1
|
Acharjee MC, Ledden B, Thomas B, He X, Messina T, Giurleo J, Talaga D, Li J. Aggregation and Oligomerization Characterization of ß-Lactoglobulin Protein Using a Solid-State Nanopore Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 24:81. [PMID: 38202943 PMCID: PMC10781269 DOI: 10.3390/s24010081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Protein aggregation is linked to many chronic and devastating neurodegenerative human diseases and is strongly associated with aging. This work demonstrates that protein aggregation and oligomerization can be evaluated by a solid-state nanopore method at the single molecule level. A silicon nitride nanopore sensor was used to characterize both the amyloidogenic and native-state oligomerization of a model protein ß-lactoglobulin variant A (βLGa). The findings from the nanopore measurements are validated against atomic force microscopy (AFM) and dynamic light scattering (DLS) data, comparing βLGa aggregation from the same samples at various stages. By calibrating with linear and circular dsDNA, this study estimates the amyloid fibrils' length and diameter, the quantity of the βLGa aggregates, and their distribution. The nanopore results align with the DLS and AFM data and offer additional insight at the level of individual protein molecular assemblies. As a further demonstration of the nanopore technique, βLGa self-association and aggregation at pH 4.6 as a function of temperature were measured at high (2 M KCl) and low (0.1 M KCl) ionic strength. This research highlights the advantages and limitations of using solid-state nanopore methods for analyzing protein aggregation.
Collapse
Affiliation(s)
- Mitu C. Acharjee
- Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Brad Ledden
- Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Brian Thomas
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Xianglan He
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
| | - Troy Messina
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
- Department of Physics, Berea College, Berea, KY 40404, USA
| | - Jason Giurleo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - David Talaga
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
- Department of Chemistry, Sokol Institute, Montclair State University, Montclair, NJ 07043, USA
| | - Jiali Li
- Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Hebisch M, Klostermeier S, Wolf K, Boccaccini AR, Wolf SE, Tanzi RE, Kim DY. The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205037. [PMID: 36642841 PMCID: PMC10015857 DOI: 10.1002/advs.202205037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/13/2023]
Abstract
Creating a cellular model of Alzheimer's disease (AD) that accurately recapitulates disease pathology has been a longstanding challenge. Recent studies showed that human AD neural cells, integrated into three-dimensional (3D) hydrogel matrix, display key features of AD neuropathology. Like in the human brain, the extracellular matrix (ECM) plays a critical role in determining the rate of neuropathogenesis in hydrogel-based 3D cellular models. Aging, the greatest risk factor for AD, significantly alters brain ECM properties. Therefore, it is important to understand how age-associated changes in ECM affect accumulation of pathogenic molecules, neuroinflammation, and neurodegeneration in AD patients and in vitro models. In this review, mechanistic hypotheses is presented to address the impact of the ECM properties and their changes with aging on AD and AD-related dementias. Altered ECM characteristics in aged brains, including matrix stiffness, pore size, and composition, will contribute to disease pathogenesis by modulating the accumulation, propagation, and spreading of pathogenic molecules of AD. Emerging hydrogel-based disease models with differing ECM properties provide an exciting opportunity to study the impact of brain ECM aging on AD pathogenesis, providing novel mechanistic insights. Understanding the role of ECM aging in AD pathogenesis should also improve modeling AD in 3D hydrogel systems.
