1
|
Kuznetsova AA, Soloveva MA, Mikushina ES, Gavrilova AA, Bakman AS, Kuznetsov NA. Characterization and PCR Application of Family B DNA Polymerases from Thermococcus stetteri. Life (Basel) 2024; 14:1544. [PMID: 39768253 PMCID: PMC11676844 DOI: 10.3390/life14121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
DNA polymerases from the hyperthermophilic Archaea have attracted considerable attention as PCR enzymes due to their high thermal stability and proofreading 3' → 5' exonuclease activity. This study is the first to report data concerning the purification and biochemical characteristics of the Tst DNA polymerase from Thermococcus stetteri. Both the wild type Tst(wt) DNA polymerase and its chimeric form containing the P36H substitution-which reduces the enzyme's affinity for the U-containing template and dUTP-and the DNA-binding domain Sso7d from S. solfataricus were obtained and analyzed. It was shown that Tst(wt) could effectively amplify up to 6-kb DNA fragments, whereas TstP36H-Sso7d could amplify DNA fragments up to 15 kb. It was found that TstP36H-Sso7d has superior PCR efficiency compared to the commonly used DNA polymerase PfuV93Q-Sso7d. For the amplification of a 2-kb DNA fragment, TstP36H-Sso7d required less than 10 s of extension time, whereas for PfuV93Q-Sso7d, the extension time was no less than 30 s. Steady-state kinetic assays revealed that the dNTP-binding affinity KdNTPm was the same for TstP36H-Sso7d and PfuV93Q-Sso7d, whereas the maximum rate of dNTP incorporation, kcat, was two orders of magnitude higher for TstP36H-Sso7d. Moreover, the incorporation of incorrect dNTP was not observed for TstP36H-Sso7d up to 56 °C, whereas for PfuV93Q-Sso7d, the extension of primer with incorrect dNTP was observed at 37 °C, supporting higher fidelity of TstP36H-Sso7d. The obtained data suggest that TstP36H-Sso7d may be a good candidate for high-fidelity DNA amplification.
Collapse
Affiliation(s)
- Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Marina A. Soloveva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena S. Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Anastasia A. Gavrilova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Artemiy S. Bakman
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Lawler JL, Terrell S, Coen DM. The conserved RNP motif of the herpes simplex virus 1 family B DNA polymerase is crucial for viral DNA synthesis but not polymerase activity. Virology 2024; 594:110035. [PMID: 38554655 DOI: 10.1016/j.virol.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.
Collapse
Affiliation(s)
- Jessica L Lawler
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Committee on Virology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Shariya Terrell
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Committee on Virology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Kuznetsova AA, Kuznetsov NA. Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches. Bioengineering (Basel) 2023; 10:1150. [PMID: 37892880 PMCID: PMC10604792 DOI: 10.3390/bioengineering10101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
DNA-dependent DNA polymerases have been intensively studied for more than 60 years and underlie numerous biotechnological and diagnostic applications. In vitro, DNA polymerases are used for DNA manipulations, including cloning, PCR, site-directed mutagenesis, sequencing, and others. Understanding the mechanisms of action of DNA polymerases is important for the creation of new enzymes possessing improved or modified properties. This review is focused on archaeal family B DNA polymerases. These enzymes have high fidelity and thermal stability and are finding many applications in molecular biological methods. Nevertheless, the search for and construction of new DNA polymerases with altered properties is constantly underway, including enzymes for synthetic biology. This brief review describes advances in the development of family B DNA polymerases for PCR, synthesis of xeno-nucleic acids, and reverse transcription.
Collapse
Affiliation(s)
- Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Ahmad S, Ali SF, Iftikhar S, Rashid N. Engineering a DNA polymerase from Pyrobaculum calidifontis for improved activity, processivity and extension rate. Int J Biol Macromol 2023; 233:123545. [PMID: 36740112 DOI: 10.1016/j.ijbiomac.2023.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Positively charged amino acids in the DNA polymerase domain are important for interaction with DNA. Two potential residues in the palm domain of Pca-Pol, a DNA polymerase from Pyrobaculum calidifontis, were identified and mutated to arginine in order to improve the properties of this enzyme. The mutant proteins were heterologously produced in Escherichia coli. Biochemical characterization revealed that there was no significant difference in pH, metal ion, buffer preferences, 3' - 5' exonuclease activity and error rate of the wild-type and the mutant enzymes. However, the specific activity, processivity and extension rate of the mutant enzymes increased significantly. Specific activity of one of the mutants (G522R-E555R) was nearly 9-fold higher than that of the wild-type enzyme. These properties make G522R-E555R mutant enzyme a potential candidate for commercial applications.
Collapse
Affiliation(s)
- Shazeel Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Syed Farhat Ali
- KAM-School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
5
|
Yuan H, Wang Y, Liu XP. The thumb subdomain of Pyrococcus furiosus DNA polymerase is responsible for deoxyuracil binding, hydrolysis and polymerization of nucleotides. Int J Biochem Cell Biol 2022; 144:106171. [PMID: 35093572 DOI: 10.1016/j.biocel.2022.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/02/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
B-family DNA polymerases, which are found in eukaryotes, archaea, viruses, and some bacteria, participate in DNA replication and repair. Starting from the N-terminus of archaeal and bacterial B-family DNA polymerases, three domains include the N-terminal, exonuclease, and polymerase domains. The N-terminal domain of the archaeal B-family DNA polymerase has a conserved deoxyuracil-binding pocket for specially binding the deoxyuracil base on DNA. The exonuclease domain is responsible for removing the mismatched base pair. The polymerase domain is the core functional domain and takes a highly conserved structure composed of fingers, palm and thumb subdomains. Previous studies have demonstrated that the thumb subdomain mainly functions as a DNA-binding element and has coordination with the exonuclease domain and palm subdomain. To further elucidate the possible functions of the thumb subdomain of archaeal B-family DNA polymerases, the thumb subdomain of Pyrococcus furiosus DNA polymerase was mutated, and the effects on three activities were characterized. Our results demonstrate that the thumb subdomain participates in the three activities of archaeal B-family DNA polymerases as a common structural element. Both the N-terminal deoxyuracil-binding pocket and thumb subdomain are critical for deoxyuracil binding. Moreover, the thumb subdomain assists DNA polymerization and hydrolysis reactions, but it does not contribute to the fidelity of DNA polymerization.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - You Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| |
Collapse
|
6
|
Kropp HM, Ludmann S, Diederichs K, Betz K, Marx A. Structural Basis for The Recognition of Deaminated Nucleobases by An Archaeal DNA Polymerase. Chembiochem 2021; 22:3060-3066. [PMID: 34486208 PMCID: PMC8596578 DOI: 10.1002/cbic.202100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Indexed: 12/04/2022]
Abstract
With increasing temperature, nucleobases in DNA become increasingly damaged by hydrolysis of exocyclic amines. The most prominent damage includes the conversion of cytosine to uracil and adenine to hypoxanthine. These damages are mutagenic and put the integrity of the genome at risk if not repaired appropriately. Several archaea live at elevated temperatures and thus, are exposed to a higher risk of deamination. Earlier studies have shown that DNA polymerases of archaea have the property of sensing deaminated nucleobases in the DNA template and thereby stalling the DNA synthesis during DNA replication providing another layer of DNA damage recognition and repair. However, the structural basis of uracil and hypoxanthine sensing by archaeal B-family DNA polymerases is sparse. Here we report on three new crystal structures of the archaeal B-family DNA polymerase from Thermococcus kodakarensis (KOD) DNA polymerase in complex with primer and template strands that have extended single stranded DNA template 5'-overhangs. These overhangs contain either the canonical nucleobases as well as uracil or hypoxanthine, respectively, and provide unprecedented structural insights into their recognition by archaeal B-family DNA polymerases.
