1
|
Xie J, Mao H. Functional Insight into hTRIR. Curr Mol Med 2024; 24:1445-1449. [PMID: 37867262 DOI: 10.2174/0115665240260310231016112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023]
Abstract
The uncharacterized C19orf43 was discovered to be associated with hTR maturation. Our previous work indicated that C19orf43 cleaves distinct RNA types but not DNA. We then named it hTR-interacting RNase (hTRIR) (Uniprot: Q9BQ61). hTRIR works in a broad range of temperatures and pH without any divalent cations needed. hTRIR cleaves RNA at all four nucleotide sites but preferentially at purines. In addition, hTRIR digested both ends of methylated small RNA, which suggested that it was a putative ribonuclease. Later, we designed more nucleotides that methylated small RNA to determine whether it was an exo- and/or endoribonuclease. Unlike RNase A, hTRIR could digest both ends of methylated RNA oligos 5R5, which suggested it was potentially an endoribonuclease.
Collapse
Affiliation(s)
- Jumin Xie
- Biochemistry and Molecular Biology, Hubei Polytechnic University, Huangshi, Hubei 435003, P.R. China
| | - Hui Mao
- Department of Dermatology, Huangshi Central Hospital, Huangshi, Hubei, 435000, P.R. China
| |
Collapse
|
2
|
Hayne CK, Butay KJU, Stewart ZD, Krahn JM, Perera L, Williams JG, Petrovitch RM, Deterding LJ, Matera AG, Borgnia MJ, Stanley RE. Structural basis for pre-tRNA recognition and processing by the human tRNA splicing endonuclease complex. Nat Struct Mol Biol 2023; 30:824-833. [PMID: 37231153 PMCID: PMC10627149 DOI: 10.1038/s41594-023-00991-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 04/06/2023] [Indexed: 05/27/2023]
Abstract
Throughout bacteria, archaea and eukarya, certain tRNA transcripts contain introns. Pre-tRNAs with introns require splicing to form the mature anticodon stem loop. In eukaryotes, tRNA splicing is initiated by the heterotetrameric tRNA splicing endonuclease (TSEN) complex. All TSEN subunits are essential, and mutations within the complex are associated with a family of neurodevelopmental disorders known as pontocerebellar hypoplasia (PCH). Here, we report cryo-electron microscopy structures of the human TSEN-pre-tRNA complex. These structures reveal the overall architecture of the complex and the extensive tRNA binding interfaces. The structures share homology with archaeal TSENs but contain additional features important for pre-tRNA recognition. The TSEN54 subunit functions as a pivotal scaffold for the pre-tRNA and the two endonuclease subunits. Finally, the TSEN structures enable visualization of the molecular environments of PCH-causing missense mutations, providing insight into the mechanism of pre-tRNA splicing and PCH.
Collapse
Affiliation(s)
- Cassandra K Hayne
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| | - Kevin John U Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Zachary D Stewart
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
- Georgetown University, Washington, DC, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Robert M Petrovitch
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Leesa J Deterding
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
3
|
Kehayova YS, Wilkinson JM, Rice SJ, Loughlin J. Mediation of the Same Epigenetic and Transcriptional Effect by Independent Osteoarthritis Risk-Conferring Alleles on a Shared Target Gene, COLGALT2. Arthritis Rheumatol 2023; 75:910-922. [PMID: 36538011 PMCID: PMC10952352 DOI: 10.1002/art.42427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Over 100 DNA variants have been associated with osteoarthritis (OA), including rs1046934, located within a linkage disequilibrium block encompassing part of COLGALT2 and TSEN15. The present study was undertaken to determine the target gene(s) and the mechanism of action of the OA locus using human fetal cartilage, cartilage from OA and femoral neck fracture arthroplasty patients, and a chondrocyte cell model. METHODS Genotyping and methylation array data of DNA from human OA cartilage samples (n = 87) were used to determine whether the rs1046934 genotype is associated with differential DNA methylation at proximal CpGs. Results were replicated in DNA from human arthroplasty (n = 132) and fetal (n = 77) cartilage samples using pyrosequencing. Allelic expression imbalance (AEI) measured the effects of genotype on COLGALT2 and TSEN15 expression. Reporter gene assays and epigenetic editing determined the functional role of regions harboring differentially methylated CpGs. In silico analyses complemented these experiments. RESULTS Three differentially methylated CpGs residing within regulatory regions were detected in the human OA cartilage array data, and 2 of these were replicated in human arthroplasty and fetal cartilage. AEI was detected for COLGALT2 and TSEN15, with associations between expression and methylation for COLGALT2. Reporter gene assays confirmed that the CpGs are in chondrocyte enhancers, with epigenetic editing results directly linking methylation with COLGALT2 expression. CONCLUSION COLGALT2 is a target of this OA locus. We previously characterized another OA locus, marked by rs11583641, that independently targets COLGALT2. The genotype of rs1046934, like rs11583641, mediates its effect by modulating expression of COLGALT2 via methylation changes to CpGs located in enhancers. Although the single-nucleotide polymorphisms, CpGs, and enhancers are distinct between the 2 independent OA risk loci, their effect on COLGALT2 is the same. COLGALT2 is the target of independent OA risk loci sharing a common mechanism of action.