Collapse
Affiliation(s)
- Matthias Hebisch
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Stefanie Klostermeier
- Institute of Medical PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91052ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Katharina Wolf
- Department of Medicine 1Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Stephan E. Wolf
- Institute of Glass and CeramicsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|
3
|
Examining the effect of bovine serum albumin on the properties and drug release behavior of β-lactoglobulin-derived amyloid fibril-based hydrogels. Int J Biol Macromol 2021; 184:79-91. [PMID: 34097969 DOI: 10.1016/j.ijbiomac.2021.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
Herein, we report the use of β-lactoglobulin (β-LG) combined with bovine serum albumin (BSA) for the preparation of amyloid-based hydrogels with aim of delivering riboflavin. The incorporation of BSA enhanced β-LG fibrillogenesis and protected β-LG fibrils from losing fibrillar structure due to the pH shift. The mechanical properties of hydrogels were observed to be positively correlated with the number of amyloid fibrils. While the addition of BSA induced amyloid fibril formation, its presence between the fibril chains interfered with the entanglement of fibril chains, thus adversely affecting the hydrogels' mechanical properties. Hydrogels' surface microstructure became more compact as the number of amyloid fibrils rose and the presence of BSA could improve hydrogels' surface homogeneity. In vitro riboflavin (RF) release rate was found to be correlated with the number of fibrils and BSA-RF binding affinity. However, when the digestive enzymes were present, the influence of BSA-RF affinity was alleviated due to enzymes' destructive and/or degradative effects on BSA and/or hydrogels, thus the release rate relied on the number of fibrils, which could be adjusted by the amount of BSA. Results indicate that the additional component, BSA, plays an important role in modulating the properties and functions of β-LG fibril-based hydrogels.
Collapse
|
4
|
Bodiga VL, Kudle MR, Vemuri PK, Bodiga S. Crocin inhibits urea-induced amyloid formation by bovine β-lactoglobulin. NEW J CHEM 2021. [DOI: 10.1039/d0nj02335c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crocin stabilizes the native structure of β-lactoglobulin and attenuates urea-induced unfolding and loss of β-sheet structure during amyloidogenesis.
Collapse
Affiliation(s)
- Vijaya Lakshmi Bodiga
- Department of Biochemistry and Molecular Biology
- Institute of Genetics & Hospital for Genetic Diseases
- Begumpet
- Osmania University
- Hyderabad
| | | | | | - Sreedhar Bodiga
- Department of Basic and Social Sciences
- Forest College and Research Institute
- Mulugu
- Siddipet
- India
| |
Collapse
|
5
|
Investigating the effect of sugar-terminated nanoparticles on amyloid fibrillogenesis of β-lactoglobulin. Int J Biol Macromol 2020; 165:291-307. [PMID: 32961178 DOI: 10.1016/j.ijbiomac.2020.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
In vivo tissue deposition of fibrillar protein aggregates is the cause of several degenerative diseases. Evidence suggests that interfering with the pathology-associated amyloid fibrillogenesis by inhibitory molecules is envisaged as the primary therapeutic strategy. Amyloid fibril formation of proteins has been demonstrated to be influenced by nanoparticles/nanomaterials. As compared with their molecular form counterpart, this work examined the effect of sucrose-terminated nanoparticles on the in vitro amyloid fibrillogenesis and structural properties of β-lactoglobulin at pH 2.0 and 80 °C. ThT binding and electron microscopy results demonstrated that sucrose-terminated nanoparticles were able to suppress β-lactoglobulin fibrillogenesis in a concentration-dependent fashion. Importantly, sucrose-terminated nanoparticles showed better β-lactoglobulin fibril-inhibiting ability than sucrose molecules. ANS fluorescence and right-angle light scattering results showed reduced solvent exposure and decreased aggregation, respectively, in the β-lactoglobulin samples upon treatment with sucrose-terminated nanoparticles. Moreover, fluorescence quenching analyses revealed that the static quenching mechanism and formation of a non-fluorescent fluorophore-nanoparticle complex are involved in the nanoparticle-β-lactoglobulin interaction. We believe that the results from this study may suggest that the nanoparticle form of biocompatible sugar-related osmolytes may serve as effective inhibiting/suppressing agents toward protein fibrillogenesis.