Collapse
Affiliation(s)
- Heike M. Kropp
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
- Konstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Samra Ludmann
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Kay Diederichs
- Department of BiologyUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
- Konstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Karin Betz
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Andreas Marx
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
- Konstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| |
Collapse
|
7
|
Yasukawa K, Yanagihara I, Fujiwara S. Alteration of enzymes and their application to nucleic acid amplification (Review). Int J Mol Med 2020; 46:1633-1643. [PMID: 33000189 PMCID: PMC7521554 DOI: 10.3892/ijmm.2020.4726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of polymerase chain reaction (PCR) in 1985, several methods have been developed to achieve nucleic acid amplification, and are currently used in various fields including clinical diagnosis and life science research. Thus, a wealth of information has accumulated regarding nucleic acid-related enzymes. In this review, some nucleic acid-related enzymes were selected and the recent advances in their modification along with their application to nucleic acid amplification were described. The discussion also focused on optimization of the corresponding reaction conditions. Using newly developed enzymes under well-optimized reaction conditions, the sensitivity, specificity, and fidelity of nucleic acid tests can be improved successfully.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606‑8502, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Osaka 594‑1101, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei‑Gakuin University, Sanda, Hyogo 669‑1337, Japan
| |
Collapse
|
8
|
Zhang L, Jiang D, Shi H, Wu M, Gan Q, Yang Z, Oger P. Characterization and application of a family B DNA polymerase from the hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans. Int J Biol Macromol 2020; 156:217-224. [PMID: 32229210 DOI: 10.1016/j.ijbiomac.2020.03.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
Thermococcus gammatolerans is anaerobic euryarchaeon which grows optimally at 88 °C and its genome encodes a family B DNA polymerase (Tga PolB). Herein, we cloned the gene of Tga PolB, expressed and purified the gene product, and characterized the enzyme biochemically. The recombinant Tga PolB can efficiently synthesize DNA at high temperature, and retain 93% activity after heated at 95 °C for 1.0 h, suggesting that the enzyme is thermostable. Furthermore, the optimal pH for the enzyme activity was measured to be 7.0-9.0. Tga PolB activity is dependent on a divalent cation, among which magnesium ion is optimal. NaCl at low concentration stimulates the enzyme activity but at high concentration inhibits enzyme activity. Interestingly, Tga PolB is able to efficiently bypass uracil in DNA, which is distinct from other archaeal family B DNA pols. By contrast, Tga PolB is halted by an AP site in DNA, as observed in other archaeal family B DNA polymerases. Furthermore, Tga PolB extends the mismatched ends with reduced efficiencies. The enzyme possesses 3'-5' exonuclease activity and this activity is inhibited by dNTPs. The DNA binding assays showed that Tga PolB can efficiently bind to ssDNA and primed DNA, and have a marked preference for primed DNA. Last, Tga PolB can be used in routine PCR.
Collapse
Affiliation(s)
- Likui Zhang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China; Guangling College, Yangzhou University, China.
| | - Donghao Jiang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Haoqiang Shi
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Mai Wu
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Qi Gan
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, City, Hebei Province 071001, China.
| | - Philippe Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France.
| |
Collapse
|
9
|
Houlihan G, Arangundy-Franklin S, Porebski BT, Subramanian N, Taylor AI, Holliger P. Discovery and evolution of RNA and XNA reverse transcriptase function and fidelity. Nat Chem 2020; 12:683-690. [PMID: 32690899 DOI: 10.1038/s41557-020-0502-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
The ability of reverse transcriptases (RTs) to synthesize a complementary DNA from natural RNA and a range of unnatural xeno nucleic acid (XNA) template chemistries, underpins key methods in molecular and synthetic genetics. However, RTs have proven challenging to discover and engineer, in particular for the more divergent XNA chemistries. Here we describe a general strategy for the directed evolution of RT function for any template chemistry called compartmentalized bead labelling and demonstrate it by the directed evolution of efficient RTs for 2'-O-methyl RNA and hexitol nucleic acids and the discovery of RTs for the orphan XNA chemistries D-altritol nucleic acid and 2'-methoxyethyl RNA, for which previously no RTs existed. Finally, we describe the engineering of XNA RTs with active exonucleolytic proofreading as well as the directed evolution of RNA RTs with very high complementary DNA synthesis fidelities, even in the absence of proofreading.
Collapse
Affiliation(s)
- Gillian Houlihan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Benjamin T Porebski
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nithya Subramanian
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexander I Taylor
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
10
|
Archaeal DNA polymerases: new frontiers in DNA replication and repair. Emerg Top Life Sci 2018; 2:503-516. [PMID: 33525823 DOI: 10.1042/etls20180015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.
Collapse
|
11
|
Jaguva Vasudevan AA, Goering W, Häussinger D, Münk C. Detection of APOBEC3 Proteins and Catalytic Activity in Urothelial Carcinoma. Methods Mol Biol 2018; 1655:97-107. [PMID: 28889380 DOI: 10.1007/978-1-4939-7234-0_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Members of the APOBEC3 (A3) family of enzymes were shown to act in an oncogenic manner in several cancer types. Immunodetection of APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3G (A3G) proteins is particularly challenging due to the large sequence homology of these proteins and limited availability of antibodies. Here we combine independent immunoblotting with an in vitro activity assay technique, to detect and categorize specific A3s expressed in urothelial bladder cancer and other cancer cells.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Pathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
12
|
Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme. Nat Commun 2017; 8:15075. [PMID: 28462924 PMCID: PMC5418573 DOI: 10.1038/ncomms15075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/27/2017] [Indexed: 11/26/2022] Open
Abstract
Since their initial characterization over 30 years ago, it has been believed that the archaeal B-family DNA polymerases are single-subunit enzymes. This contrasts with the multi-subunit B-family replicative polymerases of eukaryotes. Here we reveal that the highly studied PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts. Two small subunits, PBP1 and PBP2, associate with distinct surfaces of the larger catalytic subunit and influence the enzymatic properties of the DNA polymerase. Thus, multi-subunit replicative DNA polymerase holoenzymes are present in all three domains of life. We reveal the architecture of the assembly by a combination of cross-linking coupled with mass spectrometry, X-ray crystallography and single-particle electron microscopy. The small subunits stabilize the holoenzyme assembly and the acidic tail of one small subunit mitigates the ability of the enzyme to perform strand-displacement synthesis, with important implications for lagging strand DNA synthesis. The current model for B-family DNA polymerases in archaea is one of single-subunit enzymes in contrast to the multi-subunit complexes in eukaryotes. Here the authors show that PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts.
Collapse
|
13
|
Guo J, Zhang W, Coker AR, Wood SP, Cooper JB, Ahmad S, Ali S, Rashid N, Akhtar M. Structure of the family B DNA polymerase from the hyperthermophilic archaeon Pyrobaculum calidifontis. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:420-427. [PMID: 28471366 DOI: 10.1107/s2059798317004090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/13/2017] [Indexed: 11/10/2022]
Abstract
The family B DNA polymerase from Pyrobaculum calidifontis (Pc-polymerase) consists of 783 amino acids and is magnesium-ion dependent. It has an optimal pH of 8.5, an optimal temperature of 75°C and a half-life of 4.5 h at 95°C, giving it greater thermostability than the widely used Taq DNA polymerase. The enzyme is also capable of PCR-amplifying larger DNA fragments of up to 7.5 kb in length. It was shown to have functional, error-correcting 3'-5' exonuclease activity, as do the related high-fidelity DNA polymerases from Pyrococcus furiosus, Thermococcus kodakarensis KOD1 and Thermococcus gorgonarius, which have extensive commercial applications. Pc-polymerase has a quite low sequence identity of approximately 37% to these enzymes, which, in contrast, have very high sequence identity to each other, suggesting that the P. calidifontis enzyme is distinct. Here, the structure determination of Pc-polymerase is reported, which has been refined to an R factor of 24.47% and an Rfree of 28.81% at 2.80 Å resolution. The domains of the enzyme are arranged in a circular fashion to form a disc with a narrow central channel. One face of the disc has a number of connected crevices in it, which allow the protein to bind duplex and single-stranded DNA. The central channel is thought to allow incoming nucleoside triphosphates to access the active site. The enzyme has a number of unique structural features which distinguish it from other archaeal DNA polymerases and may account for its high processivity. A model of the complex with the primer-template duplex of DNA indicates that the largest conformational change that occurs upon DNA binding is the movement of the thumb domain, which rotates by 7.6° and moves by 10.0 Å. The surface potential of the enzyme is dominated by acidic groups in the central region of the molecule, where catalytic magnesium ions bind at the polymerase and exonuclease active sites. The outer regions are richer in basic amino acids that presumably interact with the sugar-phosphate backbone of DNA. The large number of salt bridges may contribute to the high thermal stability of this enzyme.
