1
|
Newton-Vesty MC, Currie MJ, Davies JS, Panjikar S, Sethi A, Whitten AE, Tillett ZD, Wood DM, Wright JD, Love MJ, Allison TM, Jamieson SA, Mace PD, North RA, Dobson RCJ. On the function of TRAP substrate-binding proteins: the isethionate-specific binding protein IseP. Biochem J 2024; 481:1901-1920. [PMID: 39560287 DOI: 10.1042/bcj20240540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due to hydrogen sulfide production, and has potential for industrial applications. O. alaskensis employs a tripartite ATP-independent periplasmic (TRAP) transporter (OaIsePQM) to import isethionate, which relies on the substrate-binding protein (OaIseP) to scavenge isethionate and deliver it to the membrane transporter component (OaIseQM) for import into the cell. We determined the binding affinity of isethionate to OaIseP by isothermal titration calorimetry, KD = 0.95 µM (68% CI = 0.6-1.4 µM), which is weaker compared with other TRAP substrate-binding proteins. The X-ray crystal structures of OaIseP in the ligand-free and isethionate-bound forms were obtained and showed that in the presence of isethionate, OaIseP adopts a closed conformation whereby two domains of the protein fold over the substrate. We serendipitously discovered two crystal forms with sulfonate-containing buffers (HEPES and MES) bound in the isethionate-binding site. However, these do not evoke domain closure, presumably because of the larger ligand size. Together, our data elucidate the molecular details of how a TRAP substrate-binding protein binds a sulfonate-containing substrate, rather than a typical carboxylate-containing substrate. These results may inform future antibiotic development to target TRAP transporters and provide insights into protein engineering of TRAP transporter substrate-binding proteins.
Collapse
Affiliation(s)
- Michael C Newton-Vesty
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
- Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michael J Currie
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - Santosh Panjikar
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Ashish Sethi
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering (ACNS), ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Zachary D Tillett
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - David M Wood
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - Joshua D Wright
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - Michael J Love
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - Timothy M Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rachel A North
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
- Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Davies JF, Daab A, Massouh N, Kirkland C, Strongitharm B, Leech A, Farré M, Thomas GH, Mulligan C. Structure and selectivity of a glutamate-specific TAXI TRAP binding protein from Vibrio cholerae. J Gen Physiol 2024; 156:e202413584. [PMID: 39556531 PMCID: PMC11574862 DOI: 10.1085/jgp.202413584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are widespread in prokaryotes and are responsible for the transport of a variety of different ligands, primarily organic acids. TRAP transporters can be divided into two subclasses; DctP-type and TAXI type, which share the same overall architecture and substrate-binding protein requirement. DctP-type transporters are very well studied and have been shown to transport a range of compounds including dicarboxylates, keto acids, and sugar acids. However, TAXI-type transporters are relatively poorly understood. To address this gap in our understanding, we have structurally and biochemically characterized VC0430 from Vibrio cholerae. We show it is a monomeric, high affinity glutamate-binding protein, which we thus rename VcGluP. VcGluP is stereoselective, binding the L-isomer preferentially, and can also bind L-glutamine and L-pyroglutamate with lower affinity. Structural characterization of ligand-bound VcGluP revealed details of its binding site and biophysical characterization of binding site mutants revealed the substrate binding determinants, which differ substantially from those of DctP-type TRAPs. Finally, we have analyzed the interaction between VcGluP and its cognate membrane component, VcGluQM (formerly VC0429) in silico, revealing an architecture hitherto unseen. To our knowledge, this is the first transporter in V. cholerae to be identified as specific to glutamate, which plays a key role in the osmoadaptation of V. cholerae, making this transporter a potential therapeutic target.
