1
|
Gurav MJ, Manasa J, Sanji AS, Megalamani PH, Chachadi VB. Lectin-glycan interactions: a comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: a review. Glycoconj J 2024; 41:301-322. [PMID: 39218819 DOI: 10.1007/s10719-024-10161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review meticulously compiles data on an array of lectins and their interactions with different cancer types through specific glycans. Crucially, it establishes the link between aberrant glycosylation and cancer types. This repository of lectin-defined glycan signatures, assumes paramount importance in the realm of cancer and its dynamic nature. Cancer, known for its remarkable heterogeneity and individualized behaviour, can be better understood through these glycan signatures. The current review discusses the important lectins and their carbohydrate specificities, especially recognizing glycans of cancer origin. The review also addresses the key aspects of differentially expressed glycans on normal and cancerous cell surfaces. Specific cancer types highlighted in this review include breast cancer, colon cancer, glioblastoma, cervical cancer, lung cancer, liver cancer, and leukaemia. The glycan profiles unveiled through this review hold the key to tailor-made treatment and precise diagnostics. It opens up avenues to explore the potential of targeting glycosyltransferases and glycosidases linked with cancer advancement and metastasis. Armed with knowledge about specific glycan expressions, researchers can design targeted therapies to modulate glycan profiles, potentially hampering the advance of this relentless disease.
Collapse
Affiliation(s)
- Maruti J Gurav
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - J Manasa
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Ashwini S Sanji
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Prasanna H Megalamani
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Vishwanath B Chachadi
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India.
| |
Collapse
|
2
|
Simha N A, Patil SM, M K J, N C, Wong LS, Kijsomporn J, Raj R, Ramu R. From sugar binders to diabetes fighters: the lectin saga of antihyperglycemic activity through systematic review and meta-analysis. Front Pharmacol 2024; 15:1382876. [PMID: 39323638 PMCID: PMC11422237 DOI: 10.3389/fphar.2024.1382876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Lectins are carbohydrate-binding proteins that are extremely selective for sugar groups in the other molecules. As a result, they perform a variety of roles in biological processes involving cell, carbohydrate, and protein recognition at the cellular and molecular levels. Because lectins can bind to carbohydrates, they may play a role in determining the rate of carbohydrate digestion. They also bind to some proteins involved in diabetes mellitus (DM) pathophysiology. The present review aims to summarize the efficiency of lectins from different sources as potential antihyperglycemic agents. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were employed for the drafting. In this regard, published scientific articles on the effects of different lectins on blood glucose (BG), glucose tolerance, hormonal effects, carbohydrate-digesting enzymes, oxidative stress, and insulin production process were collected from reputed journals using electronic databases. Furthermore, the toxicity effects of lectins from different sources were collected. A specific keyword search was completed to collect numerous articles with unique experimental designs and significant results. This was followed by the selection of the requisite articles based on the criteria designed by the authors. Data extraction was based on the common research elements included in the articles. Results and Discussion Of 13 identified studies, 11 studies were considered after double screening based on the inclusion criteria. All 11 pharmacological investigations were considered for review. Subsequent studies reflected on the pharmacological properties of lectins on the levels of BG, oxidative stress, β-cell proliferation, insulin resistance, inhibition of carbohydrate digesting enzymes, body weight, food and water intake, lipid profile, and other parameters. This review highlights lectins as potential anti-diabetic agents. Conclusion However, due to limited research, systematic evaluation is recommended for their development and promotion as effective potential antihyperglycemic agents. The clinical efficacy and safety of lectins against diabetes mellitus must also be evaluated.
