCCTT site, tandem CCCTT sites, or CCCTT sites separated by 42 bp. vTop1 cleavage at a single CCCTT site was associated with small, NHEJ-dependent deletions. As observed with yTop1, vTop1 generated 5-bp deletions at tandem CCCTT sites. In contrast to yTop1-initiated deletions, however, 5-bp deletions associated with vTop1 expression were not affected by the level of ribonucleotides in genomic DNA. vTop1 expression was associated with a 47-bp deletion when CCCTT sites were separated by 42 bp. Unlike yTop1-initiated large deletions, the vTop1-mediated 47-bp deletion did not require NHEJ, consistent with a model in which re-ligation of enzyme-associated double-strand breaks is catalyzed by vTop1.
Collapse
Affiliation(s)
- Jang Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lyudmila Yakovleva
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
3
|
Kristoffersen EL, Givskov A, Jørgensen LA, Jensen PW, W Byl JA, Osheroff N, Andersen AH, Stougaard M, Ho YP, Knudsen BR. Interlinked DNA nano-circles for measuring topoisomerase II activity at the level of single decatenation events. Nucleic Acids Res 2017; 45:7855-7869. [PMID: 28541438 PMCID: PMC5570003 DOI: 10.1093/nar/gkx480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/22/2017] [Indexed: 12/23/2022] Open
Abstract
DNA nano-structures present appealing new means for monitoring different molecules. Here, we demonstrate the assembly and utilization of a surface-attached double-stranded DNA catenane composed of two intact interlinked DNA nano-circles for specific and sensitive measurements of the life essential topoisomerase II (Topo II) enzyme activity. Topo II activity was detected via the numeric release of DNA nano-circles, which were visualized at the single-molecule level in a fluorescence microscope upon isothermal amplification and fluorescence labeling. The transition of each enzymatic reaction to a micrometer sized labeled product enabled quantitative detection of Topo II activity at the single decatenation event level rendering activity measurements in extracts from as few as five cells possible. Topo II activity is a suggested predictive marker in cancer therapy and, consequently, the described highly sensitive monitoring of Topo II activity may add considerably to the toolbox of individualized medicine where decisions are based on very sparse samples.
Collapse
Affiliation(s)
- Emil L Kristoffersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center - iNANO, Aarhus University, 8000 Aarhus C, Denmark
| | - Asger Givskov
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Line A Jørgensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Pia W Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Anni H Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Yi-Ping Ho
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center - iNANO, Aarhus University, 8000 Aarhus C, Denmark.,Division of Biomedical Engineering, Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center - iNANO, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Kristoffersen EL, Jørgensen LA, Franch O, Etzerodt M, Frøhlich R, Bjergbæk L, Stougaard M, Ho YP, Knudsen BR. Real-time investigation of human topoisomerase I reaction kinetics using an optical sensor: a fast method for drug screening and determination of active enzyme concentrations. NANOSCALE 2015; 7:9825-9834. [PMID: 25963854 DOI: 10.1039/c5nr01474c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using camptothecin derivatives. These drugs convert the hTopI activity into a cellular poison, and hence the cytotoxic effects of camptothecin derivatives correlate with the hTopI activity. Therefore, fast and reliable techniques for high throughput measurements of hTopI activity are of high clinical interest. Here we demonstrate potential applications of a fluorophore-quencher based DNA sensor designed for measurement of hTopI cleavage-ligation activities, which are the catalytic steps affected by camptothecin. The kinetic analysis of the hTopI reaction with the DNA sensor exhibits a characteristic burst profile. This is the result of a two-step ping-pong reaction mechanism, where a fast first reaction, the one creating the signal, is followed by a slower second reaction necessary for completion of the catalytic cycle. Hence, the burst profile holds information about two reactions in the enzymatic mechanism. Moreover, it allows the amount of active enzyme in the reaction to be determined. The presented results pave the way for future high throughput drug screening and the potential of measuring active hTopI concentrations in clinical samples for individualized treatment.