Collapse
Affiliation(s)
| | - J. Mark Wilkinson
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Sarah J. Rice
- Biosciences Institute, Newcastle UniversityNewcastle upon TyneUK
| | - John Loughlin
- Biosciences Institute, Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
4
|
Sekulovski S, Sušac L, Stelzl LS, Tampé R, Trowitzsch S. Structural basis of substrate recognition by human tRNA splicing endonuclease TSEN. Nat Struct Mol Biol 2023:10.1038/s41594-023-00992-y. [PMID: 37231152 DOI: 10.1038/s41594-023-00992-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 04/06/2023] [Indexed: 05/27/2023]
Abstract
Heterotetrameric human transfer RNA (tRNA) splicing endonuclease TSEN catalyzes intron excision from precursor tRNAs (pre-tRNAs), utilizing two composite active sites. Mutations in TSEN and its associated RNA kinase CLP1 are linked to the neurodegenerative disease pontocerebellar hypoplasia (PCH). Despite the essential function of TSEN, the three-dimensional assembly of TSEN-CLP1, the mechanism of substrate recognition, and the structural consequences of disease mutations are not understood in molecular detail. Here, we present single-particle cryogenic electron microscopy reconstructions of human TSEN with intron-containing pre-tRNAs. TSEN recognizes the body of pre-tRNAs and pre-positions the 3' splice site for cleavage by an intricate protein-RNA interaction network. TSEN subunits exhibit large unstructured regions flexibly tethering CLP1. Disease mutations localize far from the substrate-binding interface and destabilize TSEN. Our work delineates molecular principles of pre-tRNA recognition and cleavage by human TSEN and rationalizes mutations associated with PCH.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lukas Sušac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lukas S Stelzl
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- KOMET 1, Institute of Physics, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Sekulovski S, Trowitzsch S. What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia? Bioessays 2023; 45:e2200130. [PMID: 36517085 DOI: 10.1002/bies.202200130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023]
Abstract
Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
6
|
Hayne CK, Lewis TA, Stanley RE. Recent insights into the structure, function, and regulation of the eukaryotic transfer RNA splicing endonuclease complex. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1717. [PMID: 35156311 PMCID: PMC9465713 DOI: 10.1002/wrna.1717] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 04/30/2023]
Abstract
The splicing of transfer RNA (tRNA) introns is a critical step of tRNA maturation, for intron-containing tRNAs. In eukaryotes, tRNA splicing is a multi-step process that relies on several RNA processing enzymes to facilitate intron removal and exon ligation. Splicing is initiated by the tRNA splicing endonuclease (TSEN) complex which catalyzes the excision of the intron through its two nuclease subunits. Mutations in all four subunits of the TSEN complex are linked to a family of neurodegenerative and neurodevelopmental diseases known as pontocerebellar hypoplasia (PCH). Recent studies provide molecular insights into the structure, function, and regulation of the eukaryotic TSEN complex and are beginning to illuminate how mutations in the TSEN complex lead to neurodegenerative disease. Using new advancements in the prediction of protein structure, we created a three-dimensional model of the human TSEN complex. We review functions of the TSEN complex beyond tRNA splicing by highlighting recently identified substrates of the eukaryotic TSEN complex and discuss mechanisms for the regulation of tRNA splicing, by enzymes that modify cleaved tRNA exons and introns. Finally, we review recent biochemical and animal models that have worked to address the mechanisms that drive PCH and synthesize these studies with previous studies to try to better understand PCH pathogenesis. This article is categorized under: RNA Processing > tRNA Processing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Cassandra K Hayne
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Tanae A Lewis
