1
|
Tarău D, Grünberger F, Pilsl M, Reichelt R, Heiß F, König S, Urlaub H, Hausner W, Engel C, Grohmann D. Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment. Nucleic Acids Res 2024; 52:6017-6035. [PMID: 38709902 PMCID: PMC11162788 DOI: 10.1093/nar/gkae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Archaeal transcription is carried out by a multi-subunit RNA polymerase (RNAP) that is highly homologous in structure and function to eukaryotic RNAP II. Among the set of basal transcription factors, only Spt5 is found in all domains of life, but Spt5 has been shaped during evolution, which is also reflected in the heterodimerization of Spt5 with Spt4 in Archaea and Eukaryotes. To unravel the mechanistic basis of Spt4/5 function in Archaea, we performed structure-function analyses using the archaeal transcriptional machinery of Pyrococcus furiosus (Pfu). We report single-particle cryo-electron microscopy reconstructions of apo RNAP and the archaeal elongation complex (EC) in the absence and presence of Spt4/5. Surprisingly, Pfu Spt4/5 also binds the RNAP in the absence of nucleic acids in a distinct super-contracted conformation. We show that the RNAP clamp/stalk module exhibits conformational flexibility in the apo state of RNAP and that the enzyme contracts upon EC formation or Spt4/5 engagement. We furthermore identified a contact of the Spt5-NGN domain with the DNA duplex that stabilizes the upstream boundary of the transcription bubble and impacts Spt4/5 activity in vitro. This study, therefore, provides the structural basis for Spt4/5 function in archaeal transcription and reveals a potential role beyond the well-described support of elongation.
Collapse
Affiliation(s)
- Daniela Tarău
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Felix Grünberger
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Michael Pilsl
- Regensburg Center for Biochemistry (RCB), Structural Biochemistry Group, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Florian Heiß
- Regensburg Center for Biochemistry (RCB), Structural Biochemistry Group, University of Regensburg, Regensburg, Germany
| | - Sabine König
- Bioanalytic Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytic Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Winfried Hausner
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry (RCB), Structural Biochemistry Group, University of Regensburg, Regensburg, Germany
| | - Dina Grohmann
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Mihara T, Koyano H, Hingamp P, Grimsley N, Goto S, Ogata H. Taxon Richness of "Megaviridae" Exceeds those of Bacteria and Archaea in the Ocean. Microbes Environ 2018; 33:162-171. [PMID: 29806626 PMCID: PMC6031395 DOI: 10.1264/jsme2.me17203] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family “Megaviridae”, suggest that it has an ancient origin that may predate the emergence of major eukaryotic lineages. Environmental genomics has since revealed that Megaviridae represents one of the most abundant and diverse groups of viruses in the ocean. In the present study, we compared the taxon richness and phylogenetic diversity of Megaviridae, Bacteria, and Archaea using DNA-dependent RNA polymerase as a common marker gene. By leveraging existing microbial metagenomic data, we found higher richness and phylogenetic diversity in this single viral family than in the two prokaryotic domains. We also obtained results showing that the evolutionary rate alone cannot account for the observed high diversity of Megaviridae lineages. These results suggest that the Megaviridae family has a deep co-evolutionary history with diverse marine protists since the early “Big-Bang” radiation of the eukaryotic tree of life.
Collapse
Affiliation(s)
- Tomoko Mihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto University
| | - Hitoshi Koyano
- School of Life Science and Technology, Laboratory of Genome Informatics, Tokyo Institute of Technology
| | | | - Nigel Grimsley
- Integrative Marine Biology Laboratory (BIOM), CNRS UMR7232, Sorbonne Universities
| | - Susumu Goto
- Database Center for Life Science, Joint-Support Center for Data Science Research, Research Organization of Information and Systems
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University
| |
Collapse
|
4
|
Engel C, Neyer S, Cramer P. Distinct Mechanisms of Transcription Initiation by RNA Polymerases I and II. Annu Rev Biophys 2018; 47:425-446. [DOI: 10.1146/annurev-biophys-070317-033058] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA polymerases I and II (Pol I and Pol II) are the eukaryotic enzymes that catalyze DNA-dependent synthesis of ribosomal RNA and messenger RNA, respectively. Recent work shows that the transcribing forms of both enzymes are similar and the fundamental mechanisms of RNA chain elongation are conserved. However, the mechanisms of transcription initiation and its regulation differ between Pol I and Pol II. Recent structural studies of Pol I complexes with transcription initiation factors provided insights into how the polymerase recognizes its specific promoter DNA, how it may open DNA, and how initiation may be regulated. Comparison with the well-studied Pol II initiation system reveals a distinct architecture of the initiation complex and visualizes promoter- and gene-class-specific aspects of transcription initiation. On the basis of new structural studies, we derive a model of the Pol I transcription cycle and provide a molecular movie of Pol I transcription that can be used for teaching.