Collapse
|
5
|
Saito TT, Lui DY, Kim HM, Meyer K, Colaiácovo MP. Interplay between structure-specific endonucleases for crossover control during Caenorhabditis elegans meiosis. PLoS Genet 2013; 9:e1003586. [PMID: 23874210 PMCID: PMC3715419 DOI: 10.1371/journal.pgen.1003586] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
The number and distribution of crossover events are tightly regulated at prophase of meiosis I. The resolution of Holliday junctions by structure-specific endonucleases, including MUS-81, SLX-1, XPF-1 and GEN-1, is one of the main mechanisms proposed for crossover formation. However, how these nucleases coordinately resolve Holliday junctions is still unclear. Here we identify both the functional overlap and differences between these four nucleases regarding their roles in crossover formation and control in the Caenorhabditis elegans germline. We show that MUS-81, XPF-1 and SLX-1, but not GEN-1, can bind to HIM-18/SLX4, a key scaffold for nucleases. Analysis of synthetic mitotic defects revealed that MUS-81 and SLX-1, but not XPF-1 and GEN-1, have overlapping roles with the Bloom syndrome helicase ortholog, HIM-6, supporting their in vivo roles in processing recombination intermediates. Taking advantage of the ease of genetic analysis and high-resolution imaging afforded by C. elegans, we examined crossover designation, frequency, distribution and chromosomal morphology in single, double, triple and quadruple mutants of the structure-specific endonucleases. This revealed that XPF-1 functions redundantly with MUS-81 and SLX-1 in executing crossover formation during meiotic double-strand break repair. Analysis of crossover distribution revealed that SLX-1 is required for crossover suppression at the center region of the autosomes. Finally, analysis of chromosome morphology in oocytes at late meiosis I stages uncovered that SLX-1 and XPF-1 promote meiotic chromosomal stability by preventing formation of chromosomal abnormalities. We propose a model in which coordinate action between structure-specific nucleases at different chromosome domains, namely MUS-81, SLX-1 and XPF-1 at the arms and SLX-1 at the center region, exerts positive and negative regulatory roles, respectively, for crossover control during C. elegans meiosis.
Collapse
Affiliation(s)
- Takamune T. Saito
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Doris Y. Lui
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyun-Min Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katherine Meyer
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Marcussen LB, Jepsen ML, Kristoffersen EL, Franch O, Proszek J, Ho YP, Stougaard M, Knudsen BR. DNA-based sensor for real-time measurement of the enzymatic activity of human topoisomerase I. SENSORS 2013; 13:4017-28. [PMID: 23529147 PMCID: PMC3673067 DOI: 10.3390/s130404017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/16/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
Abstract
Sensors capable of quantitative real-time measurements may present the easiest and most accurate way to study enzyme activities. Here we present a novel DNA-based sensor for specific and quantitative real-time measurement of the enzymatic activity of the essential human enzyme, topoisomerase I. The basic design of the sensor relies on two DNA strands that hybridize to form a hairpin structure with a fluorophore-quencher pair. The quencher moiety is released from the sensor upon reaction with human topoisomerase I thus enabling real-time optical measurement of enzymatic activity. The sensor is specific for topoisomerase I even in raw cell extracts and presents a simple mean of following enzyme kinetics using standard laboratory equipment such as a qPCR machine or fluorimeter. Human topoisomerase I is a well-known target for the clinically used anti-cancer drugs of the camptothecin family. The cytotoxic effect of camptothecins correlates directly with the intracellular topoisomerase I activity. We therefore envision that the presented sensor may find use for the prediction of cellular drug response. Moreover, inhibition of topoisomerase I by camptothecin is readily detectable using the presented DNA sensor, suggesting a potential application of the sensor for first line screening for potential topoisomerase I targeting anti-cancer drugs.
