1
|
Fatima A, Bressan G, Ashworth EK, Page PCB, Bull JN, Meech SR. Substituent effects on the photophysics of the kaede chromophore. Phys Chem Chem Phys 2024; 26:29048-29059. [PMID: 39552575 DOI: 10.1039/d4cp03272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Kaede is the prototype of the optical highlighter proteins, which are an important subclass of the fluorescent proteins that can be permanently switched from green to red emitting forms by UV irradiation. This transformation has important applications in bioimaging. Optimising brightness, i.e. enhancing fluorescence characteristics, in these proteins is an important objective. At room temperature, the excited state dynamics of the red form of the kaede chromophore are dominated by a broad distribution of conformers with distinct excited state kinetics. Here, we investigate substituent effects on the photophysics of this form of the kaede chromophore. While an electron withdrawing substituent (nitro) red shifts the electronic spectra, the modified chromophores showed no significant solvatochromism. The lack of solvatochromism suggests small changes in permanent dipole moment between ground and excited electronic states, which is consistent with quantum chemical calculations. Ultrafast fluorescence and transient absorption spectroscopy reveal correlations between radiative and nonradiative decay rates of different conformers in the chromophores. The most significant effect of the substituents is to modify the distribution of conformers. The results are discussed in the context of enhancing brightness of optical highlighter proteins.
Collapse
Affiliation(s)
- Anam Fatima
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | - Philip C B Page
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
2
|
Breen B, Whitelegge JP, Wachter RM. Kinetic isotope effect reveals rate-limiting step in green-to-red photoconvertible fluorescent proteins. Protein Sci 2024; 33:e5069. [PMID: 38864740 PMCID: PMC11168066 DOI: 10.1002/pro.5069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Photoconvertible fluorescent proteins (pcFPs) undergo a slow photochemical transformation when irradiated with blue light. Since their emission is shifted from green to red, pcFPs serve as convenient fusion tags in several cutting-edge biological imaging technologies. Here, a pcFP termed the Least Evolved Ancestor (LEA) was used as a model system to determine the rate-limiting step of photoconversion. Perdeuterated histidine residues were introduced by isotopic enrichment and chromophore content was monitored by absorbance. pH-dependent photoconversion experiments were carried out by exposure to 405-nm light followed by dark equilibration. The loss of green chromophore correlated well with the rise of red, and maximum photoconversion rates were observed at pH 6.5 (0.059 ± 0.001 min-1 for red color acquisition). The loss of green and the rise of red provided deuterium kinetic isotope effects (DKIEs) that were identical within error, 2.9 ± 0.9 and 3.8 ± 0.6, respectively. These data indicate that there is one rate-determining step in the light reactions of photoconversion, and that CH bond cleavage occurs in the transition state of this step. We propose that these reactions are rate-limited on the min time scale by the abstraction of a proton at the His62 beta-carbon. A conformational intermediate such as a twisted or isomerized chromophore is proposed to slowly equilibrate in the dark to generate the red form. Additionally, His62 may shuttle protons to activate Glu211 to serve as a general base, while also facilitating beta-elimination. This idea is supported by a recent X-ray structure of methylated His62.
Collapse
Affiliation(s)
- Bella Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, NPI‐Semel InstituteUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Rebekka M. Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| |
Collapse
|
3
|
Krueger TD, Chen C, Fang C. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chem Asian J 2023; 18:e202300668. [PMID: 37682793 DOI: 10.1002/asia.202300668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| |
Collapse
|
4
|
Addison K, Roy P, Bressan G, Skudaite K, Robb J, Bulman Page PC, Ashworth EK, Bull JN, Meech SR. Photophysics of the red-form Kaede chromophore. Chem Sci 2023; 14:3763-3775. [PMID: 37035701 PMCID: PMC10074405 DOI: 10.1039/d3sc00368j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The chromophore responsible for colour switching in the optical highlighting protein Kaede has unexpectedly complicated excited state dynamics, which are measured and analysed here. This will inform the development of new imaging proteins.
Collapse
Affiliation(s)
- Kiri Addison
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Palas Roy
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Karolina Skudaite
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Josh Robb
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | | | - Eleanor K. Ashworth
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - James N. Bull
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
5
|
Heckmeier PJ, Langosch D. Site-Specific Fragmentation of Green Fluorescent Protein Induced by Blue Light. Biochemistry 2021; 60:2457-2462. [PMID: 34314163 DOI: 10.1021/acs.biochem.1c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Green fluorescent protein (GFP) and related fluorescent proteins have multiple applications in cell biology, and elucidating their functions has been at the focus of biophysical research for about three decades. Fluorescent proteins can be bleached by intense irradiation, and a number of them undergo photoconversion. Rare cases have been reported where distant functional relatives of GFP exhibit UV-light-induced protein fragmentation. Here, we show that irreversible bleaching of two different variants of GFP (sfGFP, EGFP) with visible light is paralleled by successive backbone fragmentation of the protein. Mass spectrometry revealed that the site of fragmentation resides at the fluorophore, between residue positions 65 and 66.