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Robin E Stanley
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
7
|
Sekulovski S, Devant P, Panizza S, Gogakos T, Pitiriciu A, Heitmeier K, Ramsay EP, Barth M, Schmidt C, Tuschl T, Baas F, Weitzer S, Martinez J, Trowitzsch S. Assembly defects of human tRNA splicing endonuclease contribute to impaired pre-tRNA processing in pontocerebellar hypoplasia. Nat Commun 2021; 12:5610. [PMID: 34584079 PMCID: PMC8479045 DOI: 10.1038/s41467-021-25870-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Introns of human transfer RNA precursors (pre-tRNAs) are excised by the tRNA splicing endonuclease TSEN in complex with the RNA kinase CLP1. Mutations in TSEN/CLP1 occur in patients with pontocerebellar hypoplasia (PCH), however, their role in the disease is unclear. Here, we show that intron excision is catalyzed by tetrameric TSEN assembled from inactive heterodimers independently of CLP1. Splice site recognition involves the mature domain and the anticodon-intron base pair of pre-tRNAs. The 2.1-Å resolution X-ray crystal structure of a TSEN15-34 heterodimer and differential scanning fluorimetry analyses show that PCH mutations cause thermal destabilization. While endonuclease activity in recombinant mutant TSEN is unaltered, we observe assembly defects and reduced pre-tRNA cleavage activity resulting in an imbalanced pre-tRNA pool in PCH patient-derived fibroblasts. Our work defines the molecular principles of intron excision in humans and provides evidence that modulation of TSEN stability may contribute to PCH phenotypes.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Pascal Devant
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
- Ph.D. Program in Virology, Harvard Medical School, Boston, MA, USA
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Silvia Panizza
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Tasos Gogakos
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Anda Pitiriciu
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Katharina Heitmeier
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | | | - Marie Barth
- Interdisciplinary research center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary research center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Frank Baas
- Department of Clinical Genetics, Leiden University, Leiden, Netherlands
| | - Stefan Weitzer
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Javier Martinez
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany.
| |
Collapse
|
8
|
Hayne CK, Schmidt CA, Haque MI, Matera AG, Stanley RE. Reconstitution of the human tRNA splicing endonuclease complex: insight into the regulation of pre-tRNA cleavage. Nucleic Acids Res 2020; 48:7609-7622. [PMID: 32476018 PMCID: PMC7641302 DOI: 10.1093/nar/gkaa438] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 01/04/2023] Open
Abstract
The splicing of tRNA introns is a critical step in pre-tRNA maturation. In archaea and eukaryotes, tRNA intron removal is catalyzed by the tRNA splicing endonuclease (TSEN) complex. Eukaryotic TSEN is comprised of four core subunits (TSEN54, TSEN2, TSEN34 and TSEN15). The human TSEN complex additionally co-purifies with the polynucleotide kinase CLP1; however, CLP1's role in tRNA splicing remains unclear. Mutations in genes encoding all four TSEN subunits, as well as CLP1, are known to cause neurodegenerative disorders, yet the mechanisms underlying the pathogenesis of these disorders are unknown. Here, we developed a recombinant system that produces active TSEN complex. Co-expression of all four TSEN subunits is required for efficient formation and function of the complex. We show that human CLP1 associates with the active TSEN complex, but is not required for tRNA intron cleavage in vitro. Moreover, RNAi knockdown of the Drosophila CLP1 orthologue, cbc, promotes biogenesis of mature tRNAs and circularized tRNA introns (tricRNAs) in vivo. Collectively, these and other findings suggest that CLP1/cbc plays a regulatory role in tRNA splicing by serving as a negative modulator of the direct tRNA ligation pathway in animal cells.