Collapse
Affiliation(s)
- Joseph F.S. Davies
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Andrew Daab
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Nicholas Massouh
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Corey Kirkland
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | | | - Andrew Leech
- Technology Facility, Department of Biology, University of York, York, UK
| | - Marta Farré
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Gavin H. Thomas
- Department of Biology and York Biomedical Research Institute (YBRI), University of York, York, UK
| | - Christopher Mulligan
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| |
Collapse
|
3
|
Shin J, Zielinski DC, Palsson BO. Deciphering nutritional stress responses via knowledge-enriched transcriptomics for microbial engineering. Metab Eng 2024; 84:34-47. [PMID: 38825177 DOI: 10.1016/j.ymben.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Understanding diverse bacterial nutritional requirements and responses is foundational in microbial research and biotechnology. In this study, we employed knowledge-enriched transcriptomic analytics to decipher complex stress responses of Vibrio natriegens to supplied nutrients, aiming to enhance microbial engineering efforts. We computed 64 independently modulated gene sets that comprise a quantitative basis for transcriptome dynamics across a comprehensive transcriptomics dataset containing a broad array of nutrient conditions. Our approach led to the i) identification of novel transporter systems for diverse substrates, ii) a detailed understanding of how trace elements affect metabolism and growth, and iii) extensive characterization of nutrient-induced stress responses, including osmotic stress, low glycolytic flux, proteostasis, and altered protein expression. By clarifying the relationship between the acetate-associated regulon and glycolytic flux status of various nutrients, we have showcased its vital role in directing optimal carbon source selection. Our findings offer deep insights into the transcriptional landscape of bacterial nutrition and underscore its significance in tailoring strain engineering strategies, thereby facilitating the development of more efficient and robust microbial systems for biotechnological applications.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Rosa LT, Bianconi ME, Thomas GH, Kelly DJ. Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity. Front Cell Infect Microbiol 2018; 8:33. [PMID: 29479520 PMCID: PMC5812351 DOI: 10.3389/fcimb.2018.00033] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
The ability to efficiently scavenge nutrients in the host is essential for the viability of any pathogen. All catabolic pathways must begin with the transport of substrate from the environment through the cytoplasmic membrane, a role executed by membrane transporters. Although several classes of cytoplasmic membrane transporters are described, high-affinity uptake of substrates occurs through Solute Binding-Protein (SBP) dependent systems. Three families of SBP dependant transporters are known; the primary ATP-binding cassette (ABC) transporters, and the secondary Tripartite ATP-independent periplasmic (TRAP) transporters and Tripartite Tricarboxylate Transporters (TTT). Far less well understood than the ABC family, the TRAP transporters are found to be abundant among bacteria from marine environments, and the TTT transporters are the most abundant family of proteins in many species of β-proteobacteria. In this review, recent knowledge about these families is covered, with emphasis on their physiological and structural mechanisms, relating to several examples of relevant uptake systems in pathogenicity and colonization, using the SiaPQM sialic acid uptake system from Haemophilus influenzae and the TctCBA citrate uptake system of Salmonella typhimurium as the prototypes for the TRAP and TTT transporters, respectively. High-throughput analysis of SBPs has recently expanded considerably the range of putative substrates known for TRAP transporters, while the repertoire for the TTT family has yet to be fully explored but both types of systems most commonly transport carboxylates. Specialized spectroscopic techniques and site-directed mutagenesis have enriched our knowledge of the way TRAP binding proteins capture their substrate, while structural comparisons show conserved regions for substrate coordination in both families. Genomic and protein sequence analyses show TTT SBP genes are strikingly overrepresented in some bacteria, especially in the β-proteobacteria and some α-proteobacteria. The reasons for this are not clear but might be related to a role for these proteins in signaling rather than transport.
Collapse
Affiliation(s)
- Leonardo T Rosa
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Gavin H Thomas
- Department of Biology, University of York, York, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Fischer M, Hopkins AP, Severi E, Hawkhead J, Bawdon D, Watts AG, Hubbard RE, Thomas GH. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding. J Biol Chem 2015; 290:27113-27123. [PMID: 26342690 PMCID: PMC4646407 DOI: 10.1074/jbc.m115.656603] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 11/21/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates.
Collapse
Affiliation(s)
- Marcus Fischer
- York Structural Biology Laboratory, Departments of Chemistry, University of York, P. O. Box 373, York YO10 5YW
| | - Adam P Hopkins
- York Structural Biology Laboratory, Departments of Biology (Area 10), University of York, P. O. Box 373, York YO10 5YW
| | - Emmanuele Severi
- York Structural Biology Laboratory, Departments of Chemistry, University of York, P. O. Box 373, York YO10 5YW
| | - Judith Hawkhead
- York Structural Biology Laboratory, Departments of Biology (Area 10), University of York, P. O. Box 373, York YO10 5YW
| | - Daniel Bawdon
- York Structural Biology Laboratory, Departments of Biology (Area 10), University of York, P. O. Box 373, York YO10 5YW
| | - Andrew G Watts
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Roderick E Hubbard
- York Structural Biology Laboratory, Departments of Chemistry, University of York, P. O. Box 373, York YO10 5YW
| | - Gavin H Thomas
- York Structural Biology Laboratory, Departments of Biology (Area 10), University of York, P. O. Box 373, York YO10 5YW.