Collapse
Affiliation(s)
- Jingxu Guo
- Wolfson Institute for Biomedical Research, Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
| | - Wenling Zhang
- School of Pharmacy, UCL, 29-39 Brunswick Square, London WC1N 1AX, England
| | - Alun R Coker
- Wolfson Institute for Biomedical Research, Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
| | - Steve P Wood
- Wolfson Institute for Biomedical Research, Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
| | - Jonathan B Cooper
- Wolfson Institute for Biomedical Research, Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
| | - Shazeel Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Syed Ali
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhummad Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
14
|
Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1510938. [PMID: 27721668 PMCID: PMC5045986 DOI: 10.1155/2016/1510938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil); Endonuclease V (EndoV, which recognises hypoxanthine); and Endonuclease Q (EndoQ), (which recognises both uracil and hypoxanthine). Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations.
Collapse
|
15
|
Abellón-Ruiz J, Waldron KJ, Connolly BA. Archaeoglobus Fulgidus DNA Polymerase D: A Zinc-Binding Protein Inhibited by Hypoxanthine and Uracil. J Mol Biol 2016; 428:2805-13. [PMID: 27320386 PMCID: PMC4942837 DOI: 10.1016/j.jmb.2016.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 02/03/2023]
Abstract
Archaeal family-D DNA polymerases (Pol-D) comprise a small (DP1) proofreading subunit and a large (DP2) polymerase subunit. Pol-D is one of the least studied polymerase families, and this publication investigates the enzyme from Archaeoglobus fulgidus (Afu Pol-D). The C-terminal region of DP2 contains two conserved cysteine clusters, and their roles are investigated using site-directed mutagenesis. The cluster nearest the C terminus is essential for polymerase activity, and the cysteines are shown to serve as ligands for a single, critical Zn(2+) ion. The cysteines farthest from the C terminal were not required for activity, and a role for these amino acids has yet to be defined. Additionally, it is shown that Afu Pol-D activity is slowed by the template strand hypoxanthine, extending previous results that demonstrated inhibition by uracil. Hypoxanthine was a weaker inhibitor than uracil. Investigations with isolated DP2, which has a measurable polymerase activity, localised the deaminated base binding site to this subunit. Uracil and hypoxanthine slowed Afu Pol-D "in trans", that is, a copied DNA strand could be inhibited by a deaminated base in the alternate strand of a replication fork. The error rate of Afu Pol-D, measured in vitro, was 0.24×10(-5), typical for a polymerase that has been proposed to carry out genome replication in the Archaea. Deleting the 3'-5' proofreading exonuclease activity reduced fidelity twofold. The results presented in this publication considerably increase our knowledge of Pol-D.
Collapse
Affiliation(s)
- Javier Abellón-Ruiz
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Kevin J Waldron
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Bernard A Connolly
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
16
|
Hottin A, Marx A. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Acc Chem Res 2016; 49:418-27. [PMID: 26947566 DOI: 10.1021/acs.accounts.5b00544] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The DNA polymerase-catalyzed incorporation of modified nucleotides is employed in many biological technologies of prime importance, such as next-generation sequencing, nucleic acid-based diagnostics, transcription analysis, and aptamer selection by systematic enrichment of ligands by exponential amplification (SELEX). Recent studies have shown that 2'-deoxynucleoside triphosphates (dNTPs) that are functionalized with modifications at the nucleobase such as dyes, affinity tags, spin and redox labels, or even oligonucleotides are substrates for DNA polymerases, even if modifications of high steric demand are used. The position at which the modification is introduced in the nucleotide has been identified as crucial for retaining substrate activity for DNA polymerases. Modifications are usually attached at the C5 position of pyrimidines and the C7 position of 7-deazapurines. Furthermore, it has been shown that the nature of the modification may impact the efficiency of incorporation of a modified nucleotide into the nascent DNA strand by a DNA polymerase. This Account places functional data obtained in studies of the incorporation of modified nucleotides by DNA polymerases in the context of recently obtained structural data. Crystal structure analysis of a Thermus aquaticus (Taq) DNA polymerase variant (namely, KlenTaq DNA polymerase) in ternary complex with primer-template DNA and several modified nucleotides provided the first structural insights into how nucleobase-modified triphosphates are tolerated. We found that bulky modifications are processed by KlenTaq DNA polymerase as a result of cavities in the protein that enable the modification to extend outside the active site. In addition, we found that the enzyme is able to adapt to different modifications in a flexible manner and adopts different amino acid side-chain conformations at the active site depending on the nature of the nucleotide modification. Different "strategies" (i.e., hydrogen bonding, cation-π interactions) enable the protein to stabilize the respective protein-substrate complex without significantly changing the overall structure of the complex. Interestingly, it was also discovered that a modified nucleotide may be more efficiently processed by KlenTaq DNA polymerase when the 3'-primer terminus is also a modified nucleotide instead of a nonmodified natural one. Indeed, the modifications of two modified nucleotides at adjacent positions can interact with each other (i.e., by π-π interactions) and thereby stabilize the enzyme-substrate complex, resulting in more efficient transformation. Several studies have indicated that archeal DNA polymerases belonging to sequence family B are better suited for the incorporation of nucleobase-modified nucleotides than enzymes from family A. However, significantly less structural data are available for family B DNA polymerases. In order to gain insights into the preference for modified substrates by members of family B, we succeeded in obtaining binary structures of 9°N and KOD DNA polymerases bound to primer-template DNA. We found that the major groove of the archeal family B DNA polymerases is better accessible than in family A DNA polymerases. This might explain the observed superiority of family B DNA polymerases in polymerizing nucleotides that bear bulky modifications located in the major groove, such as modification at C5 of pyrimidines and C7 of 7-deazapurines. Overall, this Account summarizes our recent findings providing structural insight into the mechanism by which modified nucleotides are processed by DNA polymerases. It provides guidelines for the design of modified nucleotides, thus supporting future efforts based on the acceptance of modified nucleotides by DNA polymerases.
Collapse
Affiliation(s)
- Audrey Hottin
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
17
|
Thierry E, Brennich M, Round A, Buisson M, Burmeister WP, Hutin S. Production and characterisation of Epstein-Barr virus helicase-primase complex and its accessory protein BBLF2/3. Virus Genes 2015; 51:171-81. [PMID: 26292944 DOI: 10.1007/s11262-015-1233-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022]
Abstract
The helicase-primase complex is part of the lytic DNA replication machinery of herpesviruses, but up to now, almost nothing is known about its structure. For Epstein-Barr virus it consists in the helicase BBLF4, the primase BSLF1 and the accessory protein BBLF2/3. The accessory protein shows only weak sequence homology within the herpesvirus family but may be related to an inactive B-family polymerase. BSLF1 belongs to the archaeo-eukaryotic primase family, whereas the helicase BBLF4 has been related either to Dda helicases of caudovirales or to Pif1 helicases. We produced the helicase-primase complex in insect cells using a baculovirus coding for all three proteins simultaneously. The soluble monomeric helicase-primase complex containing the three proteins with 1:1:1 stoichiometry showed ATPase activity, which is strongly stimulated in the presence of ssDNA oligomers. Furthermore, we expressed BBLF2/3 as soluble monomeric protein and performed small-angle X-ray scattering experiments which yielded an envelope whose shape is compatible with B-family polymerases.