Collapse
Affiliation(s)
- Akshaya Simha N
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Jayanthi M K
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chaitra N
- Division of Medical Statistics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Ranjith Raj
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
3
|
John E, Chau MQ, Hoang CV, Chandrasekharan N, Bhaskar C, Ma LS. Fungal Cell Wall-Associated Effectors: Sensing, Integration, Suppression, and Protection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:196-210. [PMID: 37955547 DOI: 10.1094/mpmi-09-23-0142-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The cell wall (CW) of plant-interacting fungi, as the direct interface with host plants, plays a crucial role in fungal development. A number of secreted proteins are directly associated with the fungal CW, either through covalent or non-covalent interactions, and serve a range of important functions. In the context of plant-fungal interactions many are important for fungal development in the host environment and may therefore be considered fungal CW-associated effectors (CWAEs). Key CWAE functions include integrating chemical/physical signals to direct hyphal growth, interfering with plant immunity, and providing protection against plant defenses. In recent years, a diverse range of mechanisms have been reported that underpin their roles, with some CWAEs harboring conserved motifs or functional domains, while others are reported to have novel features. As such, the current understanding regarding fungal CWAEs is systematically presented here from the perspective of their biological functions in plant-fungal interactions. An overview of the fungal CW architecture and the mechanisms by which proteins are secreted, modified, and incorporated into the CW is first presented to provide context for their biological roles. Some CWAE functions are reported across a broad range of pathosystems or symbiotic/mutualistic associations. Prominent are the chitin interacting-effectors that facilitate fungal CW modification, protection, or suppression of host immune responses. However, several alternative functions are now reported and are presented and discussed. CWAEs can play diverse roles, some possibly unique to fungal lineages and others conserved across a broad range of plant-interacting fungi. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Evan John
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Minh-Quang Chau
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cuong V Hoang
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
| | | | - Chibbhi Bhaskar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
4
|
Kim S. Biochemical characterization and cytotoxicity of polylactosamine-extended N-glycans binding isolectins from the mushroom Hericium erinaceus. Int J Biol Macromol 2023; 226:1010-1020. [PMID: 36526067 DOI: 10.1016/j.ijbiomac.2022.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The mushroom Hericium erinaceus expresses isolectins with different glycan binding specificities; of these, the ricin B-like lectin HEL1 and HEL2 (HEL2a and HEL2b) can bind fucosylated N-glycans and core 1 O-glycans, respectively. However, other lectin-like protein-coding transcripts detected in the H. erinaceus transcriptome, named HEL3, remain to be characterized. Therefore, in this study, the expression levels of all these isolectins genes were compared to characterize the molecular and biochemical properties of these carbohydrate-binding proteins. Low expression genes encoding putative cytolysin proteins, HEL3a and HEL3b, were identified. Bioinformatics analyses revealed that these proteins shared highly homologous structures and carbohydrate-binding residues with other mushroom lectins. Further, their recombinant proteins, rHEL3a and rHEL3b showed an octamer composed of identical 17 kDa subunits under non-denaturing conditions and a slightly basic isoelectric point value of approximately 8.3. The hemagglutination activity of these isolectins was strongly inhibited by glycoproteins rather than free glycans. Interestingly, glycan-binding profiles showed that rHEL3 isolectins interacted with most polylactosamine (poly-LacNAc)-extended N-glycans with relatively low binding activity. Isothermal titration calorimetry also revealed that these recombinant lectins have different binding capacities toward N-glycan-containing glycoproteins. Further, treatment with different concentrations of rHEL3 lectins showed cytotoxic effects in K562, UACC62, and CHO model cell lines, which express poly-LacNAc glycans, confirmed by inhibition of proliferation. Overall, these biochemical properties indicate that rHEL3 isolectins may be used as unique lectins for detecting poly-LacNAc-extended glycans, which are known to be over-expressed in leukemia or metastatic melanoma cells, in cancer diagnostic assays and anti-cancer therapies.
Collapse
Affiliation(s)
- Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
5
|
Ganatra MB, Potapov V, Vainauskas S, Francis AZ, McClung CM, Ruse CI, Ong JL, Taron CH. A bi-specific lectin from the mushroom Boletopsis grisea and its application in glycoanalytical workflows. Sci Rep 2021; 11:160. [PMID: 33420304 PMCID: PMC7794217 DOI: 10.1038/s41598-020-80488-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/21/2020] [Indexed: 11/09/2022] Open
Abstract
The BLL lectin from the edible Japanese "Kurokawa" mushroom (Boletopsis leucomelaena) was previously reported to bind to N-glycans harboring terminal N-acetylglucosamine (GlcNAc) and to induce apoptosis in a leukemia cell line. However, its gene has not been reported. In this study, we used a transcriptomics-based workflow to identify a full-length transcript of a BLL functional ortholog (termed BGL) from Boletopsis grisea, a close North American relative of B. leucomelaena. The deduced amino acid sequence of BGL was an obvious member of fungal fruit body lectin family (Pfam PF07367), a highly conserved group of mushroom lectins with a preference for binding O-glycans harboring the Thomsen-Friedenreich antigen (TF-antigen; Galβ1,3GalNAc-α-) and having two ligand binding sites. Functional characterization of recombinant BGL using glycan microarray analysis and surface plasmon resonance confirmed its ability to bind both the TF-antigen and β-GlcNAc-terminated N-glycans. Structure-guided mutagenesis of BGL's two ligand binding clefts showed that one site is responsible for binding TF-antigen structures associated with O-glycans, whereas the second site specifically recognizes N-glycans with terminal β-GlcNAc. Additionally, the two sites show no evidence of allosteric communication. Finally, mutant BGL proteins having single functional bindings site were used to enrich GlcNAc-capped N-glycans or mucin type O-glycopeptides from complex samples in glycomics and glycoproteomics analytical workflows.