| |
Collapse
|
6
|
Vetting MW, Al-Obaidi N, Zhao S, San Francisco B, Kim J, Wichelecki DJ, Bouvier JT, Solbiati JO, Vu H, Zhang X, Rodionov DA, Love JD, Hillerich BS, Seidel RD, Quinn RJ, Osterman AL, Cronan JE, Jacobson MP, Gerlt JA, Almo SC. Experimental strategies for functional annotation and metabolism discovery: targeted screening of solute binding proteins and unbiased panning of metabolomes. Biochemistry 2015; 54:909-31. [PMID: 25540822 PMCID: PMC4310620 DOI: 10.1021/bi501388y] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The
rate at which genome sequencing data is accruing demands enhanced
methods for functional annotation and metabolism discovery. Solute
binding proteins (SBPs) facilitate the transport of the first reactant
in a metabolic pathway, thereby constraining the regions of chemical
space and the chemistries that must be considered for pathway reconstruction.
We describe high-throughput protein production and differential scanning
fluorimetry platforms, which enabled the screening of 158 SBPs against
a 189 component library specifically tailored for this class of proteins.
Like all screening efforts, this approach is limited by the practical
constraints imposed by construction of the library, i.e., we can study
only those metabolites that are known to exist and which can be made
in sufficient quantities for experimentation. To move beyond these
inherent limitations, we illustrate the promise of crystallographic-
and mass spectrometric-based approaches for the unbiased use of entire
metabolomes as screening libraries. Together, our approaches identified
40 new SBP ligands, generated experiment-based annotations for 2084
SBPs in 71 isofunctional clusters, and defined numerous metabolic
pathways, including novel catabolic pathways for the utilization of
ethanolamine as sole nitrogen source and the use of d-Ala-d-Ala as sole carbon source. These efforts begin to define an
integrated strategy for realizing the full value of amassing genome
sequence data.
Collapse
Affiliation(s)
- Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The sensor kinase DctS forms a tripartite sensor unit with DctB and DctA for sensing C4-dicarboxylates in Bacillus subtilis. J Bacteriol 2013; 196:1084-93. [PMID: 24375102 DOI: 10.1128/jb.01154-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The DctSR two-component system of Bacillus subtilis controls the expression of the aerobic C4-dicarboxylate transporter DctA. Deletion of DctA leads to an increased dctA expression. The inactivation of DctB, an extracellular binding protein, is known to inhibit the expression of dctA. Here, interaction between the sensor kinase DctS and the transporter DctA as well as the binding protein DctB was demonstrated in vivo using streptavidin (Strep) or His protein interaction experiments (mSPINE or mHPINE), and the data suggest that DctA and DctB act as cosensors for DctS. The interaction between DctS and DctB was also confirmed by the bacterial two-hybrid system (BACTH). In contrast, no indication was obtained for a direct interaction between the transporter DctA and the binding protein DctB. Activity levels of uptake of [(14)C]succinate by bacteria that expressed DctA from a plasmid were similar in the absence and the presence of DctB, demonstrating that the binding protein DctB is not required for transport. Thus, DctB is involved not in transport but in cosensing with DctS, highlighting DctB as the first example of a TRAP-type binding protein that acts as a cosensor. The simultaneous presence of DctS/DctB and DctS/DctA sensor pairs and the lack of direct interaction between the cosensors DctA and DctB indicate the formation of a tripartite complex via DctS. It is suggested that the DctS/DctA/DctB complex forms the functional unit for C4-dicarboxylate sensing in B. subtilis.