Collapse
Affiliation(s)
- Christoph Engel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Current affiliation: Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Simon Neyer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Gehring AM, Santangelo TJ. Manipulating archaeal systems to permit analyses of transcription elongation-termination decisions in vitro. Methods Mol Biol 2015; 1276:263-79. [PMID: 25665569 DOI: 10.1007/978-1-4939-2392-2_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription elongation by multisubunit RNA polymerases (RNAPs) is processive, but neither uniform nor continuous. Regulatory events during elongation include pausing, backtracking, arrest, and transcription termination, and it is critical to determine whether the absence of continued synthesis is transient or permanent. Here we describe mechanisms to generate large quantities of stable archaeal elongation complexes on a solid support to permit (1) single-round transcription, (2) walking of RNAP to any defined template position, and (3) discrimination of transcripts that are associated with RNAP from those that are released to solution. This methodology is based on untagged proteins transcribing biotin- and digoxigenin-labeled DNA templates in association with paramagnetic particles.
Collapse
Affiliation(s)
- Alexandra M Gehring
- Department of Biochemistry and Molecular Biology, 383 MRB, Colorado State University, Fort Collins, CO, 80523, USA
| | | |
Collapse
|
6
|
The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration. Nat Commun 2014; 5:5132. [PMID: 25311937 PMCID: PMC4657547 DOI: 10.1038/ncomms6132] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/02/2014] [Indexed: 01/22/2023] Open
Abstract
The archaeal transcription apparatus is closely related to the eukaryotic RNA polymerase II (Pol II) system. Archaeal RNA polymerase (RNAP) and Pol II evolved from a common ancestral structure and the euryarchaeal RNAP is the simplest member of the extant archaeal/eukaryotic RNAP family. Here we report the first crystal structure of euryarchaeal RNAP from Thermococcus kodakarensis (Tko). This structure reveals that the clamp domain is able to swing away from the main body of RNAP in the presence of the Rpo4/Rpo7 stalk by coordinated movements of these domains. More detailed structure-function analysis of yeast Pol II and Tko RNAP identifies structural additions to Pol II that correspond to the binding sites of Pol II-specific general transcription factors including TFIIF, TFIIH and Mediator. Such comparisons provide a framework for dissecting interactions between RNAP and these factors during formation of the pre-initiation complex.
Collapse
|
7
|
Sommer B, Waege I, Pöllmann D, Seitz T, Thomm M, Sterner R, Hausner W. Activation of a chimeric Rpb5/RpoH subunit using library selection. PLoS One 2014; 9:e87485. [PMID: 24489922 PMCID: PMC3906176 DOI: 10.1371/journal.pone.0087485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/29/2013] [Indexed: 11/19/2022] Open
Abstract
Rpb5 is a general subunit of all eukaryotic RNA polymerases which consists of a N-terminal and a C-terminal domain. The corresponding archaeal subunit RpoH contains only the conserved C-terminal domain without any N-terminal extensions. A chimeric construct, termed rp5H, which encodes the N-terminal yeast domain and the C-terminal domain from Pyrococcus furiosus is unable to complement the lethal phenotype of a yeast rpb5 deletion strain (Δrpb5). By applying a random mutagenesis approach we found that the amino acid exchange E197K in the C-terminal domain of the chimeric Rp5H, either alone or with additional exchanges in the N-terminal domain, leads to heterospecific complementation of the growth deficiency of Δrpb5. Moreover, using a recently described genetic system for Pyrococcus we could demonstrate that the corresponding exchange E62K in the archaeal RpoH subunit alone without the eukaryotic N-terminal extension was stable, and growth experiments indicated no obvious impairment in vivo. In vitro transcription experiments with purified RNA polymerases showed an identical activity of the wild type and the mutant Pyrococcus RNA polymerase. A multiple alignment of RpoH sequences demonstrated that E62 is present in only a few archaeal species, whereas the great majority of sequences within archaea and eukarya contain a positively charged amino acid at this position. The crystal structures of the Sulfolobus and yeast RNA polymerases show that the positively charged arginine residues in subunits RpoH and Rpb5 most likely form salt bridges with negatively charged residues from subunit RpoK and Rpb1, respectively. A similar salt bridge might stabilize the interaction of Rp5H-E197K with a neighboring subunit of yeast RNA polymerase and thus lead to complementation of Δrpb5.
Collapse
Affiliation(s)
- Bettina Sommer
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Ingrid Waege
- Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - David Pöllmann
- Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Tobias Seitz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Michael Thomm
- Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
- * E-mail: (RS); (WH)
| | - Winfried Hausner
- Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
- * E-mail: (RS); (WH)
| |
Collapse
|
8
|
Abstract
The ability of organisms to sense and respond to their environment is essential to their survival. This is no different for members of the third domain of life, the Archaea. Archaea are found in diverse and often extreme habitats. However, their ability to sense and respond to their environment at the level of gene expression has been understudied when compared to bacteria and eukaryotes. Over the last decade, the field has expanded, and a variety of unique and interesting regulatory schemes have been unraveled. In this review, the current state of knowledge of archaeal transcription regulation is explored.