Collapse
Affiliation(s)
- Mehul B Ganatra
- New England Biolabs, Inc, 240 County Road, Ipswich, MA, 01938, USA
| | - Vladimir Potapov
- New England Biolabs, Inc, 240 County Road, Ipswich, MA, 01938, USA
| | | | | | | | - Cristian I Ruse
- New England Biolabs, Inc, 240 County Road, Ipswich, MA, 01938, USA
| | - Jennifer L Ong
- New England Biolabs, Inc, 240 County Road, Ipswich, MA, 01938, USA
| | | |
Collapse
|
6
|
Sclerotium rolfsii lectin induces opposite effects on normal PBMCs and leukemic Molt-4 cells by recognising TF antigen and its variants as receptors. Glycoconj J 2020; 37:251-261. [PMID: 31900725 DOI: 10.1007/s10719-019-09905-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023]
Abstract
Sclerotium rolfsii lectin (SRL) exerts apoptotic effect against various cancer cells and an antitumor activity on mice with colon and breast cancer xenografts. The current study aimed to explore its exquisite carbohydrate specificity on human peripheral blood mononuclear cells (PBMCs) and leukemic T-cells. SRL, showed strong binding (>98%) to resting/activated PBMCs, leukemic Molt-4 and Jurkat cell lines. The glycans mediated binding to these cells was effectively blocked by mucin and fetuin, exhibiting 97% and 94% inhibition respectively. SRL showed mitogenic stimulation of PBMCs at 10 μg/ml as determined by thymidine incorporation assay. In contrast, lectin induced a dose dependent growth inhibition of Molt-4 cells with 58% inhibition at 25 μg/ml. Many common membrane receptors in activated PBMCs, Molt 4 and Jurkat cells were identified by lectin blotting. However, membrane receptors that are recognized by SRL in normal resting PBMCs were totally different and are high molecular weight glycoproteins. Treatment of membrane receptors with glycosidases prior to lectin probing, revealed that fucosylated Thomsen-Friedenreich(TF) antigen glycans are increasingly expressed on transformed Molt-4 leukemic cells compared to other cells. The findings highlight the opposite effects of SRL on transformed and normal hematopoietic cells by recognizing different glycan-receptors. SRL has promising potential for diagnostics and therapeutic applications in leukaemia.
Collapse
|
7
|
Singh RS, Walia AK, Kennedy JF. Structural aspects and biomedical applications of microfungal lectins. Int J Biol Macromol 2019; 134:1097-1107. [DOI: 10.1016/j.ijbiomac.2019.05.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
|
8
|
Wawra S, Fesel P, Widmer H, Neumann U, Lahrmann U, Becker S, Hehemann JH, Langen G, Zuccaro A. FGB1 and WSC3 are in planta-induced β-glucan-binding fungal lectins with different functions. THE NEW PHYTOLOGIST 2019; 222:1493-1506. [PMID: 30688363 DOI: 10.1111/nph.15711] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
In the root endophyte Serendipita indica, several lectin-like members of the expanded multigene family of WSC proteins are transcriptionally induced in planta and are potentially involved in β-glucan remodeling at the fungal cell wall. Using biochemical and cytological approaches we show that one of these lectins, SiWSC3 with three WSC domains, is an integral fungal cell wall component that binds to long-chain β1-3-glucan but has no affinity for shorter β1-3- or β1-6-linked glucose oligomers. Comparative analysis with the previously identified β-glucan-binding lectin SiFGB1 demonstrated that whereas SiWSC3 does not require β1-6-linked glucose for efficient binding to branched β1-3-glucan, SiFGB1 does. In contrast to SiFGB1, the multivalent SiWSC3 lectin can efficiently agglutinate fungal cells and is additionally induced during fungus-fungus confrontation, suggesting different functions for these two β-glucan-binding lectins. Our results highlight the importance of the β-glucan cell wall component in plant-fungus interactions and the potential of β-glucan-binding lectins as specific detection tools for fungi in vivo.