Collapse
|
8
|
Nivón LG, Bjelic S, King C, Baker D. Automating human intuition for protein design. Proteins 2013; 82:858-66. [DOI: 10.1002/prot.24463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/25/2013] [Accepted: 10/21/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Lucas G. Nivón
- Department of BiochemistryUniversity of WashingtonSeattle Washington98195
| | - Sinisa Bjelic
- Department of BiochemistryUniversity of WashingtonSeattle Washington98195
| | - Chris King
- Department of BiochemistryUniversity of WashingtonSeattle Washington98195
| | - David Baker
- Department of BiochemistryUniversity of WashingtonSeattle Washington98195
- Howard Hughes Medical Institute (HHMI)University of WashingtonSeattle Washington98195
| |
Collapse
|
9
|
Bourdès A, Rudder S, East AK, Poole PS. Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols. PLoS One 2012; 7:e43578. [PMID: 23028462 PMCID: PMC3454389 DOI: 10.1371/journal.pone.0043578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Förster resonance energy transfer (FRET) biosensors are powerful tools to detect biologically important ligands in real time. Currently FRET bisosensors are available for twenty-two compounds distributed in eight classes of chemicals (two pentoses, two hexoses, two disaccharides, four amino acids, one nucleobase, two nucleotides, six ions and three phytoestrogens). To expand the number of available FRET biosensors we used the induction profile of the Sinorhizobium meliloti transportome to systematically screen for new FRET biosensors. METHODOLOGY/PRINCIPAL FINDINGS Two new vectors were developed for cloning genes for solute-binding proteins (SBPs) between those encoding FRET partner fluorescent proteins. In addition to a vector with the widely used cyan and yellow fluorescent protein FRET partners, we developed a vector using orange (mOrange2) and red fluorescent protein (mKate2) FRET partners. From the sixty-nine SBPs tested, seven gave a detectable FRET signal change on binding substrate, resulting in biosensors for D-quinic acid, myo-inositol, L-rhamnose, L-fucose, β-diglucosides (cellobiose and gentiobiose), D-galactose and C4-dicarboxylates (malate, succinate, oxaloacetate and fumarate). To our knowledge, we describe the first two FRET biosensor constructs based on SBPs from Tripartite ATP-independent periplasmic (TRAP) transport systems. CONCLUSIONS/SIGNIFICANCE FRET based on orange (mOrange2) and red fluorescent protein (mKate2) partners allows the use of longer wavelength light, enabling deeper penetration of samples at lower energy and increased resolution with reduced back-ground auto-fluorescence. The FRET biosensors described in this paper for four new classes of compounds; (i) cyclic polyols, (ii) L-deoxy sugars, (iii) β-linked disaccharides and (iv) C4-dicarboxylates could be developed to study metabolism in vivo.
Collapse
Affiliation(s)
- Alexandre Bourdès
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Steven Rudder
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alison K. East
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Philip S. Poole
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Mulligan C, Leech AP, Kelly DJ, Thomas GH. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. J Biol Chem 2011; 287:3598-608. [PMID: 22167185 DOI: 10.1074/jbc.m111.281030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are widespread in bacteria but poorly characterized. They contain three subunits, a small membrane protein, a large membrane protein, and a substrate-binding protein (SBP). Although the function of the SBP is well established, the membrane components have only been studied in detail for the sialic acid TRAP transporter SiaPQM from Haemophilus influenzae, where the membrane proteins are genetically fused. Herein, we report the first in vitro characterization of a truly tripartite TRAP transporter, the SiaPQM system (VC1777-1779) from the human pathogen Vibrio cholerae. The active reconstituted transporter catalyzes unidirectional Na(+)-dependent sialic acid uptake having similar biochemical features to the orthologous system in H. influenzae. However, using this tripartite transporter, we demonstrate the tight association of the small, SiaQ, and large, SiaM, membrane proteins that form a 1:1 complex. Using reconstituted proteoliposomes containing particular combinations of the three subunits, we demonstrate biochemically that all three subunits are likely to be essential to form a functional TRAP transporter.