Collapse
Affiliation(s)
- Lærke Bay Marcussen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark; E-Mails: (L.B.M.); (M.L.J.); (E.L.K.); (O.F.)
- Department of Pathology, Aarhus University Hospital, Aarhus C 8000, Denmark; E-Mail:
| | - Morten Leth Jepsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark; E-Mails: (L.B.M.); (M.L.J.); (E.L.K.); (O.F.)
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
| | - Emil Laust Kristoffersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark; E-Mails: (L.B.M.); (M.L.J.); (E.L.K.); (O.F.)
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
| | - Oskar Franch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark; E-Mails: (L.B.M.); (M.L.J.); (E.L.K.); (O.F.)
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
| | - Joanna Proszek
- Department of Pathology, Aarhus University Hospital, Aarhus C 8000, Denmark; E-Mail:
| | - Yi-Ping Ho
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
| | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, Aarhus C 8000, Denmark; E-Mail:
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (M.S.); (B.R.K.)
| | - Birgitta Ruth Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark; E-Mails: (L.B.M.); (M.L.J.); (E.L.K.); (O.F.)
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (M.S.); (B.R.K.)
| |
Collapse
|
7
|
Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol 2011; 12:33. [PMID: 21816114 PMCID: PMC3176155 DOI: 10.1186/1471-2199-12-33] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/05/2011] [Indexed: 04/10/2023] Open
Abstract
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others. Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v,v,i,, Královopolská 135, Brno, 612 65, Czech Republic.
| | | | | | | |
Collapse
|
8
|
Galbiati A, Tabolacci C, Morozzo Della Rocca B, Mattioli P, Beninati S, Paradossi G, Desideri A. Targeting Tumor Cells through Chitosan-Folate Modified Microcapsules Loaded with Camptothecin. Bioconjug Chem 2011; 22:1066-72. [DOI: 10.1021/bc100546s] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Oliveira CLP, Juul S, Jørgensen HL, Knudsen B, Tordrup D, Oteri F, Falconi M, Koch J, Desideri A, Pedersen JS, Andersen FF, Knudsen BR. Structure of nanoscale truncated octahedral DNA cages: variation of single-stranded linker regions and influence on assembly yields. ACS NANO 2010; 4:1367-76. [PMID: 20146442 DOI: 10.1021/nn901510v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The assembly, structure, and stability of DNA nanocages with the shape of truncated octahedra have been studied. The cages are composed of 12 double-stranded B-DNA helices interrupted by single-stranded linkers of thymidines of varying length that constitute the truncated corners of the structure. The structures assemble with a high efficiency in a one-step procedure, compared to previously published structures of similar complexity. The structures of the cages were determined by small-angle X-ray scattering. With increasing linker length, there is a systematic increase of the cage size and decrease of the twist angle of the double helices with respect to the symmetry planes of the cage structure. In the present study, we demonstrate the length of the single-stranded linker regions, which impose a certain degree of flexibility to the structure, to be the important determinant for efficient assembly. The linker length can be decreased to three thymidines without affecting assembly yield or the overall structural characteristics of the DNA cages. A linker length of two thymidines represents a sharp cutoff abolishing cage assembly. This is supported by energy minimization calculations suggesting substantial hydrogen bond deformation in a cage with linkers of two thymidines.