Collapse
Affiliation(s)
- Stephan Wawra
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Philipp Fesel
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Heidi Widmer
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Ulla Neumann
- Central Microscopy (CeMic), Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Urs Lahrmann
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Stefan Becker
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
- Center for Marine Environmental Sciences, University of Bremen, MARUM, Bremen, 28359, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
- Center for Marine Environmental Sciences, University of Bremen, MARUM, Bremen, 28359, Germany
| | - Gregor Langen
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Alga Zuccaro
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
9
|
Kim S. Hericium erinaceus isolectins recognize mucin-type O-glycans as tumor-associated carbohydrate antigens on the surface of K562 human leukemia cells. Int J Biol Macromol 2018; 120:1093-1102. [DOI: 10.1016/j.ijbiomac.2018.08.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/26/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023]
|
10
|
Hegde P, Narasimhappagari J, Swamy BM, Inamdar SR. Efficacy studies of
Sclerotium rolfsii
lectin on breast cancer using NOD SCID mouse model. Chem Biol Drug Des 2018; 92:1488-1496. [DOI: 10.1111/cbdd.13314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/23/2018] [Accepted: 03/24/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Prajna Hegde
- Department of Studies in BiochemistryKarnatak University Dharwad India
| | | | - Bale M. Swamy
- Department of Studies in BiochemistryKarnatak University Dharwad India
| | | |
Collapse
|
11
|
Jančaříková G, Houser J, Dobeš P, Demo G, Hyršl P, Wimmerová M. Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity. PLoS Pathog 2017; 13:e1006564. [PMID: 28806750 PMCID: PMC5584973 DOI: 10.1371/journal.ppat.1006564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/05/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Photorhabdus asymbiotica is one of the three recognized species of the Photorhabdus genus, which consists of gram-negative bioluminescent bacteria belonging to the family Morganellaceae. These bacteria live in a symbiotic relationship with nematodes from the genus Heterorhabditis, together forming a complex that is highly pathogenic for insects. Unlike other Photorhabdus species, which are strictly entomopathogenic, P. asymbiotica is unique in its ability to act as an emerging human pathogen. Analysis of the P. asymbiotica genome identified a novel fucose-binding lectin designated PHL with a strong sequence similarity to the recently described P. luminescens lectin PLL. Recombinant PHL exhibited high affinity for fucosylated carbohydrates and the unusual disaccharide 3,6-O-Me2-Glcβ1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 from Mycobacterium leprae. Based on its crystal structure, PHL forms a seven-bladed β-propeller assembling into a homo-dimer with an inter-subunit disulfide bridge. Investigating complexes with different ligands revealed the existence of two sets of binding sites per monomer-the first type prefers l-fucose and its derivatives, whereas the second type can bind d-galactose. Based on the sequence analysis, PHL could contain up to twelve binding sites per monomer. PHL was shown to interact with all types of red blood cells and insect haemocytes. Interestingly, PHL inhibited the production of reactive oxygen species induced by zymosan A in human blood and antimicrobial activity both in human blood, serum and insect haemolymph. Concurrently, PHL increased the constitutive level of oxidants in the blood and induced melanisation in haemolymph. Our results suggest that PHL might play a crucial role in the interaction of P. asymbiotica with both human and insect hosts.
Collapse
Affiliation(s)
- Gita Jančaříková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Josef Houser
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Dobeš
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Hyršl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
12
|
Anupama S, Laha P, Sharma M, Pathak K, Bane S, Ingle AD, Gota V, Kalraiya RD, Yu LG, Rhodes JM, Swamy BM, Inamdar SR. Pharmacokinetics, biodistribution and antitumour effects of Sclerotium rolfsii lectin in mice. Oncol Rep 2017; 37:2803-2810. [PMID: 28394001 DOI: 10.3892/or.2017.5545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
Sclerotium rolfsii lectin (SRL) is a lectin isolated from the fungus Sclerotium rolfsii and has exquisite binding specificity towards the oncofetal Thomsen-Friedenreich antigen (TF-Ag; Galβ1-3GalNAcα-O-Ser/Thr) and its derivatives. Previous studies have shown that SRL inhibits the proliferation of human colon, breast and ovarian cancer cells in vitro and suppresses tumour growth in mice when introduced intratumourally. The present study assessed the effect of SRL on tumour growth when introduced intraperitoneally in BALB/c nude mice and investigated the pharmacokinetics and biodistribution of SRL in Swiss albino mice. When 9 doses of SRL (30 mg/kg body weight/mice) was administered to BALB/c nude mice bearing human colon cancer HT-29 xenografts, a substantial reduction in tumour size was observed. A 35.8% reduction in tumour size was noted in the treated animals after 17 days. SRL treatment also inhibited angiogenesis, and the tumours from the treated animals were observed to carry fewer blood vessels and express less angiogenesis marker protein CD31, than that from the control animals. Pharmacokinetics and biodistribution analysis revealed that SRL was detected in the serum after 1 h and its level peaked after 24 h. SRL was not detected in any of the organs apart from the kidney where a trace amount was detected after 24 h of SRL injection. No significant changes were observed in any of the biochemical parameters tested including SGOT, SGPT, LDH, CREAT and BUN in the SRL-treated mice compared to these levels in the controls. This suggests that SRL has good potential to be developed as a therapeutic agent for cancer treatment and warrant further investigations in vivo and subsequent clinical trials.