Collapse
Affiliation(s)
- Christopher Mulligan
- Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| | | | | | | |
Collapse
|
11
|
Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 2011; 35:68-86. [PMID: 20584082 DOI: 10.1111/j.1574-6976.2010.00236.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters are the best-studied family of substrate-binding protein (SBP)-dependent secondary transporters and are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP of the DctP or TAXI families and two integral membrane proteins of unequal sizes that form the DctQ and DctM protein families, respectively. The SBP component has a structure comprised of two domains connected by a hinge that closes upon substrate binding. In DctP-TRAP transporters, substrate binding is mediated through a conserved and specific arginine/carboxylate interaction in the SBP. While the SBP component has now been relatively well characterized, the membrane components of TRAP transporters are still poorly understood both in terms of their structure and function. We review the expanding repertoire of substrates and physiological roles for experimentally characterized TRAP transporters in bacteria and discuss mechanistic aspects of these transporters using data primarily from the sialic acid-specific TRAP transporter SiaPQM from Haemophilus influenzae, which suggest that TRAP transporters are high-affinity, Na(+)-dependent unidirectional secondary transporters.
Collapse
|
12
|
Addendum to “A structural classification of substrate-binding proteins” [FEBS Lett. 584 (2010) 2606-2617]. FEBS Lett 2010. [DOI: 10.1016/j.febslet.2010.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Fischer M, Zhang QY, Hubbard RE, Thomas GH. Caught in a TRAP: substrate-binding proteins in secondary transport. Trends Microbiol 2010; 18:471-8. [PMID: 20656493 DOI: 10.1016/j.tim.2010.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 11/19/2022]
Abstract
Substrate-binding protein (SBP)-dependent secondary transporters are ubiquitous in prokaryotes yet poorly characterised. Recently, the structures of over 10 prokaryotic SBPs have been solved, which we compare here to consider their impact on our understanding of transporter function and evolution. Seven structures are from tripartite ATP-independent periplasmic (TRAP) transporters of the DctP-type, which have similar overall structures distinct from SBPs used by ATP-binding cassette (ABC) transporters, despite recognising a range of substrates. A defining feature of substrate recognition in the DctP-TRAP SBPs is the formation of a salt bridge between a highly conserved arginine and a carboxylate group in the substrate, suggesting that these transporters might have evolved specifically for uptake of diverse organic acids. Remarkably, two of the DctP-TRAP SBPs are clearly dimers and the potential impact of this on transporter function will be discussed. Other SBPs used in secondary transporters are structurally similar to ABC SBPs, demonstrating that multiple families of SBPs have evolved to function with secondary transporters.
Collapse
Affiliation(s)
- Marcus Fischer
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | | | |
Collapse
|
14
|
Crystal structure of a periplasmic substrate-binding protein in complex with calcium lactate. J Mol Biol 2009; 392:559-65. [PMID: 19631222 DOI: 10.1016/j.jmb.2009.07.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/09/2009] [Accepted: 07/15/2009] [Indexed: 11/24/2022]
Abstract
Lactate is utilized in many biological processes, and its transport across biological membranes is mediated with various types of transporters. Here, we report the crystal structures of a lactate-binding protein of a TRAP (tripartite ATP-independent periplasmic) secondary transporter from Thermus thermophilus HB8. The folding of the protein is typical for a type II periplasmic solute-binding protein and forms a dimer in a back-to-back manner. One molecule of l-lactate is clearly identified in a cleft of the protein as a complex with a calcium ion. Detailed crystallographic and biochemical analyses revealed that the calcium ion can be removed from the protein and replaced with other divalent cations. This characterization of the structure of a protein binding with calcium lactate makes a significant contribution to our understanding of the mechanisms by which calcium and lactate are accommodated in cells.
Collapse
|
15
|
Lecher J, Pittelkow M, Zobel S, Bursy J, Bönig T, Smits SHJ, Schmitt L, Bremer E. The crystal structure of UehA in complex with ectoine-A comparison with other TRAP-T binding proteins. J Mol Biol 2009; 389:58-73. [PMID: 19362561 DOI: 10.1016/j.jmb.2009.03.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/24/2022]
Abstract
Substrate-binding proteins or extracellular solute receptors (ESRs) are components of both ABC (ATP binding cassette) and TRAP-T (tripartite ATP-independent periplasmic transporter). The TRAP-T system UehABC from Silicibacter pomeroyi DSS-3 imports the compatible solutes ectoine and 5-hydroxyectoine as nutrients. UehA, the ESR of the UehABC operon, binds both ectoine and 5-hydroxyectoine with high affinity (K(d) values of 1.4+/-0.1 and 1.1+/-0.1 microM, respectively) and delivers them to the TRAP-T complex. The crystal structure of UehA in complex with ectoine was determined at 2.9-A resolution and revealed an overall fold common for all ESR proteins from TRAP systems determined so far. A comparison of the recently described structure of TeaA from Halomonas elongata and an ectoine-binding protein (EhuB) from an ABC transporter revealed a conserved ligand binding mode that involves both directed and cation-pi interactions. Furthermore, a comparison with other known TRAP-T ESRs revealed a helix that might act as a selectivity filter imposing restraints on the ESRs that fine-tune ligand recognition and binding and finally might determine the selection of the cognate substrate.