Collapse
Affiliation(s)
- Philipp J Heckmeier
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
6
|
Nienhaus K, Nienhaus GU. Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chem Biol 2021; 2:796-814. [PMID: 34458811 PMCID: PMC8341165 DOI: 10.1039/d1cb00014d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Optical fluorescence microscopy has taken center stage in the exploration of biological structure and dynamics, especially on live specimens, and super-resolution imaging methods continue to deliver exciting new insights into the molecular foundations of life. Progress in the field, however, crucially hinges on advances in fluorescent marker technology. Among these, fluorescent proteins (FPs) of the GFP family are advantageous because they are genetically encodable, so that live cells, tissues or organisms can produce these markers all by themselves. A subclass of them, photoactivatable FPs, allow for control of their fluorescence emission by light irradiation, enabling pulse-chase imaging and super-resolution microscopy. In this review, we discuss FP variants of the EosFP clade that have been optimized by amino acid sequence modification to serve as markers for various imaging techniques. In general, two different modes of photoactivation are found, reversible photoswitching between a fluorescent and a nonfluorescent state and irreversible green-to red photoconversion. First, we describe their basic structural and optical properties. We then summarize recent research aimed at elucidating the photochemical processes underlying photoactivation. Finally, we briefly introduce various advanced imaging methods facilitated by specific EosFP variants, and show some exciting sample applications.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Department of Physics, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
7
|
Singh A, Gupta R, Siddiqui N, Kumar Iyer SS, Ramanathan G. Tuning Thin Film Properties by Structural Modulations in Red Fluorescent Protein Chromophore Analogues. ChemistrySelect 2019. [DOI: 10.1002/slct.201903024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ashish Singh
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Raghav Gupta
- Department of Electrical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
- Samtel Centre for Display TechnologiesIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Nazia Siddiqui
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - S. Sundar Kumar Iyer
- Department of Electrical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
- Samtel Centre for Display TechnologiesIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Gurunath Ramanathan
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
8
|
Pletneva NV, Goryacheva EA, Artemyev IV, Arkhipova SF, Pletnev VZ. Structure of Chromophores in GFP-Like Proteins: X-Ray Data. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s106816201903004x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mycobacterium tuberculosis ClpC1 N-Terminal Domain Is Dispensable for Adaptor Protein-Dependent Allosteric Regulation. Int J Mol Sci 2018; 19:ijms19113651. [PMID: 30463272 PMCID: PMC6274998 DOI: 10.3390/ijms19113651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/03/2022] Open
Abstract
ClpC1 hexamers couple the energy of ATP hydrolysis to unfold and, subsequently, translocate specific protein substrates into the associated ClpP protease. Substrate recognition by ATPases associated with various cellular activities (AAA+) proteases is driven by the ATPase component, which selectively determines protein substrates to be degraded. The specificity of these unfoldases for protein substrates is often controlled by an adaptor protein with examples that include MecA regulation of Bacillus subtilis ClpC or ClpS-mediated control of Escherichia coli ClpA. No adaptor protein-mediated control has been reported for mycobacterial ClpC1. Using pulldown and stopped-flow fluorescence methods, we report data demonstrating that Mycobacterium tuberculosis ClpC1 catalyzed unfolding of an SsrA-tagged protein is negatively impacted by association with the ClpS adaptor protein. Our data indicate that ClpS-dependent inhibition of ClpC1 catalyzed SsrA-dependent protein unfolding does not require the ClpC1 N-terminal domain but instead requires the presence of an interaction surface located in the ClpC1 Middle Domain. Taken together, our results demonstrate for the first time that mycobacterial ClpC1 is subject to adaptor protein-mediated regulation in vitro.
Collapse
|
10
|
Mohapatra S, Weisshaar JC. Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells. BMC Bioinformatics 2018; 19:428. [PMID: 30445904 PMCID: PMC6240329 DOI: 10.1186/s12859-018-2444-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022] Open
Abstract
The revolution in fluorescence microscopy enables sub-diffraction-limit ("superresolution") localization of hundreds or thousands of copies of two differently labeled proteins in the same live cell. In typical experiments, fluorescence from the entire three-dimensional (3D) cell body is projected along the z-axis of the microscope to form a 2D image at the camera plane. For imaging of two different species, here denoted "red" and "green", a significant biological question is the extent to which the red and green spatial distributions are positively correlated, anti-correlated, or uncorrelated. A commonly used statistic for assessing the degree of linear correlation between two image matrices R and G is the Pearson Correlation Coefficient (PCC). PCC should vary from - 1 (perfect anti-correlation) to 0 (no linear correlation) to + 1 (perfect positive correlation). However, in the special case of spherocylindrical bacterial cells such as E. coli or B. subtilis, we show that the PCC fails both qualitatively and quantitatively. PCC returns the same + 1 value for 2D projections of distributions that are either perfectly correlated in 3D or completely uncorrelated in 3D. The PCC also systematically underestimates the degree of anti-correlation between the projections of two perfectly anti-correlated 3D distributions. The problem is that the projection of a random spatial distribution within the 3D spherocylinder is non-random in 2D, whereas PCC compares every matrix element of R or G with the constant mean value [Formula: see text] or [Formula: see text]. We propose a modified Pearson Correlation Coefficient (MPCC) that corrects this problem for spherocylindrical cell geometry by using the proper reference matrix for comparison with R and G. Correct behavior of MPCC is confirmed for a variety of numerical simulations and on experimental distributions of HU and RNA polymerase in live E. coli cells. The MPCC concept should be generalizable to other cell shapes.
Collapse
Affiliation(s)
- Sonisilpa Mohapatra
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,Present Address: Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, 21205, USA.
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
11
|
Monomerization of the photoconvertible fluorescent protein SAASoti by rational mutagenesis of single amino acids. Sci Rep 2018; 8:15542. [PMID: 30341334 PMCID: PMC6195611 DOI: 10.1038/s41598-018-33250-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
Photoconvertible fluorescent proteins (PCFPs) are widely used as markers for the visualization of intracellular processes and for sub-diffraction single-molecule localization microscopy. Although wild type of a new photoconvertible fluorescent protein SAASoti tends to aggregate, we succeeded, via rational mutagenesis, to obtain variants that formed either tetramers or monomers. We compare two approaches: one is based on the structural similarity between SAASoti and Kaede, which helped us to identify a single point mutation (V127T) at the protein’s hydrophobic interface that leads to monomerization. The other is based on a chemical modification of amino groups of SAASoti with succinic anhydride, which converts the protein aggregates into monomers. Mass-spectrometric analysis helped us to identify that the modification of a single ε-amino group of lysine K145 in the strongly charged interface AB was sufficient to convert the protein into its tetrameric form. Furthermore, site-directed mutagenesis was used to generate mutants that proved to be either monomeric or tetrameric, both capable of rapid green-to-red photoconversion. This allows SAASoti to be used as a photoconvertible fluorescent marker for in vivo cell studies.
Collapse
|
12
|
Abstract
The past decade has witnessed an explosion in the use of super-resolution fluorescence microscopy methods in biology and other fields. Single-molecule localization microscopy (SMLM) is one of the most widespread of these methods and owes its success in large part to the ability to control the on-off state of fluorophores through various chemical, photochemical, or binding-unbinding mechanisms. We provide here a comprehensive overview of switchable fluorophores in SMLM including a detailed review of all major classes of SMLM fluorophores, and we also address strategies for labeling specimens, considerations for multichannel and live-cell imaging, potential pitfalls, and areas for future development.
Collapse
Affiliation(s)
- Honglin Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA, 98195
| |
Collapse
|
13
|
Conyard J, Heisler IA, Chan Y, Bulman Page PC, Meech SR, Blancafort L. A new twist in the photophysics of the GFP chromophore: a volume-conserving molecular torsion couple. Chem Sci 2018; 9:1803-1812. [PMID: 29675225 PMCID: PMC5892128 DOI: 10.1039/c7sc04091a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/30/2017] [Indexed: 01/19/2023] Open
Abstract
Dynamics of a nonplanar GFP chromophore are studied experimentally and theoretically. Coupled torsional motion is responsible for the ultrafast decay.