Collapse
Affiliation(s)
- S Anupama
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Preeti Laha
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Mamta Sharma
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Kamal Pathak
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Sanjay Bane
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Arvind D Ingle
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Vikram Gota
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Rajiv D Kalraiya
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Jonathan M Rhodes
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
13
|
Structure prediction and functional analysis of a non-permutated lectin from Dioclea grandiflora. Biochimie 2016; 131:54-67. [DOI: 10.1016/j.biochi.2016.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/19/2016] [Indexed: 01/22/2023]
|
14
|
Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol 2015; 100:91-111. [DOI: 10.1007/s00253-015-7075-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/04/2015] [Accepted: 10/11/2015] [Indexed: 01/26/2023]
|
15
|
Barkeer S, Guha N, Hothpet V, Saligrama Adavigowda D, Hegde P, Padmanaban A, Yu LG, Swamy BM, Inamdar SR. Molecular mechanism of anticancer effect of Sclerotium rolfsii lectin in HT29 cells involves differential expression of genes associated with multiple signaling pathways: A microarray analysis. Glycobiology 2015; 25:1375-91. [PMID: 26347523 DOI: 10.1093/glycob/cwv067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022] Open
Abstract
Sclerotium rolfsii lectin (SRL) is a lectin isolated from fungus S. rolfsii and has high binding specificity toward the oncofetal Thomsen-Friedenreich carbohydrate antigen (Galβ1-3GalNAc-α-O-Ser/Thr, T or TF), which is expressed in more than 90% of human cancers. Our previous studies have shown that binding of SRL to human colon, breast and ovarian cancer cells induces cell apoptosis in vitro and suppresses tumor growth in vivo. This study investigated the SRL-mediated cell signaling in human colon cancer HT29 cells by mRNA and miRNA microarrays. It was found that SRL treatment results in altered expression of several hundred molecules including mitogen-activated protein kinase (MAPK) and c-JUN-associated, apoptosis-associated and cell cycle and DNA replication-associated signaling molecules. Pathway analysis using GeneSpring 12.6.1 revealed that SRL treatment induces changes of MAPK and c-JUN-associated signaling pathways as early as 2 h while changes of cell cycle, DNA replication and apoptosis pathways were significantly affected only after 24 h. A significant change of cell miRNA expression was also observed after 12 h treatment of the cells with SRL. These changes were further validated by quantitative real time polymerase chain reaction and immunoblotting. This study thus suggests that the presence of SRL affects multiple signaling pathways in cancer cells with early effects on cell proliferation pathways associated with MAPK and c-JUN, followed by miRNA-associated cell activity and apoptosis. This provides insight information into the molecular mechanism of the anticancer activity of this fungal lectin.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Nilanjan Guha
- Agilent Technologies India Pvt. Ltd, Bangalore 560048, India
| | | | | | - Prajna Hegde
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | | | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
16
|
Peppa VI, Venkat H, Kantsadi AL, Inamdar SR, Bhat GG, Eligar S, Shivanand A, Chachadi VB, Satisha GJ, Swamy BM, Skamnaki VT, Zographos SE, Leonidas DD. Molecular Cloning, Carbohydrate Specificity and the Crystal Structure of Two Sclerotium rolfsii Lectin Variants. Molecules 2015; 20:10848-65. [PMID: 26076107 PMCID: PMC6272482 DOI: 10.3390/molecules200610848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 11/16/2022] Open
Abstract
SRL is a cell wall associated developmental-stage specific lectin secreted by Sclerotium rolfsii, a soil-born pathogenic fungus. SRL displays specificity for TF antigen (Galβ1→3GalNAc-α-Ser//Thr) expressed in all cancer types and has tumour suppressing effects in vivo. Considering the immense potential of SRL in cancer research, we have generated two variant gene constructs of SRL and expressed in E. coli to refine the sugar specificity and solubility by altering the surface charge. SSR1 and SSR2 are two different recombinant variants of SRL, both of which recognize TF antigen but only SSR1 binds to Tn antigen (GalNAcα-Ser/Thr). The glycan array analysis of the variants demonstrated that SSR1 recognizes TF antigen and their derivative with high affinity similar to SRL but showed highest affinity towards the sialylated Tn antigen, unlike SRL. The carbohydrate binding property of SSR2 remains unaltered compared to SRL. The crystal structures of the two variants were determined in free form and in complex with N-acetylglucosamine at 1.7 Å and 1.6 Å resolution, respectively. Structural analysis highlighted the structural basis of the fine carbohydrate specificity of the two SRL variants and results are in agreement with glycan array analysis.