Collapse
Affiliation(s)
- Eric Thierry
- Univ. Grenoble Alpes, UVHCI, 38000, Grenoble, France.,CNRS, UVHCI, 38000, Grenoble, France
| | - Martha Brennich
- European Synchrotron Radiation Facility (ESRF), 38000, Grenoble, France
| | - Adam Round
- EMBL Grenoble Outstation, UVHCI, 38000, Grenoble, France
| | - Marlyse Buisson
- Laboratoire de Virologie, Centre Hospitalo-Universitaire de Grenoble, B.P. 217, 38043, Grenoble Cedex 9, France
| | - Wim P Burmeister
- Univ. Grenoble Alpes, UVHCI, 38000, Grenoble, France. .,CNRS, UVHCI, 38000, Grenoble, France.
| | - Stephanie Hutin
- Univ. Grenoble Alpes, UVHCI, 38000, Grenoble, France. .,CNRS, UVHCI, 38000, Grenoble, France.
| |
Collapse
|
18
|
Archaeal DNA polymerases in biotechnology. Appl Microbiol Biotechnol 2015; 99:6585-97. [DOI: 10.1007/s00253-015-6781-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
19
|
Ishino S, Ishino Y. DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field. Front Microbiol 2014; 5:465. [PMID: 25221550 PMCID: PMC4148896 DOI: 10.3389/fmicb.2014.00465] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/15/2014] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase is a ubiquitous enzyme that synthesizes complementary DNA strands according to the template DNA in living cells. Multiple enzymes have been identified from each organism, and the shared functions of these enzymes have been investigated. In addition to their fundamental role in maintaining genome integrity during replication and repair, DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, labeling, mutagenesis, and other purposes. The fundamental ability of DNA polymerases to synthesize a deoxyribonucleotide chain is conserved. However, the more specific properties, including processivity, fidelity (synthesis accuracy), and substrate nucleotide selectivity, differ among the enzymes. The distinctive properties of each DNA polymerase may lead to the potential development of unique reagents, and therefore searching for novel DNA polymerase has been one of the major focuses in this research field. In addition, protein engineering techniques to create mutant or artificial DNA polymerases have been successfully developing powerful DNA polymerases, suitable for specific purposes among the many kinds of DNA manipulations. Thermostable DNA polymerases are especially important for PCR-related techniques in molecular biology. In this review, we summarize the history of the research on developing thermostable DNA polymerases as reagents for genetic manipulation and discuss the future of this research field.
Collapse
Affiliation(s)
- Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
20
|
Doublié S, Zahn KE. Structural insights into eukaryotic DNA replication. Front Microbiol 2014; 5:444. [PMID: 25202305 PMCID: PMC4142720 DOI: 10.3389/fmicb.2014.00444] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022] Open
Abstract
Three DNA polymerases of the B family function at the replication fork in eukaryotic cells: DNA polymerases α, δ, and ε. DNA polymerase α, an heterotetramer composed of two primase subunits and two polymerase subunits, initiates replication. DNA polymerases δ and ε elongate the primers generated by pol α. The DNA polymerase from bacteriophage RB69 has served as a model for eukaryotic B family polymerases for some time. The recent crystal structures of pol δ, α, and ε revealed similarities but also a number of unexpected differences between the eukaryotic polymerases and their bacteriophage counterpart, and also among the three yeast polymerases. This review will focus on their shared structural elements as well as the features that are unique to each of these polymerases.
Collapse
Affiliation(s)
- Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont Burlington, VT, USA
| | - Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont Burlington, VT, USA
| |
Collapse
|
21
|
Jozwiakowski SK, Keith BJ, Gilroy L, Doherty AJ, Connolly BA. An archaeal family-B DNA polymerase variant able to replicate past DNA damage: occurrence of replicative and translesion synthesis polymerases within the B family. Nucleic Acids Res 2014; 42:9949-63. [PMID: 25063297 PMCID: PMC4150786 DOI: 10.1093/nar/gku683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A mutant of the high fidelity family-B DNA polymerase from the archaeon Thermococcus gorgonarius (Tgo-Pol), able to replicate past DNA lesions, is described. Gain of function requires replacement of the three amino acid loop region in the fingers domain of Tgo-Pol with a longer version, found naturally in eukaryotic Pol ζ (a family-B translesion synthesis polymerase). Inactivation of the 3′–5′ proof-reading exonuclease activity is also necessary. The resulting Tgo-Pol Z1 variant is proficient at initiating replication from base mismatches and can read through damaged bases, such as abasic sites and thymine photo-dimers. Tgo-Pol Z1 is also proficient at extending from primers that terminate opposite aberrant bases. The fidelity of Tgo-Pol Z1 is reduced, with a marked tendency to make changes at G:C base pairs. Together, these results suggest that the loop region of the fingers domain may play a critical role in determining whether a family-B enzyme falls into the accurate genome-replicating category or is an error-prone translesion synthesis polymerase. Tgo-Pol Z1 may also be useful for amplification of damaged DNA.
Collapse
Affiliation(s)
- Stanislaw K Jozwiakowski
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Brian J Keith
- Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Louise Gilroy
- Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Bernard A Connolly
- Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
22
|
Elshawadfy AM, Keith BJ, Ee Ooi H, Kinsman T, Heslop P, Connolly BA. DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction. Front Microbiol 2014; 5:224. [PMID: 24904539 PMCID: PMC4034419 DOI: 10.3389/fmicb.2014.00224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/28/2014] [Indexed: 11/20/2022] Open
Abstract
The polymerase chain reaction (PCR) is widely applied across the biosciences, with archaeal Family-B DNA polymerases being preferred, due to their high thermostability and fidelity. The enzyme from Pyrococcus furiosus (Pfu-Pol) is more frequently used than the similar protein from Thermococcus kodakarensis (Tkod-Pol), despite the latter having better PCR performance. Here the two polymerases have been comprehensively compared, confirming that Tkod-Pol: (1) extends primer-templates more rapidly; (2) has higher processivity; (3) demonstrates superior performance in normal and real time PCR. However, Tkod-Pol is less thermostable than Pfu-Pol and both enzymes have equal fidelities. To understand the favorable properties of Tkod-Pol, hybrid proteins have been prepared. Single, double and triple mutations were used to site arginines, present at the “forked-point” (the junction of the exonuclease and polymerase channels) of Tkod-Pol, at the corresponding locations in Pfu-Pol, slightly improving PCR performance. The Pfu-Pol thumb domain, responsible for double-stranded DNA binding, has been entirely replaced with that from Tkod-Pol, again giving better PCR properties. Combining the “forked-point” and thumb swap mutations resulted in a marked increase in PCR capability, maintenance of high fidelity and retention of the superior thermostability associated with Pfu-Pol. However, even the arginine/thumb swap mutant falls short of Tkod-Pol in PCR, suggesting further improvement within the Pfu-Pol framework is attainable. The significance of this work is the observation that improvements in PCR performance are easily attainable by blending elements from closely related archaeal polymerases, an approach that may, in future, be extended by using more polymerases from these organisms.