Collapse
Affiliation(s)
- Cassandra K Hayne
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Casey A Schmidt
- Curriculum in Genetics & Molecular Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Maira I Haque
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Department of Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - A Gregory Matera
- Curriculum in Genetics & Molecular Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Hirata A. Recent Insights Into the Structure, Function, and Evolution of the RNA-Splicing Endonucleases. Front Genet 2019; 10:103. [PMID: 30809252 PMCID: PMC6379350 DOI: 10.3389/fgene.2019.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
RNA-splicing endonuclease (EndA) cleaves out introns from archaeal and eukaryotic precursor (pre)-tRNA and is essential for tRNA maturation. In archaeal EndA, the molecular mechanisms underlying complex assembly, substrate recognition, and catalysis have been well understood. Recently, certain studies have reported novel findings including the identification of new subunit types in archaeal EndA structures, providing insights into the mechanism underlying broad substrate specificity. Further, metagenomics analyses have enabled the acquisition of numerous DNA sequences of EndAs and intron-containing pre-tRNAs from various species, providing information regarding the co-evolution of substrate specificity of archaeal EndAs and tRNA genetic diversity, and the evolutionary pathway of archaeal and eukaryotic EndAs. Although the complex structure of the heterothermic form of eukaryotic EndAs is unknown, previous reports regarding their functions indicated that mutations in human EndA cause neurological disorders including pontocerebellar hypoplasia and progressive microcephaly, and yeast EndA significantly cleaves mitochondria-localized mRNA encoding cytochrome b mRNA processing 1 (Cpb1) for mRNA maturation. This mini-review summarizes the aforementioned results, discusses their implications, and offers my personal opinion regarding future directions for the analysis of the structure and function of EndAs.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
10
|
Breuss M, Sultan T, James K, Rosti R, Scott E, Musaev D, Furia B, Reis A, Sticht H, Al-Owain M, Alkuraya F, Reuter M, Abou Jamra R, Trotta C, Gleeson J. Autosomal-Recessive Mutations in the tRNA Splicing Endonuclease Subunit TSEN15 Cause Pontocerebellar Hypoplasia and Progressive Microcephaly. Am J Hum Genet 2016; 99:228-35. [PMID: 27392077 DOI: 10.1016/j.ajhg.2016.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022] Open
Abstract
The tRNA splicing endonuclease is a highly evolutionarily conserved protein complex, involved in the cleavage of intron-containing tRNAs. In human it consists of the catalytic subunits TSEN2 and TSEN34, as well as the non-catalytic TSEN54 and TSEN15. Recessive mutations in the corresponding genes of the first three are known to cause pontocerebellar hypoplasia (PCH) types 2A-C, 4, and 5. Here, we report three homozygous TSEN15 variants that cause a milder version of PCH2. The affected individuals showed progressive microcephaly, delayed developmental milestones, intellectual disability, and, in two out of four cases, epilepsy. None, however, displayed the central visual failure seen in PCH case subjects where other subunits of the TSEN are mutated, and only one was affected by the extensive motor defects that are typical in other forms of PCH2. The three amino acid substitutions impacted the protein level of TSEN15 and the stoichiometry of the interacting subunits in different ways, but all resulted in an almost complete loss of in vitro tRNA cleavage activity. Taken together, our results demonstrate that mutations in any known subunit of the TSEN complex can cause PCH and progressive microcephaly, emphasizing the importance of its function during brain development.
