1
|
Li Y, Wang Y, Zhao L, Stenzel MH, Jiang Y. Metal ion interference therapy: metal-based nanomaterial-mediated mechanisms and strategies to boost intracellular "ion overload" for cancer treatment. MATERIALS HORIZONS 2024; 11:4275-4310. [PMID: 39007354 DOI: 10.1039/d4mh00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metal ion interference therapy (MIIT) has emerged as a promising approach in the field of nanomedicine for combatting cancer. With advancements in nanotechnology and tumor targeting-related strategies, sophisticated nanoplatforms have emerged to facilitate efficient MIIT in xenografted mouse models. However, the diverse range of metal ions and the intricacies of cellular metabolism have presented challenges in fully understanding this therapeutic approach, thereby impeding its progress. Thus, to address these issues, various amplification strategies focusing on ionic homeostasis and cancer cell metabolism have been devised to enhance MIIT efficacy. In this review, the remarkable progress in Fe, Cu, Ca, and Zn ion interference nanomedicines and understanding their intrinsic mechanism is summarized with particular emphasis on the types of amplification strategies employed to strengthen MIIT. The aim is to inspire an in-depth understanding of MIIT and provide guidance and ideas for the construction of more powerful nanoplatforms. Finally, the related challenges and prospects of this emerging treatment are discussed to pave the way for the next generation of cancer treatments and achieve the desired efficacy in patients.
Collapse
Affiliation(s)
- Yutang Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Yandong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Li Zhao
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| |
Collapse
|
2
|
Jones BC, Pohlmann PR, Clarke R, Sengupta S. Treatment against glucose-dependent cancers through metabolic PFKFB3 targeting of glycolytic flux. Cancer Metastasis Rev 2022; 41:447-458. [PMID: 35419769 DOI: 10.1007/s10555-022-10027-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022]
Abstract
Reprogrammed metabolism and high energy demand are well-established properties of cancer cells that enable tumor growth. Glycolysis is a primary metabolic pathway that supplies this increased energy demand, leading to a high rate of glycolytic flux and a greater dependence on glucose in tumor cells. Finding safe and effective means to control glycolytic flux and curb cancer cell proliferation has gained increasing interest in recent years. A critical step in glycolysis is controlled by the enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which converts fructose 6-phosphate (F6P) to fructose 2,6-bisphosphate (F2,6BP). F2,6BP allosterically activates the rate-limiting step of glycolysis catalyzed by PFK1 enzyme. PFKFB3 is often overexpressed in many human cancers including pancreatic, colon, prostate, and breast cancer. Hence, PFKFB3 has gained increased interest as a compelling therapeutic target. In this review, we summarize and discuss the current knowledge of PFKFB3 functions, its role in cellular pathways and cancer development, its transcriptional and post-translational activity regulation, and the multiple pharmacologic inhibitors that have been used to block PFKFB3 activity in cancer cells. While much remains to be learned, PFKFB3 continues to hold great promise as an important therapeutic target either as a single agent or in combination with current interventions for breast and other cancers.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Paula R Pohlmann
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1354, Houston, TX, 77030, USA
| | - Robert Clarke
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Surojeet Sengupta
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
3
|
Alvarez R, Mandal D, Chittiboina P. Canonical and Non-Canonical Roles of PFKFB3 in Brain Tumors. Cells 2021; 10:cells10112913. [PMID: 34831136 PMCID: PMC8616071 DOI: 10.3390/cells10112913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
PFKFB3 is a bifunctional enzyme that modulates and maintains the intracellular concentrations of fructose-2,6-bisphosphate (F2,6-P2), essentially controlling the rate of glycolysis. PFKFB3 is a known activator of glycolytic rewiring in neoplastic cells, including central nervous system (CNS) neoplastic cells. The pathologic regulation of PFKFB3 is invoked via various microenvironmental stimuli and oncogenic signals. Hypoxia is a primary inducer of PFKFB3 transcription via HIF-1alpha. In addition, translational modifications of PFKFB3 are driven by various intracellular signaling pathways that allow PFKFB3 to respond to varying stimuli. PFKFB3 synthesizes F2,6P2 through the phosphorylation of F6P with a donated PO4 group from ATP and has the highest kinase activity of all PFKFB isoenzymes. The intracellular concentration of F2,6P2 in cancers is maintained primarily by PFKFB3 allowing cancer cells to evade glycolytic suppression. PFKFB3 is a primary enzyme responsible for glycolytic tumor metabolic reprogramming. PFKFB3 protein levels are significantly higher in high-grade glioma than in non-pathologic brain tissue or lower grade gliomas, but without relative upregulation of transcript levels. High PFKFB3 expression is linked to poor survival in brain tumors. Solitary or concomitant PFKFB3 inhibition has additionally shown great potential in restoring chemosensitivity and radiosensitivity in treatment-resistant brain tumors. An improved understanding of canonical and non-canonical functions of PFKFB3 could allow for the development of effective combinatorial targeted therapies for brain tumors.