The simple structure of the chromophore of the green fluorescent protein (GFP), a phenol and an imidazolone ring linked by a methyne bridge, supports an exceptionally diverse range of excited state phenomena. Here we describe experimentally and theoretically the photochemistry of a novel sterically crowded nonplanar derivative of the GFP chromophore. It undergoes an excited state isomerization reaction accompanied by an exceptionally fast (sub 100 fs) excited state decay. The decay dynamics are essentially independent of solvent polarity and viscosity. Excited state structural dynamics are probed by high level quantum chemical calculations revealing that the fast decay is due to a conical intersection characterized by a twist of the rings and pyramidalization of the methyne bridge carbon. The intersection can be accessed without a barrier from the pre-twisted Franck–Condon structure, and the lack of viscosity dependence is due to the fact that the rings twist in the same direction, giving rise to a volume-conserving decay coordinate. Moreover, the rotation of the phenyl, methyl and imidazolone groups is coupled in the sterically crowded structure, with the methyl group translating the rotation of one ring to the next. As a consequence, the excited state dynamics can be viewed as a torsional couple, where the absorbed photon energy leads to conversion of the out-of-plane orientation from one ring to the other in a volume conserving fashion. A similar modification of the range of methyne dyes may provide a new family of devices for molecular machines, specifically torsional couples.
Collapse
Affiliation(s)
- Jamie Conyard
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Ismael A Heisler
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Yohan Chan
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Philip C Bulman Page
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Stephen R Meech
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi , Departament de Química , Facultat de Ciències , Universitat de Girona , C/ M. A. Capmany 69 , 17003 Girona , Spain .
| |
Collapse
|
14
|
Turkowyd B, Balinovic A, Virant D, Carnero HGG, Caldana F, Endesfelder M, Bourgeois D, Endesfelder U. A General Mechanism of Photoconversion of Green-to-Red Fluorescent Proteins Based on Blue and Infrared Light Reduces Phototoxicity in Live-Cell Single-Molecule Imaging. Angew Chem Int Ed Engl 2017; 56:11634-11639. [PMID: 28574633 DOI: 10.1002/anie.201702870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/27/2017] [Indexed: 11/09/2022]
Abstract
Photoconversion of fluorescent proteins by blue and complementary near-infrared light, termed primed conversion (PC), is a mechanism recently discovered for Dendra2. We demonstrate that controlling the conformation of arginine at residue 66 by threonine at residue 69 of fluorescent proteins from Anthozoan families (Dendra2, mMaple, Eos, mKikGR, pcDronpa protein families) represents a general route to facilitate PC. Mutations of alanine 159 or serine 173, which are known to influence chromophore flexibility and allow for reversible photoswitching, prevent PC. In addition, we report enhanced photoconversion for pcDronpa variants with asparagine 116. We demonstrate live-cell single-molecule imaging with reduced phototoxicity using PC and record trajectories of RNA polymerase in Escherichia coli cells.
Collapse
Affiliation(s)
- Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Alexander Balinovic
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - David Virant
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Haruko G Gölz Carnero
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Fabienne Caldana
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Marc Endesfelder
- Institut für Assyriologie, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Dominique Bourgeois
- Institut de Biologie Structurale, CNRS, Université Grenoble Alpes, CEA, IBS, 38044, Grenoble, France
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| |
Collapse
|
15
|
Wachter RM. Photoconvertible Fluorescent Proteins and the Role of Dynamics in Protein Evolution. Int J Mol Sci 2017; 18:ijms18081792. [PMID: 32962314 PMCID: PMC5578180 DOI: 10.3390/ijms18081792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Photoconvertible fluorescent proteins (pcFPs) constitute a large group of fluorescent proteins related to green fluorescent protein (GFP) that, when exposed to blue light, bear the capability of irreversibly switching their emission color from green to red. Not surprisingly, this fascinating class of FPs has found numerous applications, in particular for the visualization of biological processes. A detailed understanding of the photoconversion mechanism appears indispensable in the design of improved variants for applications such as super-resolution imaging. In this article, recent work is reviewed that involves using pcFPs as a model system for studying protein dynamics. Evidence has been provided that the evolution of pcFPs from a green ancestor involved the natural selection for altered dynamical features of the beta-barrel fold. It appears that photoconversion may be the outcome of a long-range positional shift of a fold-anchoring region. A relatively stiff, rigid element appears to have migrated away from the chromophore-bearing section to the opposite edge of the barrel, thereby endowing pcFPs with increased active site flexibility while keeping the fold intact. In this way, the stage was set for the coupling of light absorption with subsequent chemical transformations. The emerging mechanistic model suggests that highly specific dynamic motions are linked to key chemical steps, preparing the system for a concerted deprotonation and β-elimination reaction that enlarges the chromophore's π-conjugation to generate red color.
Collapse
Affiliation(s)
- Rebekka M Wachter
- School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
16
|
Turkowyd B, Balinovic A, Virant D, Gölz Carnero HG, Caldana F, Endesfelder M, Bourgeois D, Endesfelder U. Ein allgemeiner Mechanismus der Photokonvertierung von grün-zu-rot fluoreszierenden Proteinen unter blauem und infrarotem Licht reduziert Phototoxität in der Einzelmolekülmikroskopie von lebenden Zellen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bartosz Turkowyd
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| | - Alexander Balinovic
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| | - David Virant
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| | - Haruko G. Gölz Carnero
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| | - Fabienne Caldana
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| | - Marc Endesfelder
- Institut für Assyriologie und Hethitologie; Ludwig-Maximilians-Universität München; Geschwister-Scholl-Platz 1 80539 München Deutschland
| | - Dominique Bourgeois
- Institut de Biologie Structurale, CNRS; Université Grenoble Alpes, CEA, IBS; 38044 Grenoble Frankreich
| | - Ulrike Endesfelder
- Abteilung System- und Synthetische Mikrobiologie; Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE-Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Karl-von-Frisch-Straße 16 35043 Marburg Deutschland
| |
Collapse
|
17
|
Bourgeois D. Deciphering Structural Photophysics of Fluorescent Proteins by Kinetic Crystallography. Int J Mol Sci 2017; 18:ijms18061187. [PMID: 28574447 PMCID: PMC5486010 DOI: 10.3390/ijms18061187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/02/2023] Open
Abstract
Because they enable labeling of biological samples in a genetically-encoded manner, Fluorescent Proteins (FPs) have revolutionized life sciences. Photo-transformable fluorescent proteins (PTFPs), in particular, recently attracted wide interest, as their fluorescence state can be actively modulated by light, a property central to the emergence of super-resolution microscopy. PTFPs, however, exhibit highly complex photophysical behaviours that are still poorly understood, hampering the rational engineering of variants with improved performances. We show that kinetic crystallography combined with in crystallo optical spectroscopy, modeling approaches and single-molecule measurements constitutes a powerful tool to decipher processes such as photoactivation, photoconversion, photoswitching, photoblinking and photobleaching. Besides potential applications for the design of enhanced PTFPs, these investigations provide fundamental insight into photoactivated protein dynamics.