Collapse
|
9
|
Pluchon PF, Fouqueau T, Crezé C, Laurent S, Briffotaux J, Hogrel G, Palud A, Henneke G, Godfroy A, Hausner W, Thomm M, Nicolas J, Flament D. An extended network of genomic maintenance in the archaeon Pyrococcus abyssi highlights unexpected associations between eucaryotic homologs. PLoS One 2013; 8:e79707. [PMID: 24244547 PMCID: PMC3820547 DOI: 10.1371/journal.pone.0079707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
In Archaea, the proteins involved in the genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of eukaryotes. Characterizations of components of the eukaryotic-type replication machinery complex provided many interesting insights into DNA replication in both domains. In contrast, DNA repair processes of hyperthermophilic archaea are less well understood and very little is known about the intertwining between DNA synthesis, repair and recombination pathways. The development of genetic system in hyperthermophilic archaea is still at a modest stage hampering the use of complementary approaches of reverse genetics and biochemistry to elucidate the function of new candidate DNA repair gene. To gain insights into genomic maintenance processes in hyperthermophilic archaea, a protein-interaction network centred on informational processes of Pyrococcus abyssi was generated by affinity purification coupled with mass spectrometry. The network consists of 132 interactions linking 87 proteins. These interactions give insights into the connections of DNA replication with recombination and repair, leading to the discovery of new archaeal components and of associations between eucaryotic homologs. Although this approach did not allow us to clearly delineate new DNA pathways, it provided numerous clues towards the function of new molecular complexes with the potential to better understand genomic maintenance processes in hyperthermophilic archaea. Among others, we found new potential partners of the replication clamp and demonstrated that the single strand DNA binding protein, Replication Protein A, enhances the transcription rate, in vitro, of RNA polymerase. This interaction map provides a valuable tool to explore new aspects of genome integrity in Archaea and also potentially in Eucaryotes.
Collapse
Affiliation(s)
- Pierre-François Pluchon
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Thomas Fouqueau
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Christophe Crezé
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Sébastien Laurent
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Julien Briffotaux
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Gaëlle Hogrel
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Adeline Palud
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Ghislaine Henneke
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Anne Godfroy
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Winfried Hausner
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Michael Thomm
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Jacques Nicolas
- IRISA-INRIA, Campus de Beaulieu, Rennes, France
- * E-mail: (DF); (JN)
| | - Didier Flament
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- * E-mail: (DF); (JN)
| |
Collapse
|
10
|
Affiliation(s)
- Jens Michaelis
- Biophysics
Institute, Faculty of Natural Sciences, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
- Center
for Integrated Protein Science Munich (CIPSM), Department
of Chemistry and Biochemistry, Munich University, Butenandtstrasse 5-13, 81377 München, Germany
| | - Barbara Treutlein
- Department
of Bioengineering, Stanford University, James H. Clark Center, E-300, 318
Campus Drive, Stanford, California 94305-5432, United States
| |
Collapse
|
11
|
Abstract
In recent years, emerging structural information on the aRNAP (archaeal RNA polymerase) apparatus has shown its strong evolutionary relationship with the eukaryotic counterpart, RNA Pol (polymerase) II. A novel atomic model of SshRNAP (Sulfolobus shibatae RNAP) in complex with dsDNA (double-stranded DNA) constitutes a new piece of information helping the understanding of the mechanisms for DNA stabilization at the position downstream of the catalytic site during transcription. In Archaea, in contrast with Eukarya, downstream DNA stabilization is universally mediated by the jaw domain and, in some species, by the additional presence of the Rpo13 subunit. Biochemical and biophysical data, combined with X-ray structures of apo- and DNA-bound aRNAP, have demonstrated the capability of the Rpo13 C-terminus to bind in a sequence-independent manner to downstream DNA. In the present review, we discuss the recent findings on the aRNAP and focus on the mechanisms by which the RNAP stabilizes the bound DNA during transcription.
Collapse
|
12
|
De Carlo S, Lin SC, Taatjes DJ, Hoenger A. Molecular basis of transcription initiation in Archaea. Transcription 2012; 1:103-11. [PMID: 21326901 DOI: 10.4161/trns.1.2.13189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/19/2010] [Accepted: 07/27/2010] [Indexed: 01/24/2023] Open
Abstract
Compared with eukaryotes, the archaeal transcription initiation machinery-commonly known as the Pre-Initiation Complex-is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBP, and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis. Using purified RNAP, TFB, and TBP from the thermophile Pyrococcus furiosus, we assembled the biochemically active PIC at 65ºC. The intact archaeal PIC was isolated by implementing a cross-linking technique followed by size-exclusion chromatography, and the structure of this 440 kDa assembly was determined using electron microscopy and single-particle reconstruction techniques. Combining difference maps with crystal structure docking of various sub-domains, TBP and TFB were localized within the macromolecular PIC. TBP/TFB assemble near the large RpoB subunit and the RpoD/L "foot" domain behind the RNAP central cleft. This location mimics that of yeast TBP and TFIIB in complex with yeast RNAP II. Collectively, these results define the structural organization of the archaeal transcription machinery and suggest a conserved core PIC architecture.