Collapse
Affiliation(s)
- Vassiliki I Peppa
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Street, Larissa 41221, Greece.
| | - Hemalatha Venkat
- Department of Biochemistry, Kuvempu University, Shimoga, Karnataka 577451, India.
| | - Anastassia L Kantsadi
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Street, Larissa 41221, Greece.
| | - Shashikala R Inamdar
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Ganapati G Bhat
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Sachin Eligar
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Anupama Shivanand
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Vishwanath B Chachadi
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Gonchigar J Satisha
- Department of Biochemistry, Kuvempu University, Shimoga, Karnataka 577451, India.
| | - Bale M Swamy
- Department of Post Graduate Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Street, Larissa 41221, Greece.
| | - Spyridon E Zographos
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave, Athens 11635, Greece.
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Street, Larissa 41221, Greece.
| |
Collapse
|
17
|
Chamoun R, Samsatly J, Pakala SB, Cubeta MA, Jabaji S. Suppression subtractive hybridization and comparative expression of a pore-forming toxin and glycosyl hydrolase genes in Rhizoctonia solani during potato sprout infection. Mol Genet Genomics 2014; 290:877-900. [DOI: 10.1007/s00438-014-0962-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|
18
|
Savanur MA, Eligar SM, Pujari R, Chen C, Mahajan P, Borges A, Shastry P, Ingle A, Kalraiya RD, Swamy BM, Rhodes JM, Yu LG, Inamdar SR. Sclerotium rolfsii lectin induces stronger inhibition of proliferation in human breast cancer cells than normal human mammary epithelial cells by induction of cell apoptosis. PLoS One 2014; 9:e110107. [PMID: 25364905 PMCID: PMC4217719 DOI: 10.1371/journal.pone.0110107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/16/2014] [Indexed: 01/03/2023] Open
Abstract
Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent.
Collapse
Affiliation(s)
- Mohammed Azharuddin Savanur
- Department of Studies in Biochemistry, Karnatak University, Dharwad, India
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Sachin M. Eligar
- Department of Studies in Biochemistry, Karnatak University, Dharwad, India
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Radha Pujari
- National Centre for Cell Science, NCCS complex, Ganeshkhind, Pune, India
| | - Chen Chen
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Padma Shastry
- National Centre for Cell Science, NCCS complex, Ganeshkhind, Pune, India
| | - Arvind. Ingle
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumabi, India
| | - Rajiv D. Kalraiya
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumabi, India
| | - Bale M. Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad, India
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan M. Rhodes
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Shashikala R. Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad, India
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Sclerotium rolfsii lectin exerts insecticidal activity on Spodoptera litura larvae by binding to membrane proteins of midgut epithelial cells and triggering caspase-3-dependent apoptosis. Toxicon 2014; 78:47-57. [DOI: 10.1016/j.toxicon.2013.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 11/24/2022]
|
20
|
Abstract
Fungi are members of a large group of eukaryotic organisms that include yeasts and molds, as well as the most familiar member, mushrooms. Fungal lectins with unique specificity and structures have been discovered. In general, fungal lectins are classified into specific families based on their amino acid sequences and three-dimensional structures. In this chapter, we provide an overview of the approximately 80 types of mushroom and fungal lectins that have been isolated and studied to date. In particular, we have focused on ten fungal lectins (Agaricus bisporus, Agrocybe cylindracea, Aleuria aurantia, Aspergillus oryzae, Clitocybe nebularis, Marasmius oreades, Psathyrella velutina, Rhizopus stolonifer, Pholiota squarrosa, Polyporus squamosus), many of which are commercially available and their properties, sugar-binding specificities, structural grouping into families, and applications for biological research being described. The sialic acid-specific lectins (Agrocybe cylindracea and Polyporus squamosus) and fucose-specific lectins (Aleuria aurantia, Aspergillus oryzae, Rhizopus stolonifer, and Pholiota squarrosa) each showed potential for use in identifying sialic acid glycoconjugates and fucose glycoconjugates. Although not much is currently known about fungal lectins compared to animal and plant lectins, the knowledge accumulated thus far shows great promise for several applications in the fields of taxonomy, biomedicine, and molecular and cellular biology.
Collapse
Affiliation(s)
- Yuka Kobayashi
- J-Oil Mills Inc., 11, Kagetoricho, Totsuka-ku, Yokohama, Kanagawa, 245-0064, Japan,
| | | |
Collapse
|
21
|
Fungal lectins: structure, function and potential applications. Curr Opin Struct Biol 2013; 23:678-85. [DOI: 10.1016/j.sbi.2013.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/18/2013] [Accepted: 07/11/2013] [Indexed: 11/20/2022]
|
22
|
Structural investigation of a novel N-acetyl glucosamine binding chi-lectin which reveals evolutionary relationship with class III chitinases. PLoS One 2013; 8:e63779. [PMID: 23717482 PMCID: PMC3662789 DOI: 10.1371/journal.pone.0063779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/06/2013] [Indexed: 01/03/2023] Open
Abstract
The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases.