Collapse
|
11
|
Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-Dosari MS, Alzahrani F, Hijazi H, Alshammari M, Aldahmesh MA, Salih MA, Faqeih E, Alhashem A, Bashiri FA, Al-Owain M, Kentab AY, Sogaty S, Al Tala S, Temsah MH, Tulbah M, Aljelaify RF, Alshahwan SA, Seidahmed MZ, Alhadid AA, Aldhalaan H, AlQallaf F, Kurdi W, Alfadhel M, Babay Z, Alsogheer M, Kaya N, Al-Hassnan ZN, Abdel-Salam GMH, Al-Sannaa N, Al Mutairi F, El Khashab HY, Bohlega S, Jia X, Nguyen HC, Hammami R, Adly N, Mohamed JY, Abdulwahab F, Ibrahim N, Naim EA, Al-Younes B, Meyer BF, Hashem M, Shaheen R, Xiong Y, Abouelhoda M, Aldeeri AA, Monies DM, Alkuraya FS. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep 2014; 10:148-61. [PMID: 25558065 DOI: 10.1016/j.celrep.2014.12.015] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 02/02/2023] Open
Abstract
Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS). We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function.
Collapse
Affiliation(s)
- Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Shamsa Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatema Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Hadia Hijazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Muneera Alshammari
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Aldahmesh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatrics, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Amal Alhashem
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Fahad A Bashiri
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Amal Y Kentab
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sameera Sogaty
- Department of Pediatrics, King Fahad General Hospital, Jeddah 23325, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt 62413, Saudi Arabia
| | - Mohamad-Hani Temsah
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics & Gynecology, King Faisal Specialist Hospital, Riyadh 11211, Saudi Arabia
| | - Rasha F Aljelaify
- Center of Excellence for Genomics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Saad A Alshahwan
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | | | - Adnan A Alhadid
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hesham Aldhalaan
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Fatema AlQallaf
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics & Gynecology, King Faisal Specialist Hospital, Riyadh 11211, Saudi Arabia
| | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh 14611, Saudi Arabia
| | - Zainab Babay
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alsogheer
- Department of Psychiatry, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Zuhair N Al-Hassnan
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo 12345, Egypt
| | - Nouriya Al-Sannaa
- Department of Pediatrics, Johns Hopkins Aramco Healthcare, Dhahran 34465, Saudi Arabia
| | - Fuad Al Mutairi
- Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh 14611, Saudi Arabia
| | - Heba Y El Khashab
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pediatrics, Children's Hospital, Ain Shams University, Cairo 01234, Egypt
| | - Saeed Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Xiaofei Jia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Rakad Hammami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Nouran Adly
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Jawahir Y Mohamed
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ewa A Naim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Banan Al-Younes
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Abdulrahman A Aldeeri
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dorota M Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia.
| |
Collapse
|
12
|
Fujishima K, Kanai A. tRNA gene diversity in the three domains of life. Front Genet 2014; 5:142. [PMID: 24904642 PMCID: PMC4033280 DOI: 10.3389/fgene.2014.00142] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA) is widely known for its key role in decoding mRNA into protein. Despite their necessity and relatively short nucleotide sequences, a large diversity of gene structures and RNA secondary structures of pre-tRNAs and mature tRNAs have recently been discovered in the three domains of life. Growing evidences of disrupted tRNA genes in the genomes of Archaea reveals unique gene structures such as, intron-containing tRNA, split tRNA, and permuted tRNA. Coding sequence for these tRNAs are either separated with introns, fragmented, or permuted at the genome level. Although evolutionary scenario behind the tRNA gene disruption is still unclear, diversity of tRNA structure seems to be co-evolved with their processing enzyme, so-called RNA splicing endonuclease. Metazoan mitochondrial tRNAs (mtRNAs) are known for their unique lack of either one or two arms from the typical tRNA cloverleaf structure, while still maintaining functionality. Recently identified nematode-specific V-arm containing tRNAs (nev-tRNAs) possess long variable arms that are specific to eukaryotic class II tRNASer and tRNALeu but also decode class I tRNA codons. Moreover, many tRNA-like sequences have been found in the genomes of different organisms and viruses. Thus, this review is aimed to cover the latest knowledge on tRNA gene diversity and further recapitulate the evolutionary and biological aspects that caused such uniqueness.