Collapse
Affiliation(s)
- Cristiano Luis Pinto Oliveira
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Andersen FF, Stougaard M, Jørgensen HL, Bendsen S, Juul S, Hald K, Andersen AH, Koch J, Knudsen BR. Multiplexed detection of site specific recombinase and DNA topoisomerase activities at the single molecule level. ACS NANO 2009; 3:4043-4054. [PMID: 19950974 DOI: 10.1021/nn9012912] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We previously demonstrated the conversion of a single human topoisomerase I mediated DNA cleavage-ligation event happening within nanometer dimensions to a micrometer-sized DNA molecule, readily detectable using standard fluorescence microscopy. This conversion was achieved by topoisomerase I mediated closure of a nicked DNA circle followed by rolling circle amplification leading to an anchored product that was visualized at the single molecule level by hybridization to fluorescently labeled probes (Stougaard et al. ACS Nano 2009, 3, 223-33). An important inherent property of the presented setup is, at least in theory, the easy adaptability to multiplexed enzyme detection simply by using differently labeled probes for the detection of rolling circle products of different circularized substrates. In the present study we demonstrate the specific detection of three different enzyme activities, human topoisomerase I, and Flp and Cre recombinase in nuclear extracts from human cells one at a time or multiplexed using the rolling circle amplification based single-molecule detection system. Besides serving as a proof-of-principle for the feasibility of the presented assay for multiplexed enzyme detection in crude human cell extracts, the simultaneous detection of Flp and Cre activities in a single sample may find immediate practical use since these enzymes are often used in combination to control mammalian gene expression.
Collapse
Affiliation(s)
- Felicie Faucon Andersen
- Department of Molecular Biology and Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stougaard M, Lohmann JS, Mancino A, Celik S, Andersen FF, Koch J, Knudsen BR. Single-molecule detection of human topoisomerase I cleavage-ligation activity. ACS NANO 2009; 3:223-233. [PMID: 19206270 DOI: 10.1021/nn800509b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the present study, we demonstrate the conversion of a single human topoisomerase I mediated DNA cleavage-ligation event happening within nanometer dimensions to a micrometer-sized DNA molecule, readily detectable using standard fluorescence microscopy. This conversion is achieved by topoisomerase I mediated closure of a nicked DNA dumbbell structure, followed by rolling circle amplification. The resulting product consists of multiple tandem repeats of the DNA dumbbell and can subsequently be visualized by annealing to fluorescently labeled probes. Since amplification involves no thermal cycling, each fluorescent rolling circle product, which gives rise to an individual signal upon microscopic analysis, will correspond to a single human topoisomerase I mediated cleavage-ligation event. Regarding sensitivity, speed, and ease of performance, the presented activity assay based on single-molecule product detection is superior to current state of the art assays using supercoiled plasmids or radiolabeled oligonucleotides as the substrate for topoisomerase I activity. Moreover, inherent in the experimental design is the easy adaptation to multiplexed and/or high-throughput systems. Human topoisomerase I is the cellular target of clinically important anticancer drugs, and the effect of such drugs corresponds directly to the intracellular topoisomerase I cleavage-ligation activity level. We therefore believe that the presented setup, measuring directly the number of cleavage-ligation events in a given sample, has great diagnostic potential, adding considerably to the possibilities of accurate prognosis before treatment with topoisomerase I directed chemotherapeutics.
Collapse
Affiliation(s)
- Magnus Stougaard
- Department of Pathology and Interdisciplinary Nanoscience Center (iNano), Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
12
|
Frøhlich RF, Juul S, Nielsen MB, Vinther M, Veigaard C, Hede MS, Andersen FF. Identification of a minimal functional linker in human topoisomerase I by domain swapping with Cre recombinase. Biochemistry 2008; 47:7127-36. [PMID: 18553933 DOI: 10.1021/bi800031k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular forms of type IB topoisomerases distinguish themselves from their viral counterparts and the tyrosine recombinases to which they are closely related by having rather extensive N-terminal and linker domains. The functions and necessity of these domains are not yet fully unraveled. In this study we replace 86 amino acids including the linker domain of the cellular type IB topoisomerase, human topoisomerase I, with four, six, or eight amino acids from the corresponding short loop region in Cre recombinase. In vitro characterization of the resulting chimeras, denoted Cropos, reveals that six amino acids from the Cre linker loop constitute the minimal length of a functional linker in human topoisomerase I.
Collapse
Affiliation(s)
- Rikke From Frøhlich
- Department of Molecular Biology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|