Collapse
Affiliation(s)
- Ashraf M Elshawadfy
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Brian J Keith
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - H'Ng Ee Ooi
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Thomas Kinsman
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Pauline Heslop
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Bernard A Connolly
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Archaeal genome guardians give insights into eukaryotic DNA replication and damage response proteins. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:206735. [PMID: 24701133 PMCID: PMC3950489 DOI: 10.1155/2014/206735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/27/2013] [Accepted: 11/29/2013] [Indexed: 12/28/2022]
Abstract
As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.
Collapse
|
24
|
Pan W, Byrne-Steele M, Wang C, Lu S, Clemmons S, Zahorchak RJ, Han J. DNA polymerase preference determines PCR priming efficiency. BMC Biotechnol 2014; 14:10. [PMID: 24479830 PMCID: PMC3937175 DOI: 10.1186/1472-6750-14-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/23/2014] [Indexed: 11/30/2022] Open
Abstract
Background Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3’ hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Results Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3’ end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. Conclusions DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially available DNA polymerases. The results suggest that the interaction of the DNA polymerase with the primer:template junction during the initiation of DNA polymerization is very important in terms of overall amplification bias and has broader implications for both the primer design process and multiplex PCR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Han
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| |
Collapse
|
25
|
Moors SLC, Herdewijn P, Robben J, Ceulemans A. Cooperative dynamics of a DNA polymerase replicating complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2554-63. [PMID: 24041502 DOI: 10.1016/j.bbapap.2013.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/22/2013] [Accepted: 09/06/2013] [Indexed: 11/15/2022]
Abstract
Engineered DNA polymerases continue to be the workhorses of many applications in biotechnology, medicine and nanotechnology. However, the dynamic interplay between the enzyme and the DNA remains unclear. In this study, we performed an extensive replica exchange with flexible tempering (REFT) molecular dynamics simulation of the ternary replicating complex of the archaeal family B DNA polymerase from the thermophile Thermococcus gorgonarius, right before the chemical step. The convoluted dynamics of the enzyme are reducible to rigid-body motions of six subdomains. Upon binding to the enzyme, the DNA double helix conformation changes from a twisted state to a partially untwisted state. The twisted state displays strong bending motion, whereby the DNA oscillates between a straight and a bent conformation. The dynamics of double-stranded DNA are strongly correlated with rotations of the thumb toward the palm, which suggests an assisting role of the enzyme during DNA translocation. In the complex, the primer-template duplex displays increased preference for the B-DNA conformation at the n-2 and n-3 dinucleotide steps. Interactions at the primer 3' end indicate that Thr541 and Asp540 are the acceptors of the first proton transfer in the chemical step, whereas in the translocation step both residues hold the primer 3' terminus in the vicinity of the priming site, which is crucial for high processivity.
Collapse
Affiliation(s)
- Samuel L C Moors
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
26
|
Wynne SA, Pinheiro VB, Holliger P, Leslie AGW. Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising highly cy-dye labelled DNA. PLoS One 2013; 8:e70892. [PMID: 23940661 PMCID: PMC3733885 DOI: 10.1371/journal.pone.0070892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10) of Pyrococcus furiosus (Pfu) polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP) in PCR and synthesise highly fluorescent “CyDNA” densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide) reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers.
Collapse
Affiliation(s)
- Samantha A. Wynne
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Vitor B. Pinheiro
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andrew G. W. Leslie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Bergen K, Betz K, Welte W, Diederichs K, Marx A. Structures of KOD and 9°N DNA polymerases complexed with primer template duplex. Chembiochem 2013; 14:1058-62. [PMID: 23733496 DOI: 10.1002/cbic.201300175] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 12/29/2022]
Abstract
Replicate it: Structures of KOD and 9°N DNA polymerases, two enzymes that are widely used to replicate DNA with highly modified nucleotides, were solved at high resolution in complex with primer/template duplex. The data elucidate substrate interaction of the two enzymes and pave the way for further optimisation of the enzymes and substrates.
Collapse
Affiliation(s)
- Konrad Bergen
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
28
|
Abstract
In 1959, Arthur Kornberg was awarded the Nobel Prize for his work on the principles by which DNA is duplicated by DNA polymerases. Since then, it has been confirmed in all branches of life that replicative DNA polymerases require a single-stranded template to build a complementary strand, but they cannot start a new DNA strand de novo. Thus, they also depend on a primase, which generally assembles a short RNA primer to provide a 3'-OH that can be extended by the replicative DNA polymerase. The general principles that (1) a helicase unwinds the double-stranded DNA, (2) single-stranded DNA-binding proteins stabilize the single-stranded DNA, (3) a primase builds a short RNA primer, and (4) a clamp loader loads a clamp to (5) facilitate the loading and processivity of the replicative polymerase, are well conserved among all species. Replication of the genome is remarkably robust and is performed with high fidelity even in extreme environments. Work over the last decade or so has confirmed (6) that a common two-metal ion-promoted mechanism exists for the nucleotidyltransferase reaction that builds DNA strands, and (7) that the replicative DNA polymerases always act as a key component of larger multiprotein assemblies, termed replisomes. Furthermore (8), the integrity of replisomes is maintained by multiple protein-protein and protein-DNA interactions, many of which are inherently weak. This enables large conformational changes to occur without dissociation of replisome components, and also means that in general replisomes cannot be isolated intact.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden.
| | | |
Collapse
|
29
|
Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 2013; 195:2322-8. [PMID: 23504010 DOI: 10.1128/jb.02037-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Three evolutionarily distinct families of replicative DNA polymerases, designated polymerase B (Pol B), Pol C, and Pol D, have been identified. Members of the Pol B family are present in all three domains of life, whereas Pol C exists only in Bacteria and Pol D exists only in Archaea. Pol B enzymes replicate eukaryotic chromosomal DNA, and as members of the Pol B family are present in all Archaea, it has been assumed that Pol B enzymes also replicate archaeal genomes. Here we report the construction of Thermococcus kodakarensis strains with mutations that delete or inactivate key functions of Pol B. T. kodakarensis strains lacking Pol B had no detectable loss in viability and no growth defects or changes in spontaneous mutation frequency but had increased sensitivity to UV irradiation. In contrast, we were unable to introduce mutations that inactivated either of the genes encoding the two subunits of Pol D. The results reported establish that Pol D is sufficient for viability and genome replication in T. kodakarensis and argue that Pol D rather than Pol B is likely the replicative DNA polymerase in this archaeon. The majority of Archaea contain Pol D, and, as discussed, if Pol D is the predominant replicative polymerase in Archaea, this profoundly impacts hypotheses for the origin(s), evolution, and distribution of the different DNA replication enzymes and systems now employed in the three domains of life.
Collapse
|
30
|
Richardson TT, Gilroy L, Ishino Y, Connolly BA, Henneke G. Novel inhibition of archaeal family-D DNA polymerase by uracil. Nucleic Acids Res 2013; 41:4207-18. [PMID: 23408858 PMCID: PMC3627576 DOI: 10.1093/nar/gkt083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Archaeal family-D DNA polymerase is inhibited by the presence of uracil in DNA template strands. When the enzyme encounters uracil, following three parameters change: DNA binding increases roughly 2-fold, the rate of polymerization slows by a factor of ≈ 5 and 3'-5' proof-reading exonuclease activity is stimulated by a factor of ≈ 2. Together these changes result in a significant decrease in polymerization activity and a reduction in net DNA synthesis. Pol D appears to interact with template strand uracil irrespective of its distance ahead of the replication fork. Polymerization does not stop at a defined location relative to uracil, rather a general decrease in DNA synthesis is observed. 'Trans' inhibition, the slowing of Pol D by uracil on a DNA strand not being replicated is also observed. It is proposed that Pol D is able to interact with uracil by looping out the single-stranded template, allowing simultaneous contact of both the base and the primer-template junction to give a polymerase-DNA complex with diminished extension ability.