Collapse
|
23
|
Inamdar SR, Savanur MA, Eligar SM, Chachadi VB, Nagre NN, Chen C, Barclays M, Ingle A, Mahajan P, Borges A, Shastry P, Kalraiya RD, Swamy BM, Rhodes JM, Yu LG. The TF-antigen binding lectin from Sclerotium rolfsii inhibits growth of human colon cancer cells by inducing apoptosis in vitro and suppresses tumor growth in vivo. Glycobiology 2012; 22:1227-35. [PMID: 22653662 DOI: 10.1093/glycob/cws090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glycan array analysis of Sclerotium rolfsii lectin (SRL) revealed its exquisite binding specificity to the oncofetal Thomsen-Friedenreich (Galβ1-3GalNAcα-O-Ser/Thr, T or TF) antigen and its derivatives. This study shows that SRL strongly inhibits the growth of human colon cancer HT29 and DLD-1 cells by binding to cell surface glycans and induction of apoptosis through both the caspase-8 and -9 mediated signaling. SRL showed no or very weak binding to normal human colon tissues but strong binding to cancerous and metastatic tissues. Intratumor injection of SRL at subtoxic concentrations in NOD-SCID mice bearing HT29 xenografts resulted in total tumor regression in 9 days and no subsequent tumor recurrence. As the increased expression of TF-associated glycans is commonly seen in human cancers, SRL has the potential to be developed as a therapeutic agent for cancer.
Collapse
Affiliation(s)
- Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580 003, India.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xu X, Yan H, Chen J, Zhang X. Bioactive proteins from mushrooms. Biotechnol Adv 2011; 29:667-74. [DOI: 10.1016/j.biotechadv.2011.05.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/20/2011] [Accepted: 05/08/2011] [Indexed: 12/23/2022]
|
25
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
26
|
Arora P, Dilbaghi N, Chaudhury A. Opportunistic invasive fungal pathogen Macrophomina phaseolina prognosis from immunocompromised humans to potential mitogenic RBL with an exceptional and novel antitumor and cytotoxic effect. Eur J Clin Microbiol Infect Dis 2011; 31:101-7. [DOI: 10.1007/s10096-011-1275-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
|
27
|
Bleuler-Martínez S, Butschi A, Garbani M, Wälti MA, Wohlschlager T, Potthoff E, Sabotiĉ J, Pohleven J, Lüthy P, Hengartner MO, Aebi M, Künzler M. A lectin-mediated resistance of higher fungi against predators and parasites. Mol Ecol 2011; 20:3056-70. [PMID: 21486374 DOI: 10.1111/j.1365-294x.2011.05093.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fruiting body lectins are ubiquitous in higher fungi and characterized by being synthesized in the cytoplasm and up-regulated during sexual development. The function of these lectins is unclear. A lack of phenotype in sexual development upon inactivation of the respective genes argues against a function in this process. We tested a series of characterized fruiting body lectins from different fungi for toxicity towards the nematode Caenorhabditis elegans, the mosquito Aedes aegypti and the amoeba Acanthamoeba castellanii. Most of the fungal lectins were found to be toxic towards at least one of the three target organisms. By altering either the fungal lectin or the glycans of the target organisms, or by including soluble carbohydrate ligands as competitors, we demonstrate that the observed toxicity is dependent on the interaction between the fungal lectins and specific glycans in the target organisms. The toxicity was found to be dose-dependent such that low levels of lectin were no longer toxic but still led to food avoidance by C. elegans. Finally, we show, in an ecologically more relevant scenario, that challenging the vegetative mycelium of Coprinopsis cinerea with the fungal-feeding nematode Aphelenchus avenae induces the expression of the nematotoxic fruiting body lectins CGL1 and CGL2. Based on these findings, we propose that filamentous fungi possess an inducible resistance against predators and parasites mediated by lectins that are specific for glycans of these antagonists.