Collapse
|
6
|
Zhao D, Zhang X, Xu D, Su G, Li B, Li C. Heat-induced amyloid-like aggregation of β-lactoglobulin affected by glycation by α-dicarbonyl compounds in a model study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:607-613. [PMID: 31591730 DOI: 10.1002/jsfa.10054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/24/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND α-Dicarbonyl compounds are widely generated in the Maillard reaction, caramelization and oil oxidation during heat treatment. These compounds can readily react with lysine and arginine residues of a protein, whereas the influence of these compounds on protein structure and quality has seldom been revealed. This study compared influence of glycation by glucose and α-dicarbonyl compounds on amyloid-like aggregation of β-lactoglobulin (β-LG), both fibrillation kinetics and conformation of aggregates were studied. RESULTS Compared with glycation by glucose, the glycation by α-dicarbonyl compounds resulted in faster reduction of free amino group, sulfydryl group, and the relative content of β-sheet secondary structure, according to the ultraviolet (UV) spectra or circular dichroism (CD) spectra results. Based on the analysis of fibrillation kinetics using thioflavin T (ThT) binding assay, the glycation by α-dicarbonyls were more efficient in suppressing the growth of fibrillar aggregates. In addition, glycation by α-dicarbonyl resulted in amorphous oligomers, which were compared with the amyloid-like aggregates in control and glucose-glycated samples, based on the transmission electron microscopy (TEM) observation. CONCLUSIONS Glycation by α-dicarbonyl compounds induced larger decline in the β-sheet structure of β-LG than glycation by glucose, and thus largely suppressed the amyloid-like aggregation of β-LG and changed the morphology of aggregates. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Di Zhao
- Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, China
- Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, Nanjing, China
| | - Xia Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dan Xu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guoying Su
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Bing Li
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chunbao Li
- Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, China
- Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Poulson BG, Szczepski K, Lachowicz JI, Jaremko L, Emwas AH, Jaremko M. Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv 2019; 10:215-227. [PMID: 35492549 PMCID: PMC9047971 DOI: 10.1039/c9ra09350h] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/14/2019] [Indexed: 01/03/2023] Open
Abstract
The process of aggregation of proteins and peptides is dependent on the concentration of proteins, and the rate of aggregation can be altered by the presence of metal ions, but this dependence is not always a straightforward relationship. In general, aggregation does not occur under normal physiological conditions, yet it can be induced in the presence of certain metal ions. However, the extent of the influence of metal ion interactions on protein aggregation has not yet been fully comprehended. A consensus has thus been difficult to reach because the acceleration/inhibition of the aggregation of proteins in the presence of metal ions depends on several factors such as pH and the concentration of the aggregated proteins involved as well as metal concentration level of metal ions. Metal ions, like Cu2+, Zn2+, Pb2+ etc. may either accelerate or inhibit aggregation simply because the experimental conditions affect the behavior of biomolecules. It is clear that understanding the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications. This review focuses on the dependence of the aggregation of selected important biomolecules (peptides and proteins) on metal ion concentrations. We review proteins that are prone to aggregation, the result of which can cause serious neurodegenerative disorders. Furthering our understanding of the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications, such as finding therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria 09042 Monserrato Italy
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
8
|
|
9
|
Sardar S, Anas M, Maity S, Pal S, Parvej H, Begum S, Dalui R, Sepay N, Halder UC. Silver nanoparticle modulates the aggregation of beta-lactoglobulin and induces to form rod-like aggregates. Int J Biol Macromol 2018; 125:596-604. [PMID: 30528992 DOI: 10.1016/j.ijbiomac.2018.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/23/2018] [Accepted: 12/02/2018] [Indexed: 02/07/2023]
Abstract
Silver nanoparticles (SNPs) have been increasingly used in medicines and biomaterials as a drug carriers and diagnostic or therapeutic material due to their smaller size, large surface area and cell penetration ability. Here we report the preparation of SNPs of diameter 10 ± 3 nm by using silver nitrate and sodium borohydride and the interaction of synthesized SNPs with our model protein β-lactoglobulin (β-lg) in 10 mM phosphate buffer at pH 7.5 after thermal exposure at 75 °C. Heat exposed β-lg forms amyloidal fibrillar aggregates whereas this protein aggregates adopt rod-like shape instead of fibrillar structure in presence of SNP under the same conditions. Size of the synthesized SNPs is confirmed by UV-Visible spectroscopy, SEM and TEM. Interactions and subsequent formation of molecular assembly of heat stressed β-lg with SNP were investigated using Th-T assay and ANS binding assay, DLS, RLS, CD, FT-IR, SEM, TEM. Docking study parallely also support the experimental findings.