Collapse
Affiliation(s)
- Sacha De Carlo
- Department of Chemistry, City College of the City University of New York, NY, USA.
| | | | | | | |
Collapse
|
13
|
Lessner FH, Jennings ME, Hirata A, Duin EC, Lessner DJ. Subunit D of RNA polymerase from Methanosarcina acetivorans contains two oxygen-labile [4Fe-4S] clusters: implications for oxidant-dependent regulation of transcription. J Biol Chem 2012; 287:18510-23. [PMID: 22457356 DOI: 10.1074/jbc.m111.331199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit D of multisubunit RNA polymerase from many species of archaea is predicted to bind one to two iron-sulfur (Fe-S) clusters, the function of which is unknown. A survey of encoded subunit D in the genomes of sequenced archaea revealed six distinct groups based on the number of complete or partial [4Fe-4S] cluster motifs within domain 3. Only subunit D from strictly anaerobic archaea, including all members of the Methanosarcinales, are predicted to bind two [4Fe-4S] clusters. We report herein the purification and characterization of Methanosarcina acetivorans subunit D in complex with subunit L. Expression of subunit D and subunit L in Escherichia coli resulted in the purification of a D-L heterodimer with only partial [4Fe-4S] cluster content. Reconstitution in vitro with iron and sulfide revealed that the M. acetivorans D-L heterodimer is capable of binding two redox-active [4Fe-4S] clusters. M. acetivorans subunit D deleted of domain 3 (DΔD3) was still capable of co-purifying with subunit L but was devoid of [4Fe-4S] clusters. Affinity purification of subunit D or subunit DΔD3 from M. acetivorans resulted in the co-purification of endogenous subunit L with each tagged subunit D. Overall, these results suggest that domain 3 of subunit D is required for [4Fe-4S] cluster binding, but the [4Fe-4S] clusters and domain 3 are not required for the formation of the D-L heterodimer. However, exposure of two [4Fe-4S] cluster-containing D-L heterodimer to oxygen resulted in loss of the [4Fe-4S] clusters and subsequent protein aggregation, indicating that the [4Fe-4S] clusters influence the stability of the D-L heterodimer and therefore have the potential to regulate the assembly and/or activity of RNA polymerase in an oxidant-dependent manner.
Collapse
Affiliation(s)
- Faith H Lessner
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | | | |
Collapse
|
14
|
Ruan W, Lehmann E, Thomm M, Kostrewa D, Cramer P. Evolution of two modes of intrinsic RNA polymerase transcript cleavage. J Biol Chem 2011; 286:18701-7. [PMID: 21454497 DOI: 10.1074/jbc.m111.222273] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During gene transcription, the RNA polymerase (Pol) active center can catalyze RNA cleavage. This intrinsic cleavage activity is strong for Pol I and Pol III but very weak for Pol II. The reason for this difference is unclear because the active centers of the polymerases are virtually identical. Here we show that Pol II gains strong cleavage activity when the C-terminal zinc ribbon domain (C-ribbon) of subunit Rpb9 is replaced by its counterpart from the Pol III subunit C11. X-ray analysis shows that the C-ribbon has detached from its site on the Pol II surface and is mobile. Mutagenesis indicates that the C-ribbon transiently inserts into the Pol II pore to complement the active center. This mechanism is also used by transcription factor IIS, a factor that can bind Pol II and induce strong RNA cleavage. Together with published data, our results indicate that Pol I and Pol III contain catalytic C-ribbons that complement the active center, whereas Pol II contains a non-catalytic C-ribbon that is immobilized on the enzyme surface. Evolution of the Pol II system may have rendered mRNA transcript cleavage controllable by the dissociable factor transcription factor IIS to enable promoter-proximal gene regulation and elaborate 3'-processing and transcription termination.
Collapse
Affiliation(s)
- Wenjie Ruan
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
15
|
Martinez-Rucobo FW, Sainsbury S, Cheung ACM, Cramer P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J 2011; 30:1302-10. [PMID: 21386817 PMCID: PMC3094117 DOI: 10.1038/emboj.2011.64] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/17/2011] [Indexed: 01/24/2023] Open
Abstract
Spt5 and NusG play a conserved role in stimulating RNA polymerase II transcription elongation and processivity. Here, the crystal structure of Spt4/5 bound to the RNA polymerase clamp domain reveals that the factor binds above DNA and RNA in the active centre cleft preventing premature dissociation of the polymerase. Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP-associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N-terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C-terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors.