Collapse
Affiliation(s)
- Dominique Bourgeois
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France.
| |
Collapse
|
18
|
Tay J, Parkes MA, Addison K, Chan Y, Zhang L, Hailes HC, Bulman Page PC, Meech SR, Blancafort L, Fielding HH. The Effect of Conjugation on the Competition between Internal Conversion and Electron Detachment: A Comparison between Green Fluorescent and Red Kaede Protein Chromophores. J Phys Chem Lett 2017; 8:765-771. [PMID: 28124921 DOI: 10.1021/acs.jpclett.7b00174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Kaede, an analogue of green fluorescent protein (GFP), is a green-to-red photoconvertible fluorescent protein used as an in vivo "optical highlighter" in bioimaging. The fluorescence quantum yield of the red Kaede protein is lower than that of GFP, suggesting that increasing the conjugation modifies the electronic relaxation pathway. Using a combination of anion photoelectron spectroscopy and electronic structure calculations, we find that the isolated red Kaede protein chromophore in the gas phase is deprotonated at the imidazole ring, unlike the GFP chromophore that is deprotonated at the phenol ring. We find evidence of an efficient electronic relaxation pathway from higher-lying electronically excited states to the S1 state of the red Kaede chromophore that is not accessible in the GFP chromophore. Rapid autodetachment from high-lying vibrational states of S1 is found to compete efficiently with internal conversion to the ground electronic state.
Collapse
Affiliation(s)
- Jamie Tay
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, U.K
| | - Michael A Parkes
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, U.K
| | - Kiri Addison
- School of Chemistry, University of East Anglia , Norwich NR4 7TJ, U.K
| | - Yohan Chan
- School of Chemistry, University of East Anglia , Norwich NR4 7TJ, U.K
| | - Lijuan Zhang
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, U.K
| | - Helen C Hailes
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, U.K
| | | | - Stephen R Meech
- School of Chemistry, University of East Anglia , Norwich NR4 7TJ, U.K
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Facultat de Ciències, Universitat de Girona , Campus de Montilivi, C/M. A. Campmany 69, 17003 Girona, Spain
| | - Helen H Fielding
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, U.K
| |
Collapse
|
19
|
Simeon S, Shoombuatong W, Anuwongcharoen N, Preeyanon L, Prachayasittikul V, Wikberg JES, Nantasenamat C. osFP: a web server for predicting the oligomeric states of fluorescent proteins. J Cheminform 2016; 8:72. [PMID: 28053671 PMCID: PMC5167684 DOI: 10.1186/s13321-016-0185-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/29/2016] [Indexed: 11/10/2022] Open
Abstract
Background Currently, monomeric fluorescent proteins (FP) are ideal markers for protein tagging. The prediction of oligomeric states is helpful for enhancing live biomedical imaging. Computational prediction of FP oligomeric states can accelerate the effort of protein engineering efforts of creating monomeric FPs. To the best of our knowledge, this study represents the first computational model for predicting and analyzing FP oligomerization directly from the amino acid sequence. Results After data curation, an exhaustive data set consisting of 397 non-redundant FP oligomeric states was compiled from the literature. Results from benchmarking of the protein descriptors revealed that the model built with amino acid composition descriptors was the top performing model with accuracy, sensitivity and specificity in excess of 80% and MCC greater than 0.6 for all three data subsets (e.g. training, tenfold cross-validation and external sets). The model provided insights on the important residues governing the oligomerization of FP. To maximize the benefit of the generated predictive model, it was implemented as a web server under the R programming environment. Conclusion osFP affords a user-friendly interface that can be used to predict the oligomeric state of FP using the protein sequence. The advantage of osFP is that it is platform-independent meaning that it can be accessed via a web browser on any operating system and device. osFP is freely accessible at http://codes.bio/osfp/ while the source code and data set is provided on GitHub at https://github.com/chaninn/osFP/.. ![]()
Collapse
Affiliation(s)
- Saw Simeon
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Nuttapat Anuwongcharoen
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Likit Preeyanon
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Virapong Prachayasittikul
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Jarl E S Wikberg
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| |
Collapse
|
20
|
Nienhaus K, Nienhaus GU. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:443001. [PMID: 27604321 DOI: 10.1088/0953-8984/28/44/443001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Straße 1, 76131 Karlsruhe, Germany
| | | |
Collapse
|
21
|
Sjulson L, Cassataro D, DasGupta S, Miesenböck G. Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience. Annu Rev Genet 2016; 50:571-594. [PMID: 27732792 DOI: 10.1146/annurev-genet-120215-035011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement.
Collapse
Affiliation(s)
- Lucas Sjulson
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016; .,Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Daniela Cassataro
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Shamik DasGupta
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom; .,Present address: Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom;
| |
Collapse
|
22
|
Pletneva NV, Pletnev S, Pakhomov AA, Chertkova RV, Martynov VI, Muslinkina L, Dauter Z, Pletnev VZ. Crystal structure of the fluorescent protein from Dendronephthya sp. in both green and photoconverted red forms. Acta Crystallogr D Struct Biol 2016; 72:922-32. [PMID: 27487823 PMCID: PMC4973210 DOI: 10.1107/s205979831601038x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/27/2016] [Indexed: 11/10/2022] Open
Abstract
The fluorescent protein from Dendronephthya sp. (DendFP) is a member of the Kaede-like group of photoconvertible fluorescent proteins with a His62-Tyr63-Gly64 chromophore-forming sequence. Upon irradiation with UV and blue light, the fluorescence of DendFP irreversibly changes from green (506 nm) to red (578 nm). The photoconversion is accompanied by cleavage of the peptide backbone at the C(α)-N bond of His62 and the formation of a terminal carboxamide group at the preceding Leu61. The resulting double C(α)=C(β) bond in His62 extends the conjugation of the chromophore π system to include imidazole, providing the red fluorescence. Here, the three-dimensional structures of native green and photoconverted red forms of DendFP determined at 1.81 and 2.14 Å resolution, respectively, are reported. This is the first structure of photoconverted red DendFP to be reported to date. The structure-based mutagenesis of DendFP revealed an important role of positions 142 and 193: replacement of the original Ser142 and His193 caused a moderate red shift in the fluorescence and a considerable increase in the photoconversion rate. It was demonstrated that hydrogen bonding of the chromophore to the Gln116 and Ser105 cluster is crucial for variation of the photoconversion rate. The single replacement Gln116Asn disrupts the hydrogen bonding of Gln116 to the chromophore, resulting in a 30-fold decrease in the photoconversion rate, which was partially restored by a further Ser105Asn replacement.