Collapse
Affiliation(s)
- Reinier Alvarez
- Department of Neurological Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA;
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
- Correspondence:
| |
Collapse
|
4
|
Xu Y, Guo Y, Chen L, Ni D, Hu P, Shi J. Tumor chemical suffocation therapy by dual respiratory inhibitions. Chem Sci 2021; 12:7763-7769. [PMID: 34168829 PMCID: PMC8188586 DOI: 10.1039/d1sc00929j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
The extraordinarily rapid growth of malignant tumors depends heavily on the glucose metabolism by the pathways of glycolysis and mitochondrial oxidative phosphorylation to generate adenosine 5'-triphosphate (ATP) for maintaining cell proliferation and tumor growth. This study reports a tumor chemical suffocation therapeutic strategy by concurrently suppressing both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) via the co-deliveries of EDTA and rotenone into a glutathione (GSH)-overexpressed tumor microenvironment. EDTA is to block the glycolytic pathway through inhibiting the activity of glycolytic enzymes via the chelation of magnesium ion, a co-worker of glycolytic enzymes, despite the presence of Ca2+. Meanwhile rotenone is to inhibit the mitochondrial OXPHOS. This work provides a novel tumor suffocation strategy by the co-deliveries of glucose metabolism inhibitors, especially by de-functioning glycolytic enzymes via eliminating their co-worker magnesium.
Collapse
Affiliation(s)
- Yingying Xu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences 1295 Ding-xi Road Shanghai 200050 P. R. China
- School of Physical Science and Technology, ShanghaiTech University 393 Middle Hua-xia Road Shanghai 201210 P. R. China
| | - Yuedong Guo
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences 1295 Ding-xi Road Shanghai 200050 P. R. China
| | - Lei Chen
- Department of Chemistry, Fudan University 220 Han-dan Road Shanghai 200433 P. R. China
| | - Dalong Ni
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences 1295 Ding-xi Road Shanghai 200050 P. R. China
| | - Ping Hu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences 1295 Ding-xi Road Shanghai 200050 P. R. China
| | - Jianlin Shi
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences 1295 Ding-xi Road Shanghai 200050 P. R. China
- Innovative Center of Medicine, Shanghai Tenth People's Hospital 38 Yun-xin Road Shanghai 200435 P. R. China
| |
Collapse
|
5
|
PFKFB3 inhibitors as potential anticancer agents: Mechanisms of action, current developments, and structure-activity relationships. Eur J Med Chem 2020; 203:112612. [PMID: 32679452 DOI: 10.1016/j.ejmech.2020.112612] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Cancer cells adopt aerobic glycolysis as the major source of energy and biomass production for fast cell proliferation. The bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), plays a crucial role in the regulation of glycolysis by controlling the steady-state cytoplasmic levels of fructose-2,6-bisphosphate (F2,6BP), which is the most potent allosteric activator of 6-phosphofructo-1-kinase (PFK-1), a key rate-limiting enzyme of glycolysis. Therefore, selective inhibition of PFKFB3 has gained substantial interest as an attractive strategy for cancer therapy. In recent years, numerous class PFKFB3 inhibitors have been disclosed, and emerging trends such as the availability of PFKFB3 crystal structures, structure-based screening strategies and diverse functional assays are improving optimization and development of original leads. Herein, we review the structure and function of PFKFB3 as well as the representative small-molecule inhibitors, in particular emphasis on their chemical structures, pharmacological properties, selectivity, binding modes and structure-activity relationships (SARs).