Collapse
Affiliation(s)
- Tomas T Richardson
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
31
|
Sèle C, Gabel F, Gutsche I, Ivanov I, Burmeister WP, Iseni F, Tarbouriech N. Low-resolution structure of vaccinia virus DNA replication machinery. J Virol 2013; 87:1679-89. [PMID: 23175373 PMCID: PMC3554141 DOI: 10.1128/jvi.01533-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/14/2012] [Indexed: 11/20/2022] Open
Abstract
Smallpox caused by the poxvirus variola virus is a highly lethal disease that marked human history and was eradicated in 1979 thanks to a worldwide mass vaccination campaign. This virus remains a significant threat for public health due to its potential use as a bioterrorism agent and requires further development of antiviral drugs. The viral genome replication machinery appears to be an ideal target, although very little is known about its structure. Vaccinia virus is the prototypic virus of the Orthopoxvirus genus and shares more than 97% amino acid sequence identity with variola virus. Here we studied four essential viral proteins of the replication machinery: the DNA polymerase E9, the processivity factor A20, the uracil-DNA glycosylase D4, and the helicase-primase D5. We present the recombinant expression and biochemical and biophysical characterizations of these proteins and the complexes they form. We show that the A20D4 polymerase cofactor binds to E9 with high affinity, leading to the formation of the A20D4E9 holoenzyme. Small-angle X-ray scattering yielded envelopes for E9, A20D4, and A20D4E9. They showed the elongated shape of the A20D4 cofactor, leading to a 150-Å separation between the polymerase active site of E9 and the DNA-binding site of D4. Electron microscopy showed a 6-fold rotational symmetry of the helicase-primase D5, as observed for other SF3 helicases. These results favor a rolling-circle mechanism of vaccinia virus genome replication similar to the one suggested for tailed bacteriophages.
Collapse
Affiliation(s)
- Céleste Sèle
- UJF Grenoble 1-EMBL-CNRS UMI 3265, Unit for Virus Host-Cell Interactions, Grenoble, France
| | - Frank Gabel
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, Grenoble, France
| | - Irina Gutsche
- UJF Grenoble 1-EMBL-CNRS UMI 3265, Unit for Virus Host-Cell Interactions, Grenoble, France
| | - Ivan Ivanov
- UJF Grenoble 1-EMBL-CNRS UMI 3265, Unit for Virus Host-Cell Interactions, Grenoble, France
| | - Wim P. Burmeister
- UJF Grenoble 1-EMBL-CNRS UMI 3265, Unit for Virus Host-Cell Interactions, Grenoble, France
| | - Frédéric Iseni
- Institut de Recherche Biomédicale des Armées, La Tronche, France
| | - Nicolas Tarbouriech
- UJF Grenoble 1-EMBL-CNRS UMI 3265, Unit for Virus Host-Cell Interactions, Grenoble, France
| |
Collapse
|
32
|
Richardson TT, Wu X, Keith BJ, Heslop P, Jones AC, Connolly BA. Unwinding of primer-templates by archaeal family-B DNA polymerases in response to template-strand uracil. Nucleic Acids Res 2013; 41:2466-78. [PMID: 23303790 PMCID: PMC3575838 DOI: 10.1093/nar/gks1364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Archaeal family-B DNA polymerases bind tightly to deaminated bases and stall replication on encountering uracil in template strands, four bases ahead of the primer-template junction. Should the polymerase progress further towards the uracil, for example, to position uracil only two bases in front of the junction, 3′–5′ proof-reading exonuclease activity becomes stimulated, trimming the primer and re-setting uracil to the +4 position. Uracil sensing prevents copying of the deaminated base and permanent mutation in 50% of the progeny. This publication uses both steady-state and time-resolved 2-aminopurine fluorescence to show pronounced unwinding of primer-templates with Pyrococcus furiosus (Pfu) polymerase–DNA complexes containing uracil at +2; much less strand separation is seen with uracil at +4. DNA unwinding has long been recognized as necessary for proof-reading exonuclease activity. The roles of M247 and Y261, amino acids suggested by structural studies to play a role in primer-template unwinding, have been probed. M247 appears to be unimportant, but 2-aminopurine fluorescence measurements show that Y261 plays a role in primer-template strand separation. Y261 is also required for full exonuclease activity and contributes to the fidelity of the polymerase.
Collapse
Affiliation(s)
- Tomas T Richardson
- Institute of Cell and Molecular Biosciences (ICaMB), The University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
33
|
Horváth A, Békési A, Muha V, Erdélyi M, Vértessy BG. Expanding the DNA alphabet in the fruit fly: uracil enrichment in genomic DNA. Fly (Austin) 2012; 7:23-7. [PMID: 23238493 DOI: 10.4161/fly.23192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA integrity is under the control of multiple pathways of nucleotide metabolism and DNA damage recognition and repair. Unusual sets of protein factors involved in these control mechanisms may result in tolerance and accumulation of non-canonical bases within the DNA. We investigate the presence of uracil in genomic DNA of Drosophila melanogaster. Results indicate a developmental pattern and strong correlations between uracil-DNA levels, dUTPase expression and developmental fate of different tissues. The intriguing lack of the catalytically most efficient uracil-DNA glycosylase in Drosophila melanogaster may be a general attribute of Holometabola and is suggested to be involved in the specific characteristics of uracil-DNA metabolism in these insects.
Collapse
Affiliation(s)
- András Horváth
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
34
|
Yasukawa K, Konishi A, Shinomura M, Nagaoka E, Fujiwara S. Kinetic analysis of reverse transcriptase activity of bacterial family A DNA polymerases. Biochem Biophys Res Commun 2012; 427:654-8. [PMID: 23026053 DOI: 10.1016/j.bbrc.2012.09.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/21/2012] [Indexed: 11/26/2022]
Abstract
Some bacterial thermostable, wild-type or genetically engineered family A DNA polymerases have reverse transcriptase activity. However, difference in reverse transcriptase activities of family A DNA polymerases and retroviral reverse transcriptases (RTs) is unclear. In this study, comparative kinetic analysis was performed for the reverse transcriptase activities of the wild-type enzyme of family A DNA polymerase (M1pol(WT)) from Thermus thermophilus M1 and the variant enzyme of family A DNA polymerase (K4pol(L329A)), in which the mutation of Leu329→Ala is undertaken, from Thermotoga petrophila K4. In the incorporation of dTTP into poly(rA)-p(dT)(45), the reaction rates of K4pol(L329A) and M1pol(WT) exhibited a saturated profile of the Michaelis-Menten kinetics for dTTP concentrations but a substrate inhibition profile for poly(rA)-p(dT)(45) concentrations. In contrast, the reaction rates of Moloney murine leukemia virus (MMLV) RT exhibited saturated profiles for both dTTP and poly(rA)-p(dT)(45) concentrations. This suggests that high concentrations of DNA-primed RNA template decrease the efficiency of cDNA synthesis with bacterial family A DNA polymerases.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
35
|
Gouge J, Ralec C, Henneke G, Delarue M. Molecular recognition of canonical and deaminated bases by P. abyssi family B DNA polymerase. J Mol Biol 2012; 423:315-36. [PMID: 22902479 DOI: 10.1016/j.jmb.2012.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Euryarchaeal polymerase B can recognize deaminated bases on the template strand, effectively stalling the replication fork 4nt downstream the modified base. Using Pyrococcus abyssi DNA B family polymerase (PabPolB), we investigated the discrimination between deaminated and natural nucleotide(s) by primer extension assays, electrophoretic mobility shift assays, and X-ray crystallography. Structures of complexes between the protein and DNA duplexes with either a dU or a dH in position +4 were solved at 2.3Å and 2.9Å resolution, respectively. The PabPolB is found in the editing mode. A new metal binding site has been uncovered below the base-checking cavity where the +4 base is flipped out; it is fully hydrated in an octahedral fashion and helps guide the strongly kinked template strand. Four other crystal structures with each of the canonical bases were also solved in the editing mode, and the presence of three nucleotides in the exonuclease site caused a shift in the coordination state of its metal A from octahedral to tetrahedral. Surprisingly, we find that all canonical bases also enter the base-checking pocket with very small differences in the binding geometry and in the calculated binding free energy compared to deaminated ones. To explain how this can lead to stalling of the replication fork, the full catalytic pathway and its branches must be taken into account, during which the base is checked several times. Our results strongly suggest a switch from elongation to editing modes right after nucleotide insertion when the modified base is at position +5.