Collapse
Affiliation(s)
- Nadya V. Pletneva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sergei Pletnev
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA
- Basic Research Program, Leidos Biomedical Research Inc., Argonne, IL 60439, USA
| | - Alexey A. Pakhomov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Rita V. Chertkova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir I. Martynov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Liya Muslinkina
- Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Kazan, Russian Federation
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA
| | - Vladimir Z. Pletnev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
23
|
Photoelectrocyclization as an Activation Mechanism for Organelle-Specific Live-Cell Imaging Probes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Tran MN, Chenoweth DM. Photoelectrocyclization as an activation mechanism for organelle-specific live-cell imaging probes. Angew Chem Int Ed Engl 2015; 54:6442-6. [PMID: 25950154 DOI: 10.1002/anie.201502403] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Indexed: 12/12/2022]
Abstract
Photoactivatable fluorophores are useful tools in live-cell imaging owing to their potential for precise spatial and temporal control. In this report, a new photoactivatable organelle-specific live-cell imaging probe based on a 6π electrocyclization/oxidation mechanism is described. It is shown that this new probe is water-soluble, non-cytotoxic, cell-permeable, and useful for mitochondrial imaging. The probe displays large Stokes shifts in both pre-activated and activated forms, allowing simultaneous use with common dyes and fluorescent proteins. Sequential single-cell activation experiments in dense cellular environments demonstrate high spatial precision and utility in single- or multi-cell labeling experiments.
Collapse
Affiliation(s)
- Mai N Tran
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104 (USA)
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104 (USA).
| |
Collapse
|
25
|
Nienhaus K, Nienhaus GU. Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev 2014; 43:1088-106. [PMID: 24056711 DOI: 10.1039/c3cs60171d] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent proteins (FPs) from the GFP family have become indispensable as marker tools for imaging live cells, tissues and entire organisms. A wide variety of these proteins have been isolated from natural sources and engineered to optimize their properties as genetically encoded markers. Here we review recent developments in this field. A special focus is placed on photoactivatable FPs, for which the fluorescence emission can be controlled by light irradiation at specific wavelengths. They enable regional optical marking in pulse-chase experiments on live cells and tissues, and they are essential marker tools for live-cell optical imaging with super-resolution. Photoconvertible FPs, which can be activated irreversibly via a photo-induced chemical reaction that either turns on their emission or changes their emission wavelength, are excellent markers for localization-based super-resolution microscopy (e.g., PALM). Patterned illumination microscopy (e.g., RESOLFT), however, requires markers that can be reversibly photoactivated many times. Photoswitchable FPs can be toggled repeatedly between a fluorescent and a non-fluorescent state by means of a light-induced chromophore isomerization coupled to a protonation reaction. We discuss the mechanistic origins of the effect and illustrate how photoswitchable FPs are employed in RESOLFT imaging. For this purpose, special FP variants with low switching fatigue have been introduced in recent years. Despite nearly two decades of FP engineering by many laboratories, there is still room for further improvement of these important markers for live cell imaging.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straβe 1, 76131 Karlsruhe, Germany
| | | |
Collapse
|
26
|
Steady-state and time-resolved spectroscopic studies of green-to-red photoconversion of fluorescent protein Dendra2. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Kim JK, Cho Y, Laskowski RA, Ryu SE, Sugihara K, Kim DS. BetaVoid: Molecular voids via beta-complexes and Voronoi diagrams. Proteins 2014; 82:1829-49. [DOI: 10.1002/prot.24537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/03/2014] [Accepted: 02/08/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Jae-Kwan Kim
- Vorononi Diagram Research Center; Hanyang University; Korea
| | - Youngsong Cho
- Vorononi Diagram Research Center; Hanyang University; Korea
| | - Roman A Laskowski
- European Bioinformatics Institute; Wellcome Trust Genome Campus; United Kingdom
| | - Seong Eon Ryu
- Department of Bioengineering; Hanyang University; Korea
| | - Kokichi Sugihara
- Graduate School of Advanced Mathematical Sciences; Meiji University; Kawasaki Japan
| | - Deok-Soo Kim
- Vorononi Diagram Research Center; Hanyang University; Korea
- Department of Mechanical Engineering; Hanyang University; Korea
| |
Collapse
|
28
|
Moeyaert B, Nguyen Bich N, De Zitter E, Rocha S, Clays K, Mizuno H, van Meervelt L, Hofkens J, Dedecker P. Green-to-red photoconvertible Dronpa mutant for multimodal super-resolution fluorescence microscopy. ACS NANO 2014; 8:1664-73. [PMID: 24410188 DOI: 10.1021/nn4060144] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Advanced imaging techniques crucially depend on the labels used. In this work, we present the structure-guided design of a fluorescent protein that displays both reversibly photochromic and green-to-red photoconversion behavior. We first designed ffDronpa, a mutant of the photochromic fluorescent protein Dronpa that matures up to three times faster while retaining its interesting photochromic features. Using a combined evolutionary and structure-driven rational design strategy, we developed a green-to-red photoconvertible ffDronpa mutant, called pcDronpa, and explored different optimization strategies that resulted in its improved version, pcDronpa2. This fluorescent probe combines a high brightness with low photobleaching and photoblinking. We herein show that, despite its tetrameric nature, pcDronpa2 allows for multimodal subdiffraction imaging by sequentially imaging a given sample using both super-resolution fluctuation imaging and localization microscopy.
Collapse
Affiliation(s)
- Benjamien Moeyaert
- Department of Chemistry, KU Leuven , Celestijnenlaan 200F, bus 2404, 3001 Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zimmer MH, Li B, Shahid RS, Peshkepija P, Zimmer M. Structural Consequences of Chromophore Formation and Exploration of Conserved Lid Residues amongst Naturally Occurring Fluorescent Proteins. Chem Phys 2014; 429:5-11. [PMID: 24465077 PMCID: PMC3899699 DOI: 10.1016/j.chemphys.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Computational methods were used to generate the lowest energy conformations of the immature precyclized forms of the 28 naturally occurring GFP-like proteins deposited in the pdb. In all 28 GFP-like proteins, the beta-barrel contracts upon chromophore formation and becomes more rigid. Our prior analysis of over 260 distinct naturally occurring GFP-like proteins revealed that most of the conserved residues are located in the top and bottom of the barrel in the turns between the β-sheets.(1) Structural analyses, molecular dynamics simulations and the Anisotropic Network Model were used to explore the role of these conserved lid residues as possible folding nuclei. Our results are internally consistent and show that the conserved residues in the top and bottom lids undergo relatively less translational movement than other lid residues, and a number of these residues may play an important role as hinges or folding nuclei in the fluorescent proteins.