Collapse
Affiliation(s)
- Fuensanta W Martinez-Rucobo
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
16
|
Abstract
To elucidate the mechanism of transcription by cellular RNA polymerases (RNAPs), high-resolution X-ray crystal structures together with structure-guided biochemical, biophysical, and genetics studies are essential. The recently solved X-ray crystal structures of archaeal RNAP allow a structural comparison of the transcription machinery among all three domains of life. The archaea were once thought of closely related to bacteria, but they are now considered to be more closely related to the eukaryote at the molecular level than bacteria. According to these structures, the archaeal transcription apparatus, which includes RNAP and general transcription factors (GTFs), is similar to the eukaryotic transcription machinery. Yet, the transcription regulators, activators and repressors, encoded by archaeal genomes are closely related to bacterial factors. Therefore, archaeal transcription appears to possess an intriguing hybrid of eukaryotic-type transcription apparatus and bacterial-like regulatory mechanisms. Elucidating the transcription mechanism in archaea, which possesses a combination of bacterial and eukaryotic transcription mechanisms that are commonly regarded as separate and mutually exclusive, can provide data that will bring basic transcription mechanisms across all life forms.
Collapse
Affiliation(s)
- Sung-Hoon Jun
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
17
|
Klein BJ, Bose D, Baker KJ, Yusoff ZM, Zhang X, Murakami KS. RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc Natl Acad Sci U S A 2011; 108:546-50. [PMID: 21187417 PMCID: PMC3021056 DOI: 10.1073/pnas.1013828108] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spt4/5 in archaea and eukaryote and its bacterial homolog NusG is the only elongation factor conserved in all three domains of life and plays many key roles in cotranscriptional regulation and in recruiting other factors to the elongating RNA polymerase. Here, we present the crystal structure of Spt4/5 as well as the structure of RNA polymerase-Spt4/5 complex using cryoelectron microscopy reconstruction and single particle analysis. The Spt4/5 binds in the middle of RNA polymerase claw and encloses the DNA, reminiscent of the DNA polymerase clamp and ring helicases. The transcription elongation complex model reveals that the Spt4/5 is an upstream DNA holder and contacts the nontemplate DNA in the transcription bubble. These structures reveal that the cellular RNA polymerases also use a strategy of encircling DNA to enhance its processivity as commonly observed for many nucleic acid processing enzymes including DNA polymerases and helicases.
Collapse
Affiliation(s)
- Brianna J. Klein
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and
| | - Daniel Bose
- Division of Molecular Biosciences, Centre for Structural Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kevin J. Baker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and
| | - Zahirah M. Yusoff
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and
| | - Xiaodong Zhang
- Division of Molecular Biosciences, Centre for Structural Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and
| |
Collapse
|
18
|
The Lrp family of transcription regulators in archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010:750457. [PMID: 21151646 PMCID: PMC2995911 DOI: 10.1155/2010/750457] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/20/2010] [Indexed: 11/26/2022]
Abstract
Archaea possess a eukaryotic-type basal transcription apparatus that is regulated by bacteria-like transcription regulators. A universal and abundant family of transcription regulators are the bacterial/archaeal Lrp-like regulators. The Lrp family is one of the best studied regulator families in archaea, illustrated by investigations of proteins from the archaeal model organisms: Sulfolobus, Pyrococcus, Methanocaldococcus, and Halobacterium. These regulators are extremely versatile in their DNA-binding properties, response to effector molecules, and molecular regulatory mechanisms. Besides being involved in the regulation of the amino acid metabolism, they also regulate central metabolic processes. It appears that these regulatory proteins are also involved in large regulatory networks, because of hierarchical regulations and the possible combinatorial use of different Lrp-like proteins. Here, we discuss the recent developments in our understanding of this important class of regulators.
Collapse
|
19
|
Transcription termination in the plasmid/virus hybrid pSSVx from Sulfolobus islandicus. Extremophiles 2010; 14:453-63. [PMID: 20734095 DOI: 10.1007/s00792-010-0325-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/16/2010] [Indexed: 01/17/2023]
Abstract
The pSSVx from Sulfolobus islandicus, strain REY15/4, is a hybrid between a plasmid and a fusellovirus. A systematic study previously performed revealed the presence of nine major transcripts, the expression of which was differentially and temporally regulated over the growth cycle of S. islandicus. In this study, two new transcripts were identified. Then, 3' termini of all the RNAs were mapped using adaptor RT-PCR and RNase protection assays, and termination/arrest positions were identified for each transcript. The majority of the identified ending positions were located in the close vicinity of a T-rich sequence and this was consistent with termination signals identifiable for most of archaeal genes. Furthermore, termination also occurred at locations where a T-track sequence was absent but a stem-loop structure could be formed. We propose that an alternative mechanism based on secondary RNA structures and counter-transcripts might be responsible for the transcription termination at these T-track-minus loci in the closely spaced pSSVx genes.