Collapse
Affiliation(s)
- S Bleuler-Martínez
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chachadi VB, Inamdar SR, Yu LG, Rhodes JM, Swamy BM. Exquisite binding specificity of Sclerotium rolfsii lectin toward TF-related O-linked mucin-type glycans. Glycoconj J 2011; 28:49-56. [DOI: 10.1007/s10719-011-9323-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/14/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
29
|
Gauto DF, Di Lella S, Estrin DA, Monaco HL, Martí MA. Structural basis for ligand recognition in a mushroom lectin: solvent structure as specificity predictor. Carbohydr Res 2011; 346:939-48. [PMID: 21453906 DOI: 10.1016/j.carres.2011.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/07/2011] [Accepted: 02/16/2011] [Indexed: 11/29/2022]
Abstract
Lectins are able to recognize specific carbohydrate structures through their carbohydrate recognition domain (CRD). The lectin from the mushroom Agaricus bisporus (ABL) has the remarkable ability of selectively recognizing the TF-antigen, composed of Galβ1-3GalNAc, Ser/Thr linked to proteins, specifically exposed in neoplastic tissues. Strikingly, the recently solved crystal structure of tetrameric ABL in the presence of TF-antigen and other carbohydrates showed that each monomer has two CRDs, each being able to bind specifically to different monosaccharides that differ only in the configuration of a single hydroxyl, like N-acetyl-d-galactosamine (GalNAc) and N-acetyl-d-glucosamine (GlcNAc). Understanding how lectin CRDs bind and discriminate mono and/or (poly)-saccharides is an important issue in glycobiology, with potential impact in the design of better and selective lectin inhibitors with potential therapeutic properties. In this work, and based on the unusual monosaccharide epimeric specificity of the ABL CRDs, we have performed molecular dynamics simulations of the natural (crystallographic) and inverted (changing GalNAc for GlcNAc and vice-versa) ABL-monosaccharide complexes in order to understand the selective ligand recognition properties of each CRD. We also performed a detailed analysis of the CRD local solvent structure, using previously developed methodology, and related it with the recognition mechanism. Our results provide a detailed picture of each ABL CRD specificity, allowing a better understanding of the carbohydrate selective recognition process in this particular lectin.
Collapse
Affiliation(s)
- Diego F Gauto
- Departamento de Química Inorgánica, Analítica, y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Ciudad de Buenos Aires, Argentina, Argentina
| | | | | | | | | |
Collapse
|
30
|
Bovi M, Carrizo ME, Capaldi S, Perduca M, Chiarelli LR, Galliano M, Monaco HL. Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms. Glycobiology 2011; 21:1000-9. [DOI: 10.1093/glycob/cwr012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
|
32
|
Purification and characterization of a mitogenic lectin from cephalosporium, a pathogenic fungus causing mycotic keratitis. Biochem Res Int 2010; 2010:854656. [PMID: 21188078 PMCID: PMC3008968 DOI: 10.1155/2010/854656] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/23/2010] [Indexed: 12/03/2022] Open
Abstract
Ophthalmic mycoses caused by infectious fungi are being recognized as a serious concern since they lead to total blindness. Cephalosporium is one amongst several opportunistic fungal species implicated in ophthalmic infections leading to mycotic keratitis. A mitogenic lectin has been purified from the mycelia of fungus Cephalosporium, isolated from the corneal smears of a keratitis patient. Cephalosporium lectin (CSL) is a tetramer with subunit mass of 14 kDa, agglutinates human A, B, and O erythrocytes, and exhibits high affinity for mucin compared to fetuin and asialofetuin but does not bind to simple sugars indicating its complex sugar specificity. CSL showed strong binding to normal
human peripheral blood mononuclear cells (PBMCs) to elicit mitogenic activity. The sugar specificity of the lectin and its interaction with PBMCs to exhibit mitogenic effect indicate its possible role in adhesion and infection process of Cephalosporium.
Collapse
|
33
|
A potent mitogenic lectin from the mycelia of a phytopathogenic fungus, Rhizoctonia bataticola, with complex sugar specificity and cytotoxic effect on human ovarian cancer cells. Glycoconj J 2010; 27:375-86. [DOI: 10.1007/s10719-010-9285-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
|
34
|
Bakrač B, Anderluh G. Molecular Mechanism of Sphingomyelin-Specific Membrane Binding and Pore Formation by Actinoporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-6327-7_9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Anderluh G, Lakey JH. Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 2008; 33:482-90. [PMID: 18778941 DOI: 10.1016/j.tibs.2008.07.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/22/2008] [Accepted: 07/24/2008] [Indexed: 01/30/2023]
Abstract
Membrane disruption can efficiently alter cellular function; indeed, pore-forming toxins (PFTs) are well known as important bacterial virulence factors. However, recent data have revealed that structures similar to those found in PFTs are found in membrane active proteins across disparate phyla. Many similarities can be identified only at the 3D-structural level. Of note, domains found in membrane-attack complex proteins of complement and perforin (MACPF) resemble cholesterol-dependent cytolysins from Gram-positive bacteria, and the Bcl family of apoptosis regulators share similar architectures with Escherichia coli pore-forming colicins. These and other correlations provide considerable help in understanding the structural requirements for membrane binding and pore formation.
Collapse
Affiliation(s)
- Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000, Ljubljana, Slovenia.
| | | |
Collapse
|
36
|
X-ray sequence ambiguities of Sclerotium rolfsii lectin resolved by mass spectrometry. Amino Acids 2007; 35:309-20. [DOI: 10.1007/s00726-007-0624-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/16/2007] [Indexed: 11/26/2022]
|