Collapse
Affiliation(s)
- Matthew H. Zimmer
- Chemistry Department, Connecticut College, New London, CT06320, USA
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Binsen Li
- Chemistry Department, Connecticut College, New London, CT06320, USA
| | - Ramza S. Shahid
- Chemistry Department, Connecticut College, New London, CT06320, USA
| | - Paola Peshkepija
- Chemistry Department, Connecticut College, New London, CT06320, USA
| | - Marc Zimmer
- Chemistry Department, Connecticut College, New London, CT06320, USA
| |
Collapse
|
30
|
Fron E, Sliwa M, Adam V, Michiels J, Rocha S, Dedecker P, Hofkens J, Mizuno H. Excited state dynamics of the photoconvertible fluorescent protein Kaede revealed by ultrafast spectroscopy. Photochem Photobiol Sci 2014; 13:867-74. [DOI: 10.1039/c3pp50335f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Kim H, Grunkemeyer TJ, Modi C, Chen L, Fromme R, Matz MV, Wachter RM. Acid-base catalysis and crystal structures of a least evolved ancestral GFP-like protein undergoing green-to-red photoconversion. Biochemistry 2013; 52:8048-59. [PMID: 24134825 DOI: 10.1021/bi401000e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In green-to-red photoconvertible fluorescent proteins, a three-ring chromophore is generated by the light-activated incorporation of a histidine residue into the conjugated π-system. We have determined the pH-rate profile and high- and low-pH X-ray structures of a least evolved ancestor (LEA) protein constructed in the laboratory based on statistical sequence analysis. LEA incorporates the minimal number of substitutions necessary and sufficient for facile color conversion and exhibits a maximal photoconversion quantum yield of 0.0015 at pH 6.1. The rate measurements provide a bell-shaped curve, indicating that the reaction is controlled by the two apparent pKa values, 4.5 ± 0.2 and 7.5 ± 0.2, flanking the chromophore pKa of 6.3 ± 0.1. These data demonstrate that the photoconversion rate of LEA is not proportional to the A-form of the GFP-like chromophore, as previously reported for Kaede-type proteins. We propose that the observed proton dissociation constants arise from the internal quadrupolar charge network consisting of Glu222, His203, Glu148, and Arg69. Increased active site flexibility may facilitate twisting of the chromophore upon photoexcitation, thereby disrupting the charge network and activating the Glu222 carboxylate for the abstraction of a proton from a carbon acid. Subsequently, the proton may be delivered to the Phe64 carbonyl by a hydrogen-bonded network involving Gln42 or by means of His65 side chain rotations promoted by protein breathing motions. A structural comparison of LEA with the nonphotoconvertible LEA-Q42A variant supports a role for Gln42 either in catalysis or in the coplanar preorganization of the green chromophore with the His65 imidazole ring.
Collapse
Affiliation(s)
- Hanseong Kim
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang MY, Li GS, Li LP. First-principles study of one and two-photon absorption of an artificial fluorescent protein chromophore by 5-hydroxytryptophan substitution. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Wolf H, Barisas BG, Dietz KJ, Seidel T. Kaede for detection of protein oligomerization. MOLECULAR PLANT 2013; 6:1453-62. [PMID: 23430050 DOI: 10.1093/mp/sst039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Photoconvertible fluorescent proteins such as Kaede are routinely used for tracking proteins, organelles, and whole cells. Kaede was the first identified photoconvertible fluorescent protein and has since become the most commonly used photoconvertible fluorescent protein in vertebrates. Kaede can be irreversibly converted from a green to a red fluorescent form upon UV/blue light irradiation and fluorescence of each form can be isolated separately by appropriate filter sets. Spectral properties of the Kaede forms allow Förster resonance energy transfer (FRET) from the green form as donor to the red form as acceptor. As a sample containing oligomerized Kaede-containing proteins is exposed to UV or blue light, FRET first increases as green Kaede is converted to red and then decreases as the green donor becomes depleted. Thus, FRET information is potentially obtained from a number of independent measurements taken as photoconversion proceeds. We demonstrate here the application of this approach to detect homo-aggregation and conformational dynamics of plant protein constructs. Structural alterations of 2-cys peroxiredoxin–Kaede were successfully detected depending on the redox state in living plant cells. Photoconversion was performed gradually and donor emission, acceptor emission, and FRET-derived sensitized acceptor emission were measured at each step of conversion. Since photoconvertible proteins have not been routinely used in plants, two plasmids have been designed to facilitate plant applications. The plasmids allow either transient expression of Kaede-containing protein constructs in plant cells or Gateway cloning and stable transformation of plants.
Collapse
Affiliation(s)
- Heike Wolf
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, D-33501 Bielefeld, Germany
| | | | | | | |
Collapse
|
34
|
Pletnev VZ, Pletneva NV, Lukyanov KA, Souslova EA, Fradkov AF, Chudakov DM, Chepurnykh T, Yampolsky IV, Wlodawer A, Dauter Z, Pletnev S. Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1850-60. [PMID: 23999308 PMCID: PMC3760133 DOI: 10.1107/s0907444913015424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022]
Abstract
A key property of proteins of the green fluorescent protein (GFP) family is their ability to form a chromophore group by post-translational modifications of internal amino acids, e.g. Ser65-Tyr66-Gly67 in GFP from the jellyfish Aequorea victoria (Cnidaria). Numerous structural studies have demonstrated that the green GFP-like chromophore represents the `core' structure, which can be extended in red-shifted proteins owing to modifications of the protein backbone at the first chromophore-forming position. Here, the three-dimensional structures of green laGFP (λex/λem = 502/511 nm) and red laRFP (λex/λem ≃ 521/592 nm), which are fluorescent proteins (FPs) from the lancelet Branchiostoma lanceolatum (Chordata), were determined together with the structure of a red variant laRFP-ΔS83 (deletion of Ser83) with improved folding. Lancelet FPs are evolutionarily distant and share only ∼20% sequence identity with cnidarian FPs, which have been extensively characterized and widely used as genetically encoded probes. The structure of red-emitting laRFP revealed three exceptional features that have not been observed in wild-type fluorescent proteins from Cnidaria reported to date: (i) an unusual chromophore-forming sequence Gly58-Tyr59-Gly60, (ii) the presence of Gln211 at the position of the conserved catalytic Glu (Glu222 in Aequorea GFP), which proved to be crucial for chromophore formation, and (iii) the absence of modifications typical of known red chromophores and the presence of an extremely unusual covalent bond between the Tyr59 C(β) atom and the hydroxyl of the proximal Tyr62. The impact of this covalent bond on the red emission and the large Stokes shift (∼70 nm) of laRFP was verified by extensive structure-based site-directed mutagenesis.