Collapse
Affiliation(s)
- Kosuke Fujishima
- NASA Ames Research Center Moffett Field, CA, USA ; Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| |
Collapse
|
13
|
Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 2012; 40:7016-45. [PMID: 22638584 PMCID: PMC3424549 DOI: 10.1093/nar/gks382] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA-intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods. Such efforts are complicated, because the superfamily exhibits extreme sequence and structural divergence. Using advanced homology detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses, we provide a comprehensive reclassification of proteins containing a PD-(D/E)XK domain. The PD-(D/E)XK phosphodiesterases span over 21,900 proteins, which can be classified into 121 groups of various families. Eleven of them, including DUF4420, DUF3883, DUF4263, COG5482, COG1395, Tsp45I, HaeII, Eco47II, ScaI, HpaII and Replic_Relax, are newly assigned to the PD-(D/E)XK superfamily. Some groups of PD-(D/E)XK proteins are present in all domains of life, whereas others occur within small numbers of organisms. We observed multiple horizontal gene transfers even between human pathogenic bacteria or from Prokaryota to Eukaryota. Uncommon domain arrangements greatly elaborate the PD-(D/E)XK world. These include domain architectures suggesting regulatory roles in Eukaryotes, like stress sensing and cell-cycle regulation. Our results may inspire further experimental studies aimed at identification of exact biological functions, specific substrates and molecular mechanisms of reactions performed by these highly diverse proteins.
Collapse
Affiliation(s)
- Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CENT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | |
Collapse
|
14
|
Structural basis for RNA recognition by a type II poly(A)-binding protein. Proc Natl Acad Sci U S A 2008; 105:15317-22. [PMID: 18824697 DOI: 10.1073/pnas.0801274105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identified a functional domain (XlePABP2-TRP) of Xenopus laevis embryonic type II poly(A)-binding protein (XlePABP2). The NMR structure of XlePABP2-TRP revealed that the protein is a homodimer formed by the antiparallel association of beta-strands from the single RNA recognition motif (RRM) domain of each subunit. In each subunit of the homodimer, the canonical RNA recognition site is occluded by a polyproline motif. Upon poly(A) binding, XlePABP2-TRP undergoes a dimer-monomer transition that removes the polyproline motif from the RNA recognition site and allows it to be replaced by the adenosine nucleotides of poly(A). Our results provide high-resolution structural information concerning type II PABPs and an example of a single RRM domain protein that transitions from a homodimer to a monomer upon RNA binding. These findings advance our understanding of RRM domain regulation, poly(A) recognition, and are relevant to understanding how type II PABPs function in mRNA processing and human disease.
Collapse
|
15
|
Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP. The dawn of dominance by the mature domain in tRNA splicing. Proc Natl Acad Sci U S A 2007; 104:12300-5. [PMID: 17636125 PMCID: PMC1941465 DOI: 10.1073/pnas.0705537104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relationship between enzyme architecture and substrate specificity among archaeal pre-tRNA splicing endonucleases has been investigated more deeply, by using biochemical assays and model building. The enzyme from Archeoglobus fulgidus (AF) is particularly interesting: it cleaves the bulge-helix-bulge target without requiring the mature tRNA domain, but, when the target is a bulge-helix-loop, the mature domain is required. A model of AF based on its electrostatic potential shows three polar patches interacting with the pre-tRNA substrate. A simple deletion mutant of the AF endonuclease lacking two of the three polar patches no longer cleaves the bulge-helix-loop substrate with or without the mature domain. This single deletion shows a possible path for the evolution of eukaryal splicing endonucleases from the archaeal enzyme.
Collapse
Affiliation(s)
- Giuseppe D. Tocchini-Valentini
- *Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Campus A, Buzzati-Traverso, Via Ramarini 32, Monterotondo Scalo, 00016 Rome, Italy; and
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Paolo Fruscoloni
- *Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Campus A, Buzzati-Traverso, Via Ramarini 32, Monterotondo Scalo, 00016 Rome, Italy; and
| | - Glauco P. Tocchini-Valentini
- *Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Campus A, Buzzati-Traverso, Via Ramarini 32, Monterotondo Scalo, 00016 Rome, Italy; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|