Collapse
Affiliation(s)
- Jérôme Gouge
- Unité de Dynamique Structurale des Macromolécules, UMR 3528 du CNRS, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | |
Collapse
|
36
|
Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P. Synthetic genetic polymers capable of heredity and evolution. Science 2012; 336:341-4. [PMID: 22517858 PMCID: PMC3362463 DOI: 10.1126/science.1217622] [Citation(s) in RCA: 515] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic information storage and processing rely on just two polymers, DNA and RNA, yet whether their role reflects evolutionary history or fundamental functional constraints is currently unknown. With the use of polymerase evolution and design, we show that genetic information can be stored in and recovered from six alternative genetic polymers based on simple nucleic acid architectures not found in nature [xeno-nucleic acids (XNAs)]. We also select XNA aptamers, which bind their targets with high affinity and specificity, demonstrating that beyond heredity, specific XNAs have the capacity for Darwinian evolution and folding into defined structures. Thus, heredity and evolution, two hallmarks of life, are not limited to DNA and RNA but are likely to be emergent properties of polymers capable of information storage.
Collapse
Affiliation(s)
- Vitor B. Pinheiro
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | | | | - Mikhail Abramov
- REGA Institute, Katholieke Universiteit Leuven, Minderbroederstraat 10, B 3000, Leuven, Belgium
| | - Marleen Renders
- REGA Institute, Katholieke Universiteit Leuven, Minderbroederstraat 10, B 3000, Leuven, Belgium
| | - Su Zhang
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute at Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287-5301, USA
| | - John C. Chaput
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute at Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287-5301, USA
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | | - Piet Herdewijn
- REGA Institute, Katholieke Universiteit Leuven, Minderbroederstraat 10, B 3000, Leuven, Belgium
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| |
Collapse
|
37
|
Sano S, Yamada Y, Shinkawa T, Kato S, Okada T, Higashibata H, Fujiwara S. Mutations to create thermostable reverse transcriptase with bacterial family A DNA polymerase from Thermotoga petrophila K4. J Biosci Bioeng 2011; 113:315-21. [PMID: 22143068 DOI: 10.1016/j.jbiosc.2011.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
Family A DNA polymerase (K4PolI) from Thermotoga petrophila K4 was obtained as a recombinant form, and the enzyme characteristics were analyzed. K4PolI showed thermostable DNA-dependent DNA polymerase activity with 3'-5' exonuclease activity but no detectable RNA-dependent DNA polymerase activity. Its tertiary structure was speculated by in silico modeling to understand the binding situation between K4PolI and template DNA. Nine amino acids in the 3'-5' exonuclease domain are predicted to be involved in DNA/RNA distinction by steric interference with the 2' hydroxy group of ribose. To allow K4PolI to accept RNA as the template, mutants were constructed focusing on the amino acids located around the 2' hydroxyl group of the bound ribose. The mutants in which Thr326, Leu329, Gln384, Phe388, Met408, or Tyr438 was replaced with Ala (designated as T326A, L329A, Q384A, F388A, M408A, or Y438A, respectively) showed RNA-dependent DNA polymerase activity. All the mutants showed reduced 3'-5' exonuclease activity, suggesting that gain of reverse transcriptase activity is correlated with loss of 3'-5' exonuclease activity. In particular, the mutants enabled direct DNA amplification in a single tube format from structured RNA that was not efficiently amplified by retroviral reverse transcriptase.
Collapse
Affiliation(s)
- Sotaro Sano
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these 'antimutagenic' changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient 'mutator' derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.
Collapse
Affiliation(s)
- Alan J Herr
- Department of Pathology, University of Washington, Seattle, USA
| | | | | |
Collapse
|
39
|
Jozwiakowski SK, Connolly BA. A modified family-B archaeal DNA polymerase with reverse transcriptase activity. Chembiochem 2011; 12:35-7. [PMID: 21117129 DOI: 10.1002/cbic.201000640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stanislaw K Jozwiakowski
- Institute of Cell and Molecular Bioscience (ICaMB), University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
40
|
Wang M, Xia S, Blaha G, Steitz TA, Konigsberg WH, Wang J. Insights into base selectivity from the 1.8 Å resolution structure of an RB69 DNA polymerase ternary complex. Biochemistry 2011; 50:581-90. [PMID: 21158418 PMCID: PMC3036992 DOI: 10.1021/bi101192f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacteriophage RB69 DNA polymerase (RB69 pol) has served as a model for investigating how B family polymerases achieve a high level of fidelity during DNA replication. We report here the structure of an RB69 pol ternary complex at 1.8 Å resolution, extending the resolution from our previously reported structure at 2.6 Å [Franklin, M. C., et al. (2001) Cell 105, 657-667]. In the structure presented here, a network of five highly ordered, buried water molecules can be seen to interact with the N3 and O2 atoms in the minor groove of the DNA duplex. This structure reveals how the formation of the closed ternary complex eliminates two ordered water molecules, which are responsible for a kink in helix P in the apo structure. In addition, three pairs of polar-nonpolar interactions have been observed between (i) the Cα hydrogen of G568 and the N3 atom of the dG templating base, (ii) the O5' and C5 atoms of the incoming dCTP, and (iii) the OH group of S565 and the aromatic face of the dG templating base. These interactions are optimized in the dehydrated environment that envelops Watson-Crick nascent base pairs and serve to enhance base selectivity in wild-type RB69 pol.
Collapse
Affiliation(s)
- Mina Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States
| | - Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States
| | - Gregor Blaha
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States
| | - Thomas A. Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, United States,Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - William H. Konigsberg
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 96520-8114, United States,To whom correspondence should be addressed. Phone: (203) 432-5737. Fax: (203) 432-3282. E-mail:
| |
Collapse
|
41
|
Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex. Proc Natl Acad Sci U S A 2011; 108:1845-9. [PMID: 21245343 DOI: 10.1073/pnas.1010933108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication in archaea and eukaryotes is executed by family B DNA polymerases, which exhibit full activity when complexed with the DNA clamp, proliferating cell nuclear antigen (PCNA). This replication enzyme consists of the polymerase and exonuclease moieties responsible for DNA synthesis and editing (proofreading), respectively. Because of the editing activity, this enzyme ensures the high fidelity of DNA replication. However, it remains unclear how the PCNA-complexed enzyme temporally switches between the polymerizing and editing modes. Here, we present the three-dimensional structure of the Pyrococcus furiosus DNA polymerase B-PCNA-DNA ternary complex, which is the core component of the replisome, determined by single particle electron microscopy of negatively stained samples. This structural view, representing the complex in the editing mode, revealed the whole domain configuration of the trimeric PCNA ring and the DNA polymerase, including protein-protein and protein-DNA contacts. Notably, besides the authentic DNA polymerase-PCNA interaction through a PCNA-interacting protein (PIP) box, a novel contact was found between DNA polymerase and the PCNA subunit adjacent to that with the PIP contact. This contact appears to be responsible for the configuration of the complex specific for the editing mode. The DNA was located almost at the center of PCNA and exhibited a substantial and particular tilt angle against the PCNA ring plane. The obtained molecular architecture of the complex, including the new contact found in this work, provides clearer insights into the switching mechanism between the two distinct modes, thus highlighting the functional significance of PCNA in the replication process.