Collapse
Affiliation(s)
- Vladimir Z. Pletnev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nadya V. Pletneva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Konstantin A. Lukyanov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina A. Souslova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Arkady F. Fradkov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry M. Chudakov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatyana Chepurnykh
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilia V. Yampolsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA
| | - Sergei Pletnev
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA
- Basic Research Program, SAIC-Frederick, Argonne, IL 60439, USA
| |
Collapse
|
35
|
Fron E, Van der Auweraer M, Moeyaert B, Michiels J, Mizuno H, Hofkens J, Adam V. Revealing the excited-state dynamics of the fluorescent protein Dendra2. J Phys Chem B 2013; 117:2300-13. [PMID: 23356883 DOI: 10.1021/jp309219m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Green-to-red photoconversion is a reaction that occurs in a limited number of fluorescent proteins and that is currently mechanistically debated. In this contribution, we report on our investigation of the photoconvertible fluorescent protein Dendra2 by employing a combination of pump-probe, up-conversion and single photon timing spectroscopic techniques. Our findings indicate that upon excitation of the neutral green state an excited state proton transfer proceeds with a time constant of 3.4 ps between the neutral green and the anionic green states. In concentrated solution we detected resonance energy transfer (25 ps time constant) between green and red monomers. The time-resolved emission spectra suggest also the formation of a super-red species, first observed for DsRed (a red fluorescent protein from the corallimorph species Discosoma) and consistent with peculiar structural details present in both proteins.
Collapse
Affiliation(s)
- Eduard Fron
- Division of Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
36
|
Dedecker P, De Schryver FC, Hofkens J. Fluorescent Proteins: Shine on, You Crazy Diamond. J Am Chem Soc 2013; 135:2387-402. [DOI: 10.1021/ja309768d] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Dedecker
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Frans C. De Schryver
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
37
|
Ding L, Chung LW, Morokuma K. Reaction mechanism of photoinduced decarboxylation of the photoactivatable green fluorescent protein: an ONIOM(QM:MM) study. J Phys Chem B 2013; 117:1075-84. [PMID: 23272644 DOI: 10.1021/jp3112952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoactivatable (PA) fluorescent proteins are a new class of fluorescent proteins in which the intensity of fluorescence is dramatically enhanced through photoinduced decarboxylation process. In the present study, the reaction mechanism of the photoinduced decarboxylation in PA-GFP was investigated by the ONIOM(QM:MM) method. The decarboxylation process starts from the first excited state (IntraCT state) and then proceeds along an InterCT state after the first crossing (or an approximate transition state). Relative to an equilibrium structure in S(0), a barrier of ~94 kcal/mol to reach this approximate transition state is the rate-determining step for the entire decarboxylation process. The InterCT state becomes the open-shell ground state in the product, after the subsequent crossing with a closed-shell state that holds an extra electron on the dissociated CO(2). The present study elucidated for the first time the mechanism of the photoinduced decarboxylation of PA-GFP and supports the widely accepted Kolbe pathway, which could be a common mechanism for the irreversible photoinduced decarboxylation in different fluorescent proteins.
Collapse
Affiliation(s)
- Lina Ding
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | | | | |
Collapse
|
38
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Verkhusha VV, Turoverov KK. Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:221-78. [PMID: 23351712 DOI: 10.1016/b978-0-12-407699-0.00004-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the current view of the interaction between the β-barrel scaffold of fluorescent proteins and their unique chromophore located in the internal helix. The chromophore originates from the polypeptide chain and its properties are influenced by the surrounding protein matrix of the β-barrel. On the other hand, it appears that a chromophore tightens the β-barrel scaffold and plays a crucial role in its stability. Furthermore, the presence of a mature chromophore causes hysteresis of protein unfolding and refolding. We survey studies measuring protein unfolding and refolding using traditional methods as well as new approaches, such as mechanical unfolding and reassembly of truncated fluorescent proteins. We also analyze models of fluorescent protein unfolding and refolding obtained through different approaches, and compare the results of protein folding in vitro to co-translational folding of a newly synthesized polypeptide chain.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
39
|
de Rosny E, Carpentier P. GFP-like phototransformation mechanisms in the cytotoxic fluorescent protein KillerRed unraveled by structural and spectroscopic investigations. J Am Chem Soc 2012; 134:18015-21. [PMID: 23025285 DOI: 10.1021/ja3073337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
KillerRed (KR) is a red fluorescent protein recognized as an efficient genetically encoded photosensitizer. KR generates reactive oxygen species via a complex process of photoreactions, ending up in photobleaching, the mechanism of which remains obscure. In order to clarify these mechanisms, we focus on a single mutant V44A (A44-KR) exhibiting the solely green component of KR. We report on the laser-induced structural transformations of A44-KR at cryogenic temperature, which we have investigated by combining UV-vis fluorescence/absorption spectroscopy with X-ray crystallography. Like the well-known GFP, A44-KR possesses a mixture of protonated (A) absorbing at 397 and deprotonated (B) absorbing at 515 nm chromophores, which are stressed by intense prolonged violet and blue laser sources. Both illuminations directly drive the B-chromophores toward a bleached trans isomerized form. A-type chromophores are sensitive only to violet illumination and are phototransformed either into a deprotonated green fluorescent form by decarboxylation of E218 or into a bleached form with a disordered p-hydroxybenzylidene. In crystallo spectroscopy at cryo-temperature allowed the identification and dissection of an exhaustive scheme of intermediates and end-products resulting from the phototransformation of A44-KR. This constitutes a framework for understanding the photochemistry of the photosensitizer KillerRed.
Collapse
Affiliation(s)
- Eve de Rosny
- Institut de Biologie Structurale Jean-Pierre Ebel, Groupe Métalloprotéines, UMR 5075, Université Joseph Fourier Grenoble 1, CEA, CNRS, 41 rue Horowitz, 38027, Grenoble Cedex 1, France
| | | |
Collapse
|
40
|
Miyawaki A, Shcherbakova DM, Verkhusha VV. Red fluorescent proteins: chromophore formation and cellular applications. Curr Opin Struct Biol 2012; 22:679-88. [PMID: 23000031 PMCID: PMC3737244 DOI: 10.1016/j.sbi.2012.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/22/2012] [Accepted: 09/01/2012] [Indexed: 11/25/2022]
Abstract
In the last decade, a number of red fluorescent proteins (RFPs) that emit orange, red, and far-red fluorescence have been isolated from anthozoans (corals), and developed through directed molecular evolution. An attractive property possessed by some RFPs is that their red fluorescence can be turned on or modulated by illumination at specific wavelengths. Recent progress in the development of RFPs has been accompanied with detailed studies of chromophore chemistry. A thorough understanding of the molecular mechanisms involved in the post-translational modifications of red chromophores would enable scientists to design RFPs with the desired properties to advance imaging applications. This article provides a broad perspective on the chemistry and applications of RFPs.