Collapse
Affiliation(s)
- Subrata Sardar
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Md Anas
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sanhita Maity
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sampa Pal
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Hasan Parvej
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Shahnaz Begum
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Ramkrishna Dalui
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Nayim Sepay
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Umesh Chandra Halder
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
10
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
11
|
Giamblanco N, Coglitore D, Gubbiotti A, Ma T, Balanzat E, Janot JM, Chinappi M, Balme S. Amyloid Growth, Inhibition, and Real-Time Enzymatic Degradation Revealed with Single Conical Nanopore. Anal Chem 2018; 90:12900-12908. [DOI: 10.1021/acs.analchem.8b03523] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicoletta Giamblanco
- Institut Européen des Membranes, UMR5635 Université de Montpellier ENSCM CNRS-, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier , France
| | - Diego Coglitore
- Institut Européen des Membranes, UMR5635 Université de Montpellier ENSCM CNRS-, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier , France
| | - Alberto Gubbiotti
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italia
| | - Tianji Ma
- Institut Européen des Membranes, UMR5635 Université de Montpellier ENSCM CNRS-, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier , France
| | - Emmanuel Balanzat
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR6252 CEA-CNRS-ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 CEDEX 4 Caen, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 Université de Montpellier ENSCM CNRS-, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier , France
| | - Mauro Chinappi
- Dipartmento di Ingegneria Industriale, Università di Roma Tor Vergata, Via del Politecnico 1, 00133 Roma, Italia
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 Université de Montpellier ENSCM CNRS-, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier , France
| |
Collapse
|
12
|
Zhao D, Li L, Xu D, Sheng B, Qin D, Chen J, Li B, Zhang X. Application of ultrasound pretreatment and glycation in regulating the heat-induced amyloid-like aggregation of β-lactoglobulin. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Al-Shabib NA, Khan JM, Malik A, Alsenaidy AM, Alsenaidy MA, Husain FM, Shamsi MB, Hidayathulla S, Khan RH. Negatively charged food additive dye “Allura Red” rapidly induces SDS-soluble amyloid fibril in beta-lactoglobulin protein. Int J Biol Macromol 2018; 107:1706-1716. [DOI: 10.1016/j.ijbiomac.2017.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
14
|
Lessons learned from protein aggregation: toward technological and biomedical applications. Biophys Rev 2017; 9:501-515. [PMID: 28905328 DOI: 10.1007/s12551-017-0317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
The close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology. Here we review the contributions of our research group on novel neuroprotective strategies developed using a purely biophysical approach. First, we examine how doxycycline, a well-known and innocuous antibiotic, can reshape α-synuclein oligomers into non-toxic high-molecular-weight species with decreased ability to destabilize biological membranes, affect cell viability and form additional toxic species. This mechanism can be exploited to diminish the toxicity of α-synuclein oligomers in Parkinson's disease. Second, we discuss a novel function in proteostasis for extracellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in combination with a specific glycosaminoglycan (GAG) present in the extracellular matrix. GAPDH, by changing its quaternary structure from a tetramer to protofibrillar assembly, can kidnap toxic species of α-synuclein, and thereby interfere with the spreading of the disease. Finally, we review a brighter side of protein aggregation, that of exploiting the physicochemical advantages of amyloid aggregates as nanomaterials. For this, we designed a new generation of insoluble biocatalysts based on the binding of photo-immobilized enzymes onto hybrid protein:GAG amyloid nanofibrils. These new nanomaterials can be easily functionalized by attaching different enzymes through dityrosine covalent bonds.