Collapse
|
6
|
Macut H, Hu X, Tarantino D, Gilardoni E, Clerici F, Regazzoni L, Contini A, Pellegrino S, Luisa Gelmi M. Tuning PFKFB3 Bisphosphatase Activity Through Allosteric Interference. Sci Rep 2019; 9:20333. [PMID: 31889092 PMCID: PMC6937325 DOI: 10.1038/s41598-019-56708-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/28/2019] [Indexed: 12/05/2022] Open
Abstract
The human inducible phospho-fructokinase bisphosphatase isoform 3, PFKFB3, is a crucial regulatory node in the cellular metabolism. The enzyme is an important modulator regulating the intracellular fructose-2,6-bisphosphate level. PFKFB3 is a bifunctional enzyme with an exceptionally high kinase to phosphatase ratio around 740:1. Its kinase activity can be directly inhibited by small molecules acting directly on the kinase active site. On the other hand, here we propose an innovative and indirect strategy for the modulation of PFKFB3 activity, achieved through allosteric bisphosphatase activation. A library of small peptides targeting an allosteric site was discovered and synthesized. The binding affinity was evaluated by microscale thermophoresis (MST). Furthermore, a LC-MS/MS analytical method for assessing the bisphosphatase activity of PFKFB3 was developed. The new method was applied for measuring the activation on bisphosphatase activity with the PFKFB3-binding peptides. The molecular mechanical connection between the newly discovered allosteric site to the bisphosphatase activity was also investigated using both experimental and computational methods.
Collapse
Affiliation(s)
- Helena Macut
- DISFARM- Department of Pharmaceutical sciences, Via Mangiagalli 25, 20133, Milan, Italy
| | - Xiao Hu
- DISFARM- Department of Pharmaceutical sciences, Via Mangiagalli 25, 20133, Milan, Italy
| | - Delia Tarantino
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Ettore Gilardoni
- DISFARM- Department of Pharmaceutical sciences, Via Mangiagalli 25, 20133, Milan, Italy
| | - Francesca Clerici
- DISFARM- Department of Pharmaceutical sciences, Via Mangiagalli 25, 20133, Milan, Italy
| | - Luca Regazzoni
- DISFARM- Department of Pharmaceutical sciences, Via Mangiagalli 25, 20133, Milan, Italy
| | - Alessandro Contini
- DISFARM- Department of Pharmaceutical sciences, Via Mangiagalli 25, 20133, Milan, Italy.
| | - Sara Pellegrino
- DISFARM- Department of Pharmaceutical sciences, Via Mangiagalli 25, 20133, Milan, Italy.