Collapse
Affiliation(s)
- Justin Lecher
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cuneo MJ, Changela A, Miklos AE, Beese LS, Krueger JK, Hellinga HW. Structural analysis of a periplasmic binding protein in the tripartite ATP-independent transporter family reveals a tetrameric assembly that may have a role in ligand transport. J Biol Chem 2008; 283:32812-20. [PMID: 18723845 DOI: 10.1074/jbc.m803595200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several bacterial solute transport mechanisms involve members of the periplasmic binding protein (PBP) superfamily that bind and deliver ligand to integral membrane transport proteins in the ATP-binding cassette, tripartite tricarboxylate transporter, or tripartite ATP-independent (TRAP) families. PBPs involved in ATP-binding cassette transport systems have been well characterized, but only a few PBPs involved in TRAP transport have been studied. We have measured the thermal stability, determined the oligomerization state by small angle x-ray scattering, and solved the x-ray crystal structure to 1.9 A resolution of a TRAP-PBP (open reading frame tm0322) from the hyperthermophilic bacterium Thermotoga maritima (TM0322). The overall fold of TM0322 is similar to other TRAP transport related PBPs, although the structural similarity of backbone atoms (2.5-3.1 A root mean square deviation) is unusually low for PBPs within the same group. Individual monomers within the tetrameric asymmetric unit of TM0322 exhibit high root mean square deviation (0.9 A) to each other as a consequence of conformational heterogeneity in their binding pockets. The gel filtration elution profile and the small angle x-ray scattering analysis indicate that TM0322 assembles as dimers in solution that in turn assemble into a dimer of dimers in the crystallographic asymmetric unit. Tetramerization has been previously observed in another TRAP-PBP (the Rhodobacter sphaeroides alpha-keto acid-binding protein) where quaternary structure formation is postulated to be an important requisite for the transmembrane transport process.
Collapse
Affiliation(s)
- Matthew J Cuneo
- Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
17
|
Kuhlmann SI, Terwisscha van Scheltinga AC, Bienert R, Kunte HJ, Ziegler C. 1.55 A structure of the ectoine binding protein TeaA of the osmoregulated TRAP-transporter TeaABC from Halomonas elongata. Biochemistry 2008; 47:9475-85. [PMID: 18702523 DOI: 10.1021/bi8006719] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TeaABC from the moderate halophilic bacterium Halomonas elongata belongs to the tripartite ATP-independent periplasmic transporters (TRAP-T), a family of secondary transporters functioning in conjunction with periplasmic substrate binding proteins. TeaABC facilitates the uptake of the compatible solutes ectoine and hydroxyectoine that are accumulated in the cytoplasm under hyperosmotic stress to protect the cell from dehydration. TeaABC is the only known TRAP-T activated by osmotic stress. Currently, our knowledge on the osmoregulated compatible solute transporter is limited to ABC transporters or conventional secondary transporters. Therefore, this study presents the first detailed analysis of the molecular mechanisms underlying substrate recognition of the substrate binding protein of an osmoregulated TRAP-T. In the present study we were able to demonstrate by isothermal titration calorimetry measurements that TeaA is a high-affinity ectoine binding protein ( K d = 0.19 microM) that also has a significant but somewhat lower affinity to hydroxyectoine ( K d = 3.8 microM). Furthermore, we present the structure of TeaA in complex with ectoine at a resolution of 1.55 A and hydroxyectoine at a resolution of 1.80 A. Analysis of the TeaA binding pocket and comparison of its structure to other compatible solute binding proteins from ABC transporters reveal common principles in compatible solute binding but also significant differences like the solvent-mediated specific binding of ectoine to TeaA.
Collapse
Affiliation(s)
- Sonja I Kuhlmann
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|