Collapse
|
42
|
Foley MC, Padow VA, Schlick T. DNA pol λ's extraordinary ability to stabilize misaligned DNA. J Am Chem Soc 2010; 132:13403-16. [PMID: 20822183 DOI: 10.1021/ja1049687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DNA polymerases have the venerable task of maintaining genome stability during DNA replication and repair. Errors, nonetheless, occur with error propensities that are polymerase specific. For example, DNA polymerase λ (pol λ) generates single-base deletions through template-strand slippage within short repetitive DNA regions much more readily than does the closely related polymerase β (pol β). Here we present in silico evidence to help interpret pol λ's greater tendency for deletion errors than pol β by its more favorable protein/DNA electrostatic interactions immediately around the extrahelical nucleotide on the template strand. Our molecular dynamics and free energy analyses suggest that pol λ provides greater stabilization to misaligned DNA than aligned DNA. Our study of several pol λ mutants of Lys544 (Ala, Phe, Glu) probes the interactions between the extrahelical nucleotide and the adjacent Lys544 to show that the charge of the 544 residue controls stabilization of the DNA misalignment. In addition, we identify other thumb residues (Arg538, Lys521, Arg517, and Arg514) that play coordinating roles in stabilizing pol λ's interactions with misaligned DNA. Interestingly, their aggregate stabilization effect is more important than that of any one component residue, in contrast to aligned DNA systems, as we determined from mutations of these key residues and energetic analyses. No such comparable network of stabilizing misaligned DNA exists in pol β. Evolutionary needs for DNA repair on substrates with minimal base-pairing, such as those encountered by pol λ in the non-homologous end-joining pathway, may have been solved by a greater tolerance to deletion errors. Other base-flipping proteins share similar binding properties and motions for extrahelical nucleotides.
Collapse
Affiliation(s)
- Meredith C Foley
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
| | | | | |
Collapse
|
43
|
Killelea T, Ghosh S, Tan SS, Heslop P, Firbank SJ, Kool ET, Connolly BA. Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues. Biochemistry 2010; 49:5772-81. [PMID: 20527806 DOI: 10.1021/bi100421r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describe uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at position 2 explains the stimulation of the polymerase 3'-5' proofreading exonuclease, observed with deaminated bases at this location. A beta-hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double-stranded DNA. This denatures the two complementary primer bases and directs the resulting 3' single-stranded extension toward the exonuclease active site. Finally, the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using nonpolar isosteres. Affinity for both 2,4-difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine, respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4-difluorobenzene is seen, confirming a role for shape recognition.
Collapse
Affiliation(s)
- Tom Killelea
- Institute of Cell and Molecular Biosciences (ICaMB), The University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
We present a rapid method for protein tertiary structure analysis which avoids the need for techniques such as circular dichroism and differential scanning calorimetry. Small changes to a protein's noncovalent "soft" structure are detected by exploiting differences in thermal stability and fluorescent reporter binding. It can detect subtle stability differences using micrograms of protein in 2 microL volumes within minutes.
Collapse
Affiliation(s)
- David A Chalton
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | | |
Collapse
|
45
|
Gaidamaviciute E, Tauraite D, Gagilas J, Lagunavicius A. Site-directed chemical modification of archaeal Thermococcus litoralis Sh1B DNA polymerase: Acquired ability to read through template-strand uracils. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1385-93. [DOI: 10.1016/j.bbapap.2010.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/20/2010] [Accepted: 01/29/2010] [Indexed: 11/27/2022]
|
46
|
Tubeleviciute A, Skirgaila R. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding. Protein Eng Des Sel 2010; 23:589-97. [PMID: 20513707 DOI: 10.1093/protein/gzq032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.
Collapse
|
47
|
Johansson E, Macneill SA. The eukaryotic replicative DNA polymerases take shape. Trends Biochem Sci 2010; 35:339-47. [PMID: 20163964 DOI: 10.1016/j.tibs.2010.01.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 11/17/2022]
Abstract
Three multi-subunit DNA polymerase enzymes lie at the heart of the chromosome replication machinery in the eukaryotic cell nucleus. Through a combination of genetic, molecular biological and biochemical analysis, significant advances have been made in understanding the essential roles played by each of these enzymes at the replication fork. Until very recently, however, little information was available on their three-dimensional structures. Lately, a series of crystallographic and electron microscopic studies has been published, allowing the structures of the complexes and their constituent subunits to be visualised in detail for the first time. Taken together, these studies provide significant insights into the molecular makeup of the replication machinery in eukaryotic cells and highlight a number of key areas for future investigation.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
48
|
Russell HJ, Richardson TT, Emptage K, Connolly BA. The 3'-5' proofreading exonuclease of archaeal family-B DNA polymerase hinders the copying of template strand deaminated bases. Nucleic Acids Res 2010; 37:7603-11. [PMID: 19783818 PMCID: PMC2794169 DOI: 10.1093/nar/gkp800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Archaeal family B polymerases bind tightly to the deaminated bases uracil and hypoxanthine in single-stranded DNA, stalling replication on encountering these pro-mutagenic deoxynucleosides four steps ahead of the primer-template junction. When uracil is specifically bound, the polymerase-DNA complex exists in the editing rather than the polymerization conformation, despite the duplex region of the primer-template being perfectly base-paired. In this article, the interplay between the 3'-5' proofreading exonuclease activity and binding of uracil/hypoxanthine is addressed, using the family-B DNA polymerase from Pyrococcus furiosus. When uracil/hypoxanthine is bound four bases ahead of the primer-template junction (+4 position), both the polymerase and the exonuclease are inhibited, profoundly for the polymerase activity. However, if the polymerase approaches closer to the deaminated bases, locating it at +3, +2, +1 or even 0 (paired with the extreme 3' base in the primer), the exonuclease activity is strongly stimulated. In these situations, the exonuclease activity is actually stronger than that seen with mismatched primer-templates, even though the deaminated base-containing primer-templates are correctly base-paired. The resulting exonucleolytic degradation of the primer serves to move the uracil/hypoxanthine away from the primer-template junction, restoring the stalling position to +4. Thus the 3'-5' proofreading exonuclease contributes to the inability of the polymerase to replicate beyond deaminated bases.
Collapse
Affiliation(s)
- Henry J Russell
- Institute of Cell and Molecular Biosciences (ICaMB), University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Anthony J Berdis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
50
|
Jozwiakowski SK, Connolly BA. Plasmid-based lacZalpha assay for DNA polymerase fidelity: application to archaeal family-B DNA polymerase. Nucleic Acids Res 2009; 37:e102. [PMID: 19515939 PMCID: PMC2731893 DOI: 10.1093/nar/gkp494] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preparation of a gapped pUC18 derivative, containing the lacZα reporter gene in the single-stranded region, is described. Gapping is achieved by flanking the lacZα gene with sites for two related nicking endonucleases, enabling the excision of either the coding or non-coding strand. However, the excised strand remains annealed to the plasmid through non-covalent Watson–Crick base-pairing; its removal, therefore, requires a heat–cool cycle in the presence of an exactly complementary competitor DNA. The gapped plasmids can be used to assess DNA polymerase fidelity using in vitro replication, followed by transformation into Escherichia coli and scoring the blue/white colony ratio. Results found with plasmids are similar to the well established method based on gapped M13, in terms of background (∼0.08% in both cases) and the mutation frequencies observed with a number of DNA polymerases, providing validation for this straightforward and technically uncomplicated approach. Several error prone variants of the archaeal family-B DNA polymerase from Pyrococcus furiosus have been investigated, illuminating the potential of the method.
Collapse
Affiliation(s)
- Stanislaw K Jozwiakowski
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|