Collapse
|
15
|
Epigallocatechin Gallate Inhibits Macaque SEVI-Mediated Enhancement of SIV or SHIV Infection. J Acquir Immune Defic Syndr 2017; 75:232-240. [PMID: 28328549 DOI: 10.1097/qai.0000000000001361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Human semen contains a factor that can enhance HIV infection up to 10-fold in cultures. This factor is termed semen-derived enhancer of virus infection (SEVI) and is composed of proteolytic fragments (PAP248-286) from prostatic acid phosphatase in semen. In this study, we examined whether macaque SEVI can facilitate simian immunodeficiency virus (SIV) or chimeric simian/human immunodeficiency virus (SHIV) infection. We also studied the effect of epigallocatechin gallate (EGCG) on macaque SEVI-mediated SIV or SHIV enhancement. METHODS SIV or SHIV was mixed with different concentrations of macaque SEVI in the presence or absence of EGCG. The mixture was added to cultures of TZM-bl cells or macaque PBMCs. The effect of EGCG on macaque SEVI was measured by Congo-red staining assay and thioflavin T (ThT) fluorescence assay and was visualized by a transmission electron microscope. RESULTS We identified that there is one amino acid difference at the site of 277 between human PAP248-286 and macaque PAP248-286. Macaque SEVI significantly enhanced SIV or SHIV infection of TZM-bl cells and macaque PBMCs. EGCG could block macaque SEVI-mediated enhancement of SIV or SHIV infection. Mechanistically, EGCG could degrade the formation of macaque SEVI amyloid fibrils that facilitates HIV attachment to the target cells. CONCLUSIONS The finding that macaque SEVI could enhance SIV or SHIV infection indicates the possibility to use the macaque SEVI in vivo studies with the macaque models. In addition, future studies are necessary to examine whether EGCG can be used as an effective microbicide for preventing SIV or SHIV mucosal transmission.
Collapse
|
16
|
Investigating the inhibitory effects of zinc ions on amyloid fibril formation of hen egg-white lysozyme. Int J Biol Macromol 2017; 98:717-722. [DOI: 10.1016/j.ijbiomac.2017.01.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 12/27/2022]
|
17
|
Zhu D, Shang J, Ye X, Shen J. Aggregation and Gelation of Aromatic Polyamides with Parallel and Anti-parallel Alignment of Molecular Dipole Along the Backbone. Sci Rep 2016; 6:39124. [PMID: 27958362 PMCID: PMC5153643 DOI: 10.1038/srep39124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
The understanding of macromolecular structures and interactions is important but difficult, due to the facts that a macromolecules are of versatile conformations and aggregate states, which vary with environmental conditions and histories. In this work two polyamides with parallel or anti-parallel dipoles along the linear backbone, named as ABAB (parallel) and AABB (anti-parallel) have been studied. By using a combination of methods, the phase behaviors of the polymers during the aggregate and gelation, i.e., the forming or dissociation processes of nuclei and fibril, cluster of fibrils, and cluster-cluster aggregation have been revealed. Such abundant phase behaviors are dominated by the inter-chain interactions, including dispersion, polarity and hydrogen bonding, and correlatd with the solubility parameters of solvents, the temperature, and the polymer concentration. The results of X-ray diffraction and fast-mode dielectric relaxation indicate that AABB possesses more rigid conformation than ABAB, and because of that AABB aggregates are of long fibers while ABAB is of hairy fibril clusters, the gelation concentration in toluene is 1 w/v% for AABB, lower than the 3 w/v% for ABAB.