Collapse
|
20
|
Santangelo TJ, Reeve JN. Deletion of switch 3 results in an archaeal RNA polymerase that is defective in transcript elongation. J Biol Chem 2010; 285:23908-15. [PMID: 20511223 DOI: 10.1074/jbc.m109.094565] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Switch 3 is a polypeptide loop conserved in all multisubunit DNA-dependent RNA polymerases (RNAPs) that extends into the main cleft of the RNAP and contacts each base in a nascent transcript as that base is released from the internal DNA-RNA hybrid. Plasmids have been constructed and transformed into Thermococcus kodakaraensis, which direct the constitutive synthesis of the archaeal RNAP subunit RpoB with an N-terminal His(6) tag and the Switch 3 loop either intact (wild-type) or deleted (DeltaS3). RNAPs containing these plasmid-encoded RpoB subunits were purified, and, in vitro, the absence of Switch 3 had no negative effects on transcription initiation or elongation complex stability but reduced the rate of transcript elongation. The defect in elongation occurred at every template position and increased the sensitivity of the archaeal RNAP to intrinsic termination. Comparing these properties and those reported for a bacterial RNAP lacking Switch 3 argues that this loop functions differently in the RNAPs from the two prokaryotic domains. The close structural homology of archaeal and eukaryotic RNAPs would predict that eukaryotic Switch 3 loops likely conform to the archaeal rather than bacterial functional paradigm.
Collapse
|
21
|
Modern Atomic Force Microscopy and Its Application to the Study of Genome Architecture. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2010. [DOI: 10.1007/978-3-642-03535-7_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Grünberg S, Reich C, Zeller ME, Bartlett MS, Thomm M. Rearrangement of the RNA polymerase subunit H and the lower jaw in archaeal elongation complexes. Nucleic Acids Res 2009; 38:1950-63. [PMID: 20040576 PMCID: PMC2847245 DOI: 10.1093/nar/gkp1190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The lower jaws of archaeal RNA polymerase and eukaryotic RNA polymerase II include orthologous subunits H and Rpb5, respectively. The tertiary structure of H is very similar to the structure of the C-terminal domain of Rpb5, and both subunits are proximal to downstream DNA in pre-initiation complexes. Analyses of reconstituted euryarchaeal polymerase lacking subunit H revealed that H is important for open complex formation and initial transcription. Eukaryotic Rpb5 rescues activity of the ΔH enzyme indicating a strong conservation of function for this subunit from archaea to eukaryotes. Photochemical cross-linking in elongation complexes revealed a striking structural rearrangement of RNA polymerase, bringing subunit H near the transcribed DNA strand one helical turn downstream of the active center, in contrast to the positioning observed in preinitiation complexes. The rearrangement of subunits H and A′′ suggest a major conformational change in the archaeal RNAP lower jaw upon formation of the elongation complex.
Collapse
Affiliation(s)
- Sebastian Grünberg
- Lehrstuhl für Mikrobiologie, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
23
|
RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 2009; 462:323-30. [PMID: 19820686 DOI: 10.1038/nature08548] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
Abstract
To initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II-B complex at 4.3 A resolution, and complementary functional data. The results indicate the mechanism of transcription initiation, including the transition to RNA elongation. Promoter DNA is positioned over the Pol II active centre cleft with the 'B-core' domain that binds the wall at the end of the cleft. DNA is then opened with the help of the 'B-linker' that binds the Pol II rudder and clamp coiled-coil at the edge of the cleft. The DNA template strand slips into the cleft and is scanned for the transcription start site with the help of the 'B-reader' that approaches the active site. Synthesis of the RNA chain and rewinding of upstream DNA displace the B-reader and B-linker, respectively, to trigger B release and elongation complex formation.
Collapse
|
24
|
Hirata A, Murakami KS. Archaeal RNA polymerase. Curr Opin Struct Biol 2009; 19:724-31. [PMID: 19880312 DOI: 10.1016/j.sbi.2009.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/21/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
The recently solved X-ray crystal structures of archaeal RNA polymerase (RNAP) allow a structural comparison of the transcription machinery among all three domains of life. Archaeal transcription is very simple and all components, including the structures of general transcription factors and RNAP, are highly conserved in eukaryotes. Therefore, it could be a new model for the dissection of the eukaryotic transcription apparatus. The archaeal RNAP structure also provides a framework for addressing the functional role that Fe-S clusters play within the transcription machinery of archaea and eukaryotes. A comparison between bacterial and archaeal open complex models reveals likely key motifs of archaeal RNAP for DNA unwinding during the open complex formation.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
25
|
Abstract
Thermococcus kodakarensis (formerly Thermococcus kodakaraensis) strains have been constructed with synthetic and natural DNA sequences, predicted to function as archaeal transcription terminators, identically positioned between a constitutive promoter and a beta-glycosidase-encoding reporter gene (TK1761). Expression of the reporter gene was almost fully inhibited by the upstream presence of 5'-TTTTTTTT (T(8)) and was reduced >70% by archaeal intergenic sequences that contained oligo(T) sequences. An archaeal intergenic sequence (t(mcrA)) that conforms to the bacterial intrinsic terminator motif reduced TK1761 expression approximately 90%, but this required only the oligo(T) trail sequence and not the inverted-repeat and loop region. Template DNAs were amplified from each T. kodakarensis strain, and transcription in vitro by T. kodakarensis RNA polymerase was terminated by sequences that reduced TK1761 expression in vivo. Termination occurred at additional sites on these linear templates, including at a 5'-AAAAAAAA (A(8)) sequence that did not reduce TK1761 expression in vivo. When these sequences were transcribed on supercoiled plasmid templates, termination occurred almost exclusively at oligo(T) sequences. The results provide the first in vivo experimental evidence for intrinsic termination of archaeal transcription and confirm that archaeal transcription termination is stimulated by oligo(T) sequences and is different from the RNA hairpin-dependent mechanism established for intrinsic bacterial termination.
Collapse
|
26
|
Korkhin Y, Unligil UM, Littlefield O, Nelson PJ, Stuart DI, Sigler PB, Bell SD, Abrescia NGA. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure. PLoS Biol 2009; 7:e1000102. [PMID: 19419240 PMCID: PMC2675907 DOI: 10.1371/journal.pbio.1000102] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 03/19/2009] [Indexed: 11/19/2022] Open
Abstract
The archaeal RNA polymerase (RNAP) shares structural similarities with eukaryotic RNAP II but requires a reduced subset of general transcription factors for promoter-dependent initiation. To deepen our knowledge of cellular transcription, we have determined the structure of the 13-subunit DNA-directed RNAP from Sulfolobus shibatae at 3.35 Å resolution. The structure contains the full complement of subunits, including RpoG/Rpb8 and the equivalent of the clamp-head and jaw domains of the eukaryotic Rpb1. Furthermore, we have identified subunit Rpo13, an RNAP component in the order Sulfolobales, which contains a helix-turn-helix motif that interacts with the RpoH/Rpb5 and RpoA'/Rpb1 subunits. Its location and topology suggest a role in the formation of the transcription bubble.
Collapse
Affiliation(s)
- Yakov Korkhin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Ulug M Unligil
- Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Otis Littlefield
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Pamlea J Nelson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, United States of America
| | - David I Stuart
- Division of Structural Biology and the Oxford Protein Production Facility, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Paul B Sigler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Stephen D Bell
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nicola G. A Abrescia
- Division of Structural Biology and the Oxford Protein Production Facility, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Structural Biology Unit, CIC bioGUNE, Derio, Spain
| |
Collapse
|
27
|
Di Fiore A, Fiorentino G, Vitale RM, Ronca R, Amodeo P, Pedone C, Bartolucci S, De Simone G. Structural analysis of BldR from Sulfolobus solfataricus provides insights into the molecular basis of transcriptional activation in Archaea by MarR family proteins. J Mol Biol 2009; 388:559-69. [PMID: 19298823 DOI: 10.1016/j.jmb.2009.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 11/28/2022]
Abstract
The multiple antibiotic resistance regulator (MarR) family constitutes a significant class of transcriptional regulators whose members control a variety of important biological functions such as regulation of response to environmental stress, control of virulence factor production, resistance to antimicrobial agents, and regulation of aromatic catabolic pathways. Although the majority of MarR family members have been characterized as transcriptional repressors, a few examples of transcriptional activators have also been reported. BldR is a newly identified member of this family that has been demonstrated to act as a transcriptional activator in stress response to aromatic compounds in the crenarchaeon Sulfolobus solfataricus. In this work, we report findings on the BldR X-ray crystal structure and present a molecular modeling study on the complex that this protein forms with its cognate DNA sequence, thus providing the first detailed description of the DNA-binding mechanism of an archaeal activator belonging to the MarR family. Two residues responsible for the high binding specificity of this transcriptional regulator were also identified. Our studies demonstrated that, in Archaea, the capability of MarR family members to act as activators or repressors is not related to a particular DNA-binding mechanism but rather could be due to the position of the binding site on the target DNA. Moreover, since genes encoding MarR proteins often control transcription of operons that encode for multisubstrate efflux pumps, our results also provided important insights for the identification of new tools to overcome the microorganism's multidrug resistance.
Collapse
Affiliation(s)
- Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases. Biochem Soc Trans 2009; 37:18-22. [PMID: 19143595 DOI: 10.1042/bst0370018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recent success in reconstitution of RNAPs (RNA polymerases) from hyperthermophilic archaea from bacterially expressed purified subunits opens the way for detailed structure-function analyses of multisubunit RNAPs. The archaeal enzyme shows close structural similarity to eukaryotic RNAP, particularly to polymerase II, and can therefore be used as model for analyses of the eukaryotic transcriptional machinery. The cleft loops in the active centre of RNAP were deleted and modified to unravel their function in interaction with nucleic acids during transcription. The rudder, lid and fork 2 cleft loops were required for promoter-directed initiation and elongation, the rudder was essential for open complex formation. Analyses of transcripts from heteroduplex templates containing stable open complexes revealed that bubble reclosure is required for RNA displacement during elongation. Archaeal transcription systems contain, besides the orthologues of the eukaryotic transcription factors TBP (TATA-box-binding protein) and TF (transcription factor) IIB, an orthologue of the N-terminal part of the alpha subunit of eukaryotic TFIIE, called TFE, whose function is poorly understood. Recent analyses revealed that TFE is involved in open complex formation and, in striking contrast with eukaryotic TFIIE, is also present in elongation complexes. Recombinant archaeal RNAPs lacking specific subunits were used to investigate the functions of smaller subunits. These studies revealed that the subunits P and H, the orthologues of eukaryotic Rpb12 and Rpb5, were not required for RNAP assembly. Subunit P was essential for open complex formation, and the DeltaH enzyme was greatly impaired in all assays, with the exception of promoter recruitment. Recent reconstitution studies indicate that Rpb12 and Rpb5 can be incorporated into archaeal RNAP and can complement for the function of the corresponding archaeal subunit in in vitro transcription assays.
Collapse
|
29
|
Reich C, Zeller M, Milkereit P, Hausner W, Cramer P, Tschochner H, Thomm M. The archaeal RNA polymerase subunit P and the eukaryotic polymerase subunit Rpb12 are interchangeable in vivo and in vitro. Mol Microbiol 2008; 71:989-1002. [PMID: 19183282 PMCID: PMC2680338 DOI: 10.1111/j.1365-2958.2008.06577.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The general subunit of all three eukaryotic RNA polymerases, Rpb12, and subunit P of the archaeal enzyme show sequence similarities in their N-terminal zinc ribbon and some highly conserved residues in the C-terminus. We report here that archaeal subunit P under the control of a strong yeast promoter could complement the lethal phenotype of a RPB12 deletion mutant and that subunit Rpb12 from yeast can functionally replace subunit P during reconstitution of the archaeal RNA polymerase. The ΔP enzyme is unable to form stable open complexes, but can efficiently extend a dinucleotide on a premelted template or RNA on an elongation scaffold. This suggests that subunit P is directly or indirectly involved in promoter opening. The activity of the ΔP enzyme can be rescued by the addition of Rpb12 or subunit P to transcription reactions. Mutation of cysteine residues in the zinc ribbon impair the activity of the enzyme in several assays and this mutated form of P is rapidly replaced by wild-type P in transcription reactions. The conserved zinc ribbon in the N-terminus seems to be important for proper interaction of the complete subunit with other RNA polymerase subunits and a 17-amino-acid C-terminal peptide is sufficient to support all basic RNA polymerase functions in vitro.
Collapse
Affiliation(s)
- Christoph Reich
- Lehrstuhl für Mikrobiologie, Universitat Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Werner F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol 2008; 16:247-50. [PMID: 18468900 DOI: 10.1016/j.tim.2008.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/05/2008] [Accepted: 03/05/2008] [Indexed: 11/29/2022]
Abstract
Evolutionarily related multisubunit RNA polymerases (RNAPs) facilitate gene transcription throughout the three domains of life. During the past seven years an increasing number of bacterial and eukaryotic RNAP structures have been solved; however, the archaeal enzyme remained elusive. Two reports from the Murakami and Cramer laboratories have now filled this gap in our knowledge and enable us to hypothesize about the evolution of the structure and function of RNAPs.
Collapse
Affiliation(s)
- Finn Werner
- Research Department of Structural and Molecular Biology, University College London, Gower Street, London, UK.
| |
Collapse
|
31
|
Early evolution of eukaryotic DNA-dependent RNA polymerases. Trends Genet 2008; 24:211-5. [PMID: 18384908 DOI: 10.1016/j.tig.2008.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 11/21/2022]
|
32
|
Naji S, Bertero MG, Spitalny P, Cramer P, Thomm M. Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement. Nucleic Acids Res 2007; 36:676-87. [PMID: 18073196 PMCID: PMC2241882 DOI: 10.1093/nar/gkm1086] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The active center clefts of RNA polymerase (RNAP) from the archaeon Pyrococcus furiosus (Pfu) and of yeast RNAP II are nearly identical, including four protruding loops, the lid, rudder, fork 1 and fork 2. Here we present a structure–function analysis of recombinant Pfu RNAP variants lacking these cleft loops, and analyze the function of each loop at different stages of the transcription cycle. All cleft loops except fork 1 were required for promoter-directed transcription and efficient elongation. Unprimed de novo transcription required fork 2, the lid was necessary for primed initial transcription. Analysis of templates containing a pre-melted bubble showed that rewinding of upstream DNA drives RNA separation from the template. During elongation, downstream DNA strand separation required template strand binding to an invariant arginine in switch 2, and apparently interaction of an invariant arginine in fork 2 with the non-template strand.
Collapse
Affiliation(s)
- Souad Naji
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|