| | - Maria Luisa Gelmi
- DISFARM- Department of Pharmaceutical sciences, Via Mangiagalli 25, 20133, Milan, Italy
| |
Collapse
|
7
|
Boutard N, Białas A, Sabiniarz A, Guzik P, Banaszak K, Biela A, Bień M, Buda A, Bugaj B, Cieluch E, Cierpich A, Dudek Ł, Eggenweiler H, Fogt J, Gaik M, Gondela A, Jakubiec K, Jurzak M, Kitlińska A, Kowalczyk P, Kujawa M, Kwiecińska K, Leś M, Lindemann R, Maciuszek M, Mikulski M, Niedziejko P, Obara A, Pawlik H, Rzymski T, Sieprawska‐Lupa M, Sowińska M, Szeremeta‐Spisak J, Stachowicz A, Tomczyk MM, Wiklik K, Włoszczak Ł, Ziemiańska S, Zarębski A, Brzózka K, Nowak M, Fabritius C. Discovery and Structure–Activity Relationships of
N
‐Aryl 6‐Aminoquinoxalines as Potent PFKFB3 Kinase Inhibitors. ChemMedChem 2018; 14:169-181. [DOI: 10.1002/cmdc.201800569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/13/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | - Paweł Guzik
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
| | | | - Artur Biela
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
| | - Marcin Bień
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
- Current address: Almac Group 20 Seagoe Industrial Estate Craigavon BT63 5QD UK
| | - Anna Buda
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
| | | | | | - Anna Cierpich
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
- Current address: Grupa Azoty S.A. Kwiatkowskiego 8 33-100 Tarnów Poland
| | - Łukasz Dudek
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
| | | | - Joanna Fogt
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
| | - Monika Gaik
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
- Current address: Max Planck Research Group at the Małopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | | | | | - Mirek Jurzak
- Discovery Pharmacology, Merck Biopharma Merck KGaA Frankfurter Straße 250 64293 Darmstadt Germany
| | | | | | | | - Katarzyna Kwiecińska
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
- Current address: Captor Therapeutics Duńska 11 54-427 Wrocław Poland
| | - Marcin Leś
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
| | - Ralph Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma Merck KGaA Frankfurter Straße 250 64293 Darmstadt Germany
| | - Monika Maciuszek
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
- Current address: LifeArc Accelerator Building, Open Innovation Campus Stevenage SG1 2FX UK
| | | | | | - Alicja Obara
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
| | | | | | | | | | | | | | - Mateusz M. Tomczyk
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
- Current address: Katedra Chemii Organicznej Bioorganicznej I Biotechnologii Ul. B. Krzywoustego 4, P., 18/N1 44-100 Gliwice Poland
| | | | - Łukasz Włoszczak
- Selvita S.A. Bobrzyńskiego 14 30-348 Kraków Poland
- Current address: Grupa Adamed Pieńków 149 05-152 Czosnów Poland
| | | | | | | | | | | |
Collapse
|
8
|
Crochet RB, Kim JD, Lee H, Yim YS, Kim SG, Neau D, Lee YH. Crystal structure of heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) and the inhibitory influence of citrate on substrate binding. Proteins 2016; 85:117-124. [PMID: 27802586 DOI: 10.1002/prot.25204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/23/2016] [Accepted: 10/26/2016] [Indexed: 11/09/2022]
Abstract
The heart-specific isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) is an important regulator of glycolytic flux in cardiac cells. Here, we present the crystal structures of two PFKFB2 orthologues, human and bovine, at resolutions of 2.0 and 1.8 Å, respectively. Citrate, a TCA cycle intermediate and well-known inhibitor of PFKFB2, co-crystallized in the 2-kinase domains of both orthologues, occupying the fructose-6-phosphate binding-site and extending into the γ-phosphate binding pocket of ATP. This steric and electrostatic occlusion of the γ-phosphate site by citrate proved highly consequential to the binding of co-complexed ATP analogues. The bovine structure, which co-crystallized with ADP, closely resembled the overall structure of other PFKFB isoforms, with ADP mimicking the catalytic binding mode of ATP. The human structure, on the other hand, co-complexed with AMPPNP, which, unlike ADP, contains a γ-phosphate. The presence of this γ-phosphate made adoption of the catalytic ATP binding mode impossible for AMPPNP, forcing the analogue to bind atypically with concomitant conformational changes to the ATP binding-pocket. Inhibition kinetics were used to validate the structural observations, confirming citrate's inhibition mechanism as competitive for F6P and noncompetitive for ATP. Together, these structural and kinetic data establish a molecular basis for citrate's negative feed-back loop of the glycolytic pathway via PFKFB2. Proteins 2016; 85:117-124. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert B Crochet
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Jeong-Do Kim
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Herie Lee
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Young-Sun Yim
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Song-Gun Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - David Neau
- NE-CAT, Cornell University, Argonne, Illinois, 60439
| | - Yong-Hwan Lee
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| |
Collapse
|
9
|
Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun 2014; 5:3480. [PMID: 24633012 PMCID: PMC3959213 DOI: 10.1038/ncomms4480] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/20/2014] [Indexed: 12/28/2022] Open
Abstract
Haem oxygenase (HO)-1/carbon monoxide (CO) protects cancer cells from oxidative stress, but the gas-responsive signalling mechanisms remain unknown. Here we show using metabolomics that CO-sensitive methylation of PFKFB3, an enzyme producing fructose 2,6-bisphosphate (F-2,6-BP), serves as a switch to activate phosphofructokinase-1, a rate-limiting glycolytic enzyme. In human leukaemia U937 cells, PFKFB3 is asymmetrically di-methylated at R131 and R134 through modification by protein arginine methyltransferase 1. HO-1 induction or CO results in reduced methylation of PFKFB3 in varied cancer cells to suppress F-2,6-BP, shifting glucose utilization from glycolysis toward the pentose phosphate pathway. Loss of PFKFB3 methylation depends on the inhibitory effects of CO on haem-containing cystathionine β-synthase (CBS). CBS modulates remethylation metabolism, and increases NADPH to supply reduced glutathione, protecting cells from oxidative stress and anti-cancer reagents. Once the methylation of PFKFB3 is reduced, the protein undergoes polyubiquitination and is degraded in the proteasome. These results suggest that the CO/CBS-dependent regulation of PFKFB3 methylation determines directional glucose utilization to ensure resistance against oxidative stress for cancer cell survival. Haem oxygenase 1 produces carbon monoxide and this byproduct is known to alter cellular signalling. Here, the authors show that carbon monoxide alters the methylation of PFKFB3 in cancer cells resulting in deregulated cellular metabolism and the shunting of glucose into the pentose phosphate pathway.
Collapse
|
10
|
|
11
|
Pyrkov TV, Sevostyanova IA, Schmalhausen EV, Shkoporov AN, Vinnik AA, Muronetz VI, Severin FF, Fedichev PO. Structure-Based Design of Small-Molecule Ligands of Phosphofructokinase-2 Activating or Inhibiting Glycolysis. ChemMedChem 2013; 8:1322-9. [DOI: 10.1002/cmdc.201300154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Indexed: 12/25/2022]
|
12
|
Cavalier MC, Kim SG, Neau D, Lee YH. Molecular basis of the fructose-2,6-bisphosphatase reaction of PFKFB3: transition state and the C-terminal function. Proteins 2012; 80:1143-53. [PMID: 22275052 DOI: 10.1002/prot.24015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 10/30/2011] [Accepted: 12/07/2011] [Indexed: 11/08/2022]
Abstract
The molecular basis of fructose-2,6-bisphosphatase (F-2,6-P(2)ase) of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) was investigated using the crystal structures of the human inducible form (PFKFB3) in a phospho-enzyme intermediate state (PFKFB3-P•F-6-P), in a transition state-analogous complex (PFKFB3•AlF(4)), and in a complex with pyrophosphate (PFKFB3•PP(i)) at resolutions of 2.45, 2.2, and 2.3 Å, respectively. Trapping the PFKFB3-P•F-6-P intermediate was achieved by flash cooling the crystal during the reaction, and the PFKFB3•AlF(4) and PFKFB3•PP(i) complexes were obtained by soaking. The PFKFB3•AlF(4) and PFKFB3•PP(i) complexes resulted in removing F-6-P from the catalytic pocket. With these structures, the structures of the Michaelis complex and the transition state were extrapolated. For both the PFKFB3-P formation and break down, the phosphoryl donor and the acceptor are located within ~5.1 Å, and the pivotal point 2-P is on the same line, suggesting an "in-line" transfer with a direct inversion of phosphate configuration. The geometry suggests that NE2 of His253 undergoes a nucleophilic attack to form a covalent N-P bond, breaking the 2O-P bond in the substrate. The resulting high reactivity of the leaving group, 2O of F-6-P, is neutralized by a proton donated by Glu322. Negative charges on the equatorial oxygen of the transient bipyramidal phosphorane formed during the transfer are stabilized by Arg252, His387, and Asn259. The C-terminal domain (residues 440-446) was rearranged in PFKFB3•PP(i), implying that this domain plays a critical role in binding of substrate to and release of product from the F-2,6-P(2) ase catalytic pocket. These findings provide a new insight into the understanding of the phosphoryl transfer reaction.
Collapse
Affiliation(s)
- Michael C Cavalier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
13
|
Seo M, Kim JD, Neau D, Sehgal I, Lee YH. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS One 2011; 6:e24179. [PMID: 21957443 PMCID: PMC3177832 DOI: 10.1371/journal.pone.0024179] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/02/2011] [Indexed: 01/03/2023] Open
Abstract
Cancer cells adopt glycolysis as the major source of metabolic energy production for fast cell growth. The HIF-1-induced PFKFB3 plays a key role in this adaptation by elevating the concentration of Fru-2,6-BP, the most potent glycolysis stimulator. As this metabolic conversion has been suggested to be a hallmark of cancer, PFKFB3 has emerged as a novel target for cancer chemotherapy. Here, we report that a small molecular inhibitor, N4A, was identified as an initial lead compound for PFKFB3 inhibitor with therapeutic potential. In an attempt to improve its potency, we determined the crystal structure of the PFKFB3•N4A complex to 2.4 Å resolution and, exploiting the resulting molecular information, attained the more potent YN1. When tested on cultured cancer cells, both N4A and YN1 inhibited PFKFB3, suppressing the Fru-2,6-BP level, which in turn suppressed glycolysis and, ultimately, led to cell death. This study validates PFKFB3 as a target for new cancer therapies and provides a framework for future development efforts.
Collapse
Affiliation(s)
- Minsuh Seo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | | | | | | | | |
Collapse
|
14
|
Investigating combinatorial approaches in virtual screening on human inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3): a case study for small molecule kinases. Anal Biochem 2011; 418:143-8. [PMID: 21771574 DOI: 10.1016/j.ab.2011.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 02/04/2023]
Abstract
Efforts toward improving the predictiveness in tier-based approaches to virtual screening (VS) have mainly focused on protein kinases. Despite their significance as drug targets, small molecule kinases have been rarely tested with these approaches. In this paper, we investigate the efficacy of a pharmacophore screening-combined structure-based docking approach on the human inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, an emerging target for cancer chemotherapy. Six out of a total 1364 compounds from NCI's Diversity Set II were selected as true actives via throughput screening. Using a database constructed from these compounds, five programs were tested for structure-based docking (SBD) performance, the MOE of which showed the highest enrichments and second highest screening rates. Separately, using the same database, pharmacophore screening was performed, reducing 1364 compounds to 287 with no loss in true actives, yielding an enrichment of 4.75. When SBD was retested with the pharmacophore filtered database, 4 of the 5 SBD programs showed significant improvements to enrichment rates at only 2.5% of the database, with a 7-fold decrease in an average VS time. Our results altogether suggest that combinatorial approaches of VS technologies are easily applicable to small molecule kinases and, moreover, that such methods can decrease the variability associated with single-method SBD approaches.
Collapse
|