Collapse
Affiliation(s)
- Atsushi Miyawaki
- Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
41
|
Affiliation(s)
- Fedor V. Subach
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Vladislav V. Verkhusha
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
42
|
Abstract
Proteins of the GFP (green fluorescent protein) family have revolutionized life sciences because they allow the tagging of biological samples in a non-invasive genetically encoded way. ‘Phototransformable’ fluorescent proteins, in particular, have recently attracted widespread interest, as their fluorescence state can be finely tuned by actinic light, a property central to the development of super-resolution microscopy. Beyond microscopy applications, phototransformable fluorescent proteins are also exquisite tools to investigate fundamental protein dynamics. Using light to trigger processes such as photoactivation, photoconversion, photoswitching, blinking and photobleaching allows the exploration of the conformational landscape in multiple directions. In the present paper, we review how structural dynamics of phototransformable fluorescent proteins can be monitored by combining X-ray crystallography, in crystallo optical spectroscopy and simulation tools such as quantum chemistry/molecular mechanics hybrid approaches. Besides their usefulness to rationally engineer better performing fluorescent proteins for nanoscopy and other biotechnological applications, these investigations provide fundamental insights into protein dynamics.
Collapse
|
43
|
Liu F, Lu Y, Pieuchot L, Dhavale T, Jedd G. Import oligomers induce positive feedback to promote peroxisome differentiation and control organelle abundance. Dev Cell 2011; 21:457-68. [PMID: 21920312 DOI: 10.1016/j.devcel.2011.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/06/2011] [Accepted: 08/02/2011] [Indexed: 11/28/2022]
Abstract
A fundamental question in cell biology is how cells control organelle composition and abundance. Woronin bodies are fungal peroxisomes centered on a crystalline core of the self-assembled HEX protein. Despite using the canonical peroxisome import machinery for biogenesis, Woronin bodies are scarce compared to the overall peroxisome population. Here, we show that HEX oligomers promote the differentiation of a subpopulation of peroxisomes, which become enlarged and highly active in matrix protein import. HEX physically associates with the essential matrix import peroxin, PEX26, and promotes its enrichment in the membrane of differentiated peroxisomes. In addition, a PEX26 mutant that disrupts differentiation produces increased numbers of aberrantly small Woronin bodies. Our data suggest a mechanism where HEX oligomers recruit a key component of the import machinery, which promotes the import of additional HEX. This type of positive feedback provides a basic mechanism for the production of an organelle subpopulation of distinct composition and abundance.
Collapse
Affiliation(s)
- Fangfang Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
44
|
Bakshi S, Bratton BP, Weisshaar JC. Subdiffraction-limit study of Kaede diffusion and spatial distribution in live Escherichia coli. Biophys J 2011; 101:2535-44. [PMID: 22098753 DOI: 10.1016/j.bpj.2011.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 11/30/2022] Open
Abstract
Photoactivation localization microscopy (PALM) is used to study the spatial distribution and diffusion of single copies of the protein Kaede in the cytoplasm of live Escherichia coli under moderate growth conditions (67 min doubling time). The spatial distribution of Kaede is uniform within the cytoplasm. The cytoplasmic radius of 380 ± 30 nm varies little from cell to cell. Single-particle tracking using 4 ms exposure times reveals negatively curved plots of mean-square displacement versus time. A detailed comparison with Monte Carlo simulations in a spherocylindrical volume shows that the curvature can be quantitatively understood in terms of free diffusion within a confining volume. The mean diffusion coefficient across cells is <D(Kaede)> = 7.3 ± 1.1 μm(2)·s(-1), consistent with a homotetrameric form of Kaede. The distribution of squared displacements along the long axis for individual Kaede molecules is consistent with homogeneous diffusion. However, for longer cells, a spatial map of one-step estimates of the diffusion coefficient along x suggests that diffusion is ∼20-40% faster within nucleoids than in the ribosome-rich region lying between nucleoid lobes at the cell mid-plane. Fluorescence recovery after photobleaching yielded <D(FRAP)> = 8.3 ± 1.6 μm(2)·s(-1), in agreement with the single-particle tracking results.
Collapse
Affiliation(s)
- Somenath Bakshi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
45
|
Adam V, Moeyaert B, David C, Mizuno H, Lelimousin M, Dedecker P, Ando R, Miyawaki A, Michiels J, Engelborghs Y, Hofkens J. Rational Design of Photoconvertible and Biphotochromic Fluorescent Proteins for Advanced Microscopy Applications. ACTA ACUST UNITED AC 2011; 18:1241-51. [DOI: 10.1016/j.chembiol.2011.08.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 01/26/2023]
|
46
|
Wiedenmann J, Gayda S, Adam V, Oswald F, Nienhaus K, Bourgeois D, Nienhaus GU. From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. JOURNAL OF BIOPHOTONICS 2011; 4:377-90. [PMID: 21319305 DOI: 10.1002/jbio.201000122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 05/11/2023]
Abstract
Fluorescent proteins from the GFP family have become indispensable imaging tools in life sciences research. In recent years, a wide variety of these proteins were discovered in non-bioluminescent anthozoa. Some of them feature exciting new properties, including the possibility to change their fluorescence quantum yield and/or color by irradiating with light of specific wavelengths. These photoactivatable fluorescent proteins enable many interesting applications including pulse-chase experiments and super-resolution imaging. In this review, we discuss the development of advanced variants, using a structure-function based, molecular biophysics approach, of the photoactivatable fluorescent protein EosFP, which can be photoconverted from green to red fluorescence by ~400 nm light. A variety of applications are presented that demonstrate the versatility of these marker proteins in live-cell imaging.
Collapse
Affiliation(s)
- Jörg Wiedenmann
- National Oceanography Centre, University of Southampton, Southampton SO143ZH, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Pakhomov AA, Martynov VI. A method for the determination of the three-dimensional structure of fluorescent proteins based on homology modeling and mass spectrometry. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:429-32. [DOI: 10.1134/s1068162011030137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Nienhaus GU, Nienhaus K, Wiedenmann J. Structure–Function Relationships in Fluorescent Marker Proteins of the Green Fluorescent Protein Family. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/4243_2011_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
49
|
van Thor JJ. Photoconversion of the Green Fluorescent Protein and Related Proteins. SPRINGER SERIES ON FLUORESCENCE 2011. [DOI: 10.1007/4243_2011_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Li X, Chung LW, Mizuno H, Miyawaki A, Morokuma K. Competitive Mechanistic Pathways for Green-to-Red Photoconversion in the Fluorescent Protein Kaede: A Computational Study. J Phys Chem B 2010; 114:16666-75. [DOI: 10.1021/jp1101779] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xin Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Lung Wa Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Hideaki Mizuno
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Atsushi Miyawaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| |
Collapse
|