1
|
Hao N, Donnelly AJ, Dodd IB, Shearwin KE. When push comes to shove - RNA polymerase and DNA-bound protein roadblocks. Biophys Rev 2023; 15:355-366. [PMID: 37396453 PMCID: PMC10310618 DOI: 10.1007/s12551-023-01064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
In recent years, transcriptional roadblocking has emerged as a crucial regulatory mechanism in gene expression, whereby other DNA-bound obstacles can block the progression of transcribing RNA polymerase (RNAP), leading to RNAP pausing and ultimately dissociation from the DNA template. In this review, we discuss the mechanisms by which transcriptional roadblocks can impede RNAP progression, as well as how RNAP can overcome these obstacles to continue transcription. We examine different DNA-binding proteins involved in transcriptional roadblocking and their biophysical properties that determine their effectiveness in blocking RNAP progression. The catalytically dead CRISPR-Cas (dCas) protein is used as an example of an engineered programmable roadblock, and the current literature in understanding the polarity of dCas roadblocking is also discussed. Finally, we delve into a stochastic model of transcriptional roadblocking and highlight the importance of transcription factor binding kinetics and its resistance to dislodgement by an elongating RNAP in determining the strength of a roadblock.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Alana J. Donnelly
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Ian B. Dodd
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Keith E. Shearwin
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
2
|
Lu Y, Voros Z, Borjas G, Hendrickson C, Shearwin K, Dunlap D, Finzi L. RNA polymerase efficiently transcribes DNA-scaffolded, cooperative bacteriophage repressor complexes. FEBS Lett 2022; 596:1994-2006. [PMID: 35819073 PMCID: PMC9491066 DOI: 10.1002/1873-3468.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/07/2022]
Abstract
DNA can act as a scaffold for the cooperative binding of protein oligomers. For example, the phage 186 CI repressor forms a wheel of seven dimers wrapped in DNA with specific binding sites, while phage λ CI repressor dimers bind to two well-separated sets of operators, forming a DNA loop. Atomic force microscopy was used to measure transcription elongation by E. coli RNA polymerase through these protein complexes. 186 CI, or λ CI, bound along unlooped DNA negligibly interfered with transcription by RNAP. Wrapped and looped topologies induced by these scaffolded, cooperatively bound repressor oligomers did not form significantly better roadblocks to transcription. Thus, despite binding with high affinity, these repressors are not effective roadblocks to transcription.
Collapse
Affiliation(s)
- Yue Lu
- Physics Department, Emory University, Atlanta, GA, USA
| | | | | | | | - Keith Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - David Dunlap
- Physics Department, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Abstract
Determining whether and how a gene is transcribed are two of the central processes of life. The conceptual basis for understanding such gene regulation arose from pioneering biophysical studies in eubacteria. However, eukaryotic genomes exhibit vastly greater complexity, which raises questions not addressed by this bacterial paradigm. First, how is information integrated from many widely separated binding sites to determine how a gene is transcribed? Second, does the presence of multiple energy-expending mechanisms, which are absent from eubacterial genomes, indicate that eukaryotes are capable of improved forms of genetic information processing? An updated biophysical foundation is needed to answer such questions. We describe the linear framework, a graph-based approach to Markov processes, and show that it can accommodate many previous studies in the field. Under the assumption of thermodynamic equilibrium, we introduce a language of higher-order cooperativities and show how it can rigorously quantify gene regulatory properties suggested by experiment. We point out that fundamental limits to information processing arise at thermodynamic equilibrium and can only be bypassed through energy expenditure. Finally, we outline some of the mathematical challenges that must be overcome to construct an improved biophysical understanding of gene regulation.
Collapse
Affiliation(s)
- Felix Wong
- Institute for Medical Engineering & Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
4
|
Hao N, Crooks MT, Palmer AC, Dodd IB, Shearwin KE. RNA polymerase pausing at a protein roadblock can enhance transcriptional interference by promoter occlusion. FEBS Lett 2019; 593:903-917. [PMID: 30892685 PMCID: PMC6593788 DOI: 10.1002/1873-3468.13365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Convergent promoters exert transcriptional interference (TI) by several mechanisms including promoter occlusion, where elongating RNA polymerases (RNAPs) block access to a promoter. Here, we tested whether pausing of RNAPs by obstructive DNA‐bound proteins can enhance TI by promoter occlusion. Using the Lac repressor as a ‘roadblock’ to induce pausing over a target promoter, we found only a small increase in TI, with mathematical modelling suggesting that rapid termination of the stalled RNAP was limiting the occlusion effect. As predicted, the roadblock‐enhanced occlusion was significantly increased in the absence of the Mfd terminator protein. Thus, protein roadblocking of RNAP may cause pause‐enhanced occlusion throughout genomes, and the removal of stalled RNAP may be needed to minimize unwanted TI.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, Australia
| | - Michael T Crooks
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Adam C Palmer
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
Hao N, Palmer AC, Dodd IB, Shearwin KE. Directing traffic on DNA-How transcription factors relieve or induce transcriptional interference. Transcription 2017; 8:120-125. [PMID: 28129043 PMCID: PMC5423467 DOI: 10.1080/21541264.2017.1285851] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.