Collapse
Affiliation(s)
- Dan Zhu
- Jiangsu Key Laboratory and Bio-functional Materials, School of Chemistry and Materials Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jing Shang
- Jiangsu Key Laboratory and Bio-functional Materials, School of Chemistry and Materials Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Shen
- Jiangsu Key Laboratory and Bio-functional Materials, School of Chemistry and Materials Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
18
|
Zierenberg J, Marenz M, Janke W. Dilute Semiflexible Polymers with Attraction: Collapse, Folding and Aggregation. Polymers (Basel) 2016; 8:E333. [PMID: 30974608 PMCID: PMC6432187 DOI: 10.3390/polym8090333] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
We review the current state on the thermodynamic behavior and structural phases of self- and mutually-attractive dilute semiflexible polymers that undergo temperature-driven transitions. In extreme dilution, polymers may be considered isolated, and this single polymer undergoes a collapse or folding transition depending on the internal structure. This may go as far as to stable knot phases. Adding polymers results in aggregation, where structural motifs again depend on the internal structure. We discuss in detail the effect of semiflexibility on the collapse and aggregation transition and provide perspectives for interesting future investigations.
Collapse
Affiliation(s)
- Johannes Zierenberg
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| | - Martin Marenz
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| |
Collapse
|
19
|
Sasaki N, Saitoh Y, Sharma RK, Furusawa K. Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor. Int J Biol Macromol 2016; 92:240-245. [PMID: 27411296 DOI: 10.1016/j.ijbiomac.2016.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/27/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
Abstract
Although amyloid fibrils are associated with amyloidoses, they are now being considered as novel biomaterials for industrial use due to their structural stability in the matured state. Therefore, the physical characteristics of these materials need to be clarified prior to their industrial application. In the present study, the mechanical properties of amyloid fibrils precursored by β-lactoglobulin were investigated. Previous studies have examined the stiffness or modulus values of these fibrils using atomic force microscopy. However, the modulus values reported, even for amyloid fibrils from the same precursor proteins, range over three orders of magnitude, from a few MPa to GPa, depending on the experimental methods employed under specific loading conditions. We determined the elastic modulus of amyloid fibrils by measuring spontaneous thermal fluctuations in the material, the Debye-Waller factor. This method does not require any contact between the probe and material or any loading. The vibrational modes of a fibril were considered in order to estimate mechanical parameters. The modulus value determined along the fibril axis for single amyloid fibrils was slightly smaller than those reported in the literature. The smaller modulus value suggests the existence of less ordered proto-fibrils in our specimen, which was confirmed by the AFM images.
Collapse
Affiliation(s)
- Naoki Sasaki
- Faculty of Advanced Life Science, Department of Advanced Transdisciplinary Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan.
| | - Yuna Saitoh
- Department of Bio-macromolecular Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Rajesh Kumar Sharma
- Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Kazuya Furusawa
- Faculty of Advanced Life Science, Department of Advanced Transdisciplinary Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| |
Collapse
|
20
|
Zhang Y, Lyubchenko YL. The structure of misfolded amyloidogenic dimers: computational analysis of force spectroscopy data. Biophys J 2016; 107:2903-2910. [PMID: 25517155 DOI: 10.1016/j.bpj.2014.10.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 11/24/2022] Open
Abstract
Progress in understanding the molecular mechanism of self-assembly of amyloidogenic proteins and peptides requires knowledge about their structure in misfolded states. Structural studies of amyloid aggregates formed during the early aggregation stage are very limited. Atomic force microscopy (AFM) spectroscopy is widely used to analyze misfolded proteins and peptides, but the structural characterization of transiently formed misfolded dimers is limited by the lack of computational approaches that allow direct comparison with AFM experiments. Steered molecular dynamics (SMD) simulation is capable of modeling force spectroscopy experiments, but the modeling requires pulling rates 10(7) times higher than those used in AFM experiments. In this study, we describe a computational all-atom Monte Carlo pulling (MCP) approach that enables us to model results at pulling rates comparable to those used in AFM pulling experiments. We tested the approach by modeling pulling experimental data for I91 from titin I-band (PDB ID: 1TIT) and ubiquitin (PDB ID: 1UBQ). We then used MCP to analyze AFM spectroscopy experiments that probed the interaction of the peptides [Q6C] Sup35 (6-13) and [H13C] Aβ (13-23). A comparison of experimental results with the computational data for the Sup35 dimer with out