Collapse
Affiliation(s)
- Nan Hao
- a Department of Molecular and Cellular Biology , School of Biological Sciences, University of Adelaide , Adelaide , SA , Australia
| | - Adam C Palmer
- b Department of Systems Biology , Harvard Medical School , Boston , MA , USA
| | - Ian B Dodd
- a Department of Molecular and Cellular Biology , School of Biological Sciences, University of Adelaide , Adelaide , SA , Australia
| | - Keith E Shearwin
- a Department of Molecular and Cellular Biology , School of Biological Sciences, University of Adelaide , Adelaide , SA , Australia
| |
Collapse
|
6
|
Hao N, Palmer AC, Ahlgren-Berg A, Shearwin KE, Dodd IB. The role of repressor kinetics in relief of transcriptional interference between convergent promoters. Nucleic Acids Res 2016; 44:6625-38. [PMID: 27378773 PMCID: PMC5001618 DOI: 10.1093/nar/gkw600] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 06/22/2016] [Indexed: 01/09/2023] Open
Abstract
Transcriptional interference (TI), where transcription from a promoter is inhibited by the activity of other promoters in its vicinity on the same DNA, enables transcription factors to regulate a target promoter indirectly, inducing or relieving TI by controlling the interfering promoter. For convergent promoters, stochastic simulations indicate that relief of TI can be inhibited if the repressor at the interfering promoter has slow binding kinetics, making it either sensitive to frequent dislodgement by elongating RNA polymerases (RNAPs) from the target promoter, or able to be a strong roadblock to these RNAPs. In vivo measurements of relief of TI by CI or Cro repressors in the bacteriophage λ PR-PRE system show strong relief of TI and a lack of dislodgement and roadblocking effects, indicative of rapid CI and Cro binding kinetics. However, repression of the same λ promoter by a catalytically dead CRISPR Cas9 protein gave either compromised or no relief of TI depending on the orientation at which it binds DNA, consistent with dCas9 being a slow kinetics repressor. This analysis shows how the intrinsic properties of a repressor can be evolutionarily tuned to set the magnitude of relief of TI.
Collapse
Affiliation(s)
- Nan Hao
- Discipline of Biochemistry, Department of Molecular and Cellular Biology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Adam C Palmer
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Alexandra Ahlgren-Berg
- Discipline of Biochemistry, Department of Molecular and Cellular Biology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Keith E Shearwin
- Discipline of Biochemistry, Department of Molecular and Cellular Biology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ian B Dodd
- Discipline of Biochemistry, Department of Molecular and Cellular Biology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
7
|
Bordoy AE, Chatterjee A. Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach. PLoS One 2015. [PMID: 26222133 PMCID: PMC4519249 DOI: 10.1371/journal.pone.0133873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antisense transcription has been extensively recognized as a regulatory mechanism for gene expression across all kingdoms of life. Despite the broad importance and extensive experimental determination of cis-antisense transcription, relatively little is known about its role in controlling cellular switching responses. Growing evidence suggests the presence of non-coding cis-antisense RNAs that regulate gene expression via antisense interaction. Recent studies also indicate the role of transcriptional interference in regulating expression of neighboring genes due to traffic of RNA polymerases from adjacent promoter regions. Previous models investigate these mechanisms independently, however, little is understood about how cells utilize coupling of these mechanisms in advantageous ways that could also be used to design novel synthetic genetic devices. Here, we present a mathematical modeling framework for antisense transcription that combines the effects of both transcriptional interference and cis-antisense regulation. We demonstrate the tunability of transcriptional interference through various parameters, and that coupling of transcriptional interference with cis-antisense RNA interaction gives rise to hypersensitive switches in expression of both antisense genes. When implementing additional positive and negative feed-back loops from proteins encoded by these genes, the system response acquires a bistable behavior. Our model shows that combining these multiple-levels of regulation allows fine-tuning of system parameters to give rise to a highly tunable output, ranging from a simple-first order response to biologically complex higher-order response such as tunable bistable switch. We identify important parameters affecting the cellular switch response in order to provide the design principles for tunable gene expression using antisense transcription. This presents an important insight into functional role of antisense transcription and its importance towards design of synthetic biological switches.
Collapse
Affiliation(s)
- Antoni E. Bordoy
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States of America
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States of America
- BioFrontiers institute, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| |
Collapse
|
8
|
Thiyagarajan D, Rekvig OP, Seredkina N. TNFα Amplifies DNaseI Expression in Renal Tubular Cells while IL-1β Promotes Nuclear DNaseI Translocation in an Endonuclease-Inactive Form. PLoS One 2015; 10:e0129485. [PMID: 26065428 PMCID: PMC4465975 DOI: 10.1371/journal.pone.0129485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
We have demonstrated that the renal endonuclease DNaseI is up-regulated in mesangial nephritis while down-regulated during progression of the disease. To determine the basis for these reciprocal DNaseI expression profiles we analyse processes accounting for an early increase in renal DNaseI expression. Main hypotheses were that i. the mesangial inflammation and secreted pro-inflammatory cytokines directly increase DNaseI protein expression in tubular cells, ii. the anti-apoptotic protein tumor necrosis factor receptor-associated protein 1 (Trap 1) is down-regulated by increased expression of DNaseI due to transcriptional interference, and iii. pro-inflammatory cytokines promote nuclear translocation of a variant of DNaseI. The latter hypothesis emerges from the fact that anti-DNaseI antibodies stained tubular cell nuclei in murine and human lupus nephritis. The present study was performed on human tubular epithelial cells stimulated with pro-inflammatory cytokines. Expression of the DNaseI and Trap 1 genes was determined by qPCR, confocal microscopy, gel zymography, western blot and by immune electron microscopy. Results from in vitro cell culture experiments were analysed for biological relevance in kidneys from (NZBxNZW)F1 mice and human patients with lupus nephritis. Central data indicate that stimulating the tubular cells with TNFα promoted increased DNaseI and reduced Trap 1 expression, while TNFα and IL-1β stimulation induced nuclear translocation of the DNaseI. TNFα-stimulation resulted in 3 distinct effects; increased DNaseI and IL-1β gene expression, and nuclear translocation of DNaseI. IL-1β-stimulation solely induced nuclear DNaseI translocation. Tubular cells stimulated with TNFα and simultaneously transfected with IL-1β siRNA resulted in increased DNaseI expression but no nuclear translocation. This demonstrates that IL-1β promotes nuclear translocation of a cytoplasmic variant of DNaseI since translocation clearly was not dependent on DNaseI gene activation. Nuclear translocated DNaseI is shown to be enzymatically inactive, which may point at a new, yet unknown function of renal DNaseI.
Collapse
Affiliation(s)
- Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ole Petter Rekvig
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Natalya Seredkina
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Wang H, Dodd IB, Dunlap DD, Shearwin KE, Finzi L. Single molecule analysis of DNA wrapping and looping by a circular 14mer wheel of the bacteriophage 186 CI repressor. Nucleic Acids Res 2013; 41:5746-56. [PMID: 23620280 PMCID: PMC3675496 DOI: 10.1093/nar/gkt298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/26/2013] [Accepted: 03/28/2013] [Indexed: 11/29/2022] Open
Abstract
The lytic-lysogenic decision in bacteriophage 186 is governed by the 186 CI repressor protein in a unique way. The 186 CI is proposed to form a wheel-like oligomer that can mediate either wrapped or looped nucleoprotein complexes to provide the cooperative and competitive interactions needed for regulation. Although consistent with structural, biochemical and gene expression data, many aspects of this model are based on inference. Here, we use atomic force microscopy (AFM) to reveal the various predicted wrapped and looped species, and new ones, for CI regulation of lytic and lysogenic transcription. Automated AFM analysis showed CI particles of the predicted dimensions on the DNA, with CI multimerization favoured by DNA binding. Measurement of the length of the wrapped DNA segments indicated that CI may move on the DNA, wrapping or releasing DNA on either side of the wheel. Tethered particle motion experiments were consistent with wrapping and looping of DNA by CI in solution, where in contrast to λ repressor, the looped species were exceptionally stable. The CI regulatory system provides an intriguing comparison with that of nucleosomes, which share the ability to wrap and release similar sized segments of DNA.
Collapse
Affiliation(s)
- Haowei Wang
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA, School of Molecular and Biomedical Science, Discipline of Biochemistry, University of Adelaide, Adelaide 5005, Australia and Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Ian B. Dodd
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA, School of Molecular and Biomedical Science, Discipline of Biochemistry, University of Adelaide, Adelaide 5005, Australia and Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - David D. Dunlap
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA, School of Molecular and Biomedical Science, Discipline of Biochemistry, University of Adelaide, Adelaide 5005, Australia and Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Keith E. Shearwin
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA, School of Molecular and Biomedical Science, Discipline of Biochemistry, University of Adelaide, Adelaide 5005, Australia and Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA, School of Molecular and Biomedical Science, Discipline of Biochemistry, University of Adelaide, Adelaide 5005, Australia and Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Convergent transcription in the butyrolactone regulon in Streptomyces coelicolor confers a bistable genetic switch for antibiotic biosynthesis. PLoS One 2011; 6:e21974. [PMID: 21765930 PMCID: PMC3134472 DOI: 10.1371/journal.pone.0021974] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022] Open
Abstract
cis-encoded antisense RNAs (cis asRNA) have been reported to participate in gene expression regulation in both eukaryotic and prokaryotic organisms. Its presence in Streptomyces coelicolor has also been reported recently; however, its role has yet to be fully investigated. Using mathematical modeling we explore the role of cis asRNA produced as a result of convergent transcription in scbA-scbR genetic switch. scbA and scbR gene pair, encoding repressor–amplifier proteins respectively, mediates the synthesis of a signaling molecule, the γ-butyrolactone SCB1 and controls the onset of antibiotic production. Our model considers that transcriptional interference caused by convergent transcription of two opposing RNA polymerases results in fatal collision and transcriptional termination, which suppresses transcription efficiency. Additionally, convergent transcription causes sense and antisense interactions between complementary sequences from opposing strands, rendering the full length transcript inaccessible for translation. We evaluated the role of transcriptional interference and the antisense effect conferred by convergent transcription on the behavior of scbA-scbR system. Stability analysis showed that while transcriptional interference affects the system, it is asRNA that confers scbA-scbR system the characteristics of a bistable switch in response to the signaling molecule SCB1. With its critical role of regulating the onset of antibiotic synthesis the bistable behavior offers this two gene system the needed robustness to be a genetic switch. The convergent two gene system with potential of transcriptional interference is a frequent feature in various genomes. The possibility of asRNA regulation in other such gene-pairs is yet to be examined.
Collapse
|
11
|
Teif VB. Predicting gene-regulation functions: lessons from temperate bacteriophages. Biophys J 2010; 98:1247-56. [PMID: 20371324 DOI: 10.1016/j.bpj.2009.11.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/23/2009] [Accepted: 11/25/2009] [Indexed: 01/14/2023] Open
Abstract
Gene-regulation functions (GRF) provide a unique characteristic of a cis-regulatory module (CRM), relating the concentrations of transcription factors (input) to the promoter activities (output). The challenge is to predict GRFs from the sequence. Here we systematically consider the lysogeny-lysis CRMs of different temperate bacteriophages such as the Lactobacillus casei phage A2, Escherichia coli phages lambda, and 186 and Lactococcal phage TP901-1. This study allowed explaining a recent experimental puzzle on the role of Cro protein in the lambda switch. Several general conclusions have been drawn: 1), long-range interactions, multilayer assembly and DNA looping may lead to complex GRFs that cannot be described by linear functions of binding site occupancies; 2), in general, GRFs cannot be described by the Boolean logic, whereas a three-state non-Boolean logic suffices for the studied examples; 3), studied CRMs of the intact phages seemed to have a similar GRF topology (the number of plateaus and peaks corresponding to different expression regimes); we hypothesize that functionally equivalent CRMs might have topologically equivalent GRFs for a larger class of genetic systems; and 4) within a given GRF class, a set of mechanistic-to-mathematical transformations has been identified, which allows shaping the GRF before carrying out a system-level analysis.
Collapse
Affiliation(s)
- Vladimir B Teif
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum and BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Information content based model for the topological properties of the gene regulatory network of Escherichia coli. J Theor Biol 2009; 263:281-94. [PMID: 19962388 DOI: 10.1016/j.jtbi.2009.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 11/21/2009] [Accepted: 11/23/2009] [Indexed: 11/22/2022]
Abstract
Gene regulatory networks (GRN) are being studied with increasingly precise quantitative tools and can provide a testing ground for ideas regarding the emergence and evolution of complex biological networks. We analyze the global statistical properties of the transcriptional regulatory network of the prokaryote Escherichia coli, identifying each operon with a node of the network. We propose a null model for this network using the content-based approach applied earlier to the eukaryote Saccharomyces cerevisiae (Balcan et al., 2007). Random sequences that represent promoter regions and binding sequences are associated with the nodes. The length distributions of these sequences are extracted from the relevant databases. The network is constructed by testing for the occurrence of binding sequences within the promoter regions. The ensemble of emergent networks yields an exponentially decaying in-degree distribution and a putative power law dependence for the out-degree distribution with a flat tail, in agreement with the data. The clustering coefficient, degree-degree correlation, rich club coefficient and k-core visualization all agree qualitatively with the empirical network to an extent not yet achieved by any other computational model, to our knowledge. The significant statistical differences can point the way to further research into non-adaptive and adaptive processes in the evolution of the E. coli GRN.
Collapse
|
13
|
Modeling of the genetic switch of bacteriophage TP901-1: A heteromer of CI and MOR ensures robust bistability. J Mol Biol 2009; 394:15-28. [PMID: 19747486 DOI: 10.1016/j.jmb.2009.08.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/23/2009] [Accepted: 08/27/2009] [Indexed: 11/22/2022]
Abstract
The lytic-lysogenic switch of the temperate lactococcal phage TP901-1 is fundamentally different from that of phage lambda. In phage TP901-1, the lytic promoter P(L) is repressed by CI, whereas repression of the lysogenic promoter P(R) requires the presence of both of the antagonistic regulator proteins, MOR and CI. We model the central part of the switch and compare the two cases for P(R) repression: the one where the two regulators interact only on the DNA and the other where the two regulators form a heteromer complex in the cytoplasm prior to DNA binding. The models are analyzed for bistability, and the predicted promoter repression folds are compared to experimental data. We conclude that the experimental data are best reproduced the latter case, where a heteromer complex forms in solution. We further find that CI sequestration by the formation of MOR:CI complexes in cytoplasm makes the genetic switch robust.
Collapse
|
14
|
Chia N, Golding I, Goldenfeld N. Lambda-prophage induction modeled as a cooperative failure mode of lytic repression. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:030901. [PMID: 19905052 PMCID: PMC4038166 DOI: 10.1103/physreve.80.030901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Indexed: 05/28/2023]
Abstract
We analyze a system-level model for lytic repression of lambda phage in E. coli using reliability theory, showing that the repressor circuit comprises four redundant components whose failure mode is prophage induction. Our model reflects the specific biochemical mechanisms involved in regulation, including long-range cooperative binding, and its detailed predictions for prophage induction in E. coli under ultraviolet radiation are in good agreement with experimental data.
Collapse
Affiliation(s)
- Nicholas Chia
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
15
|
Abstract
Complex transcriptional behaviours are encoded in the DNA sequences of gene regulatory regions. Advances in our understanding of these behaviours have been recently gained through quantitative models that describe how molecules such as transcription factors and nucleosomes interact with genomic sequences. An emerging view is that every regulatory sequence is associated with a unique binding affinity landscape for each molecule and, consequently, with a unique set of molecule-binding configurations and transcriptional outputs. We present a quantitative framework based on existing methods that unifies these ideas. This framework explains many experimental observations regarding the binding patterns of factors and nucleosomes and the dynamics of transcriptional activation. It can also be used to model more complex phenomena such as transcriptional noise and the evolution of transcriptional regulation.
Collapse
Affiliation(s)
- Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500 USA
| |
Collapse
|
16
|
Dynamical analysis on gene activity in the presence of repressors and an interfering promoter. Biophys J 2008; 95:4228-40. [PMID: 18658208 DOI: 10.1529/biophysj.108.132894] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription is regulated through interplay among transcription factors, an RNA polymerase (RNAP), and a promoter. Even for a simple repressive transcription factor that disturbs promoter activity at initial binding of RNAP, its repression level is not determined solely by the dissociation constant of transcription factor but is sensitive to timescales of processes in RNAP. We first analyze the promoter activity under strong repression by a slow binding repressor, in which case transcription events occur in bursts, followed by long quiescent periods while a repressor binds to the operator; the number of transcription events, bursting, and quiescent times are estimated by reaction rates. We then examine interference effect from an opposing promoter, using the correlation function of initiation events for a single promoter. The interference is shown to de-repress the promoter because RNAPs from the opposing promoter most likely encounter the repressor and remove it in case of strong repression. This de-repression mechanism should be especially prominent for the promoters that facilitate fast formation of open complex with the repressor whose binding rate is slower than approximately 1/s. Finally, we discuss possibility of this mechanism for high activity of promoter PR in the hyp-mutant of lambda-phage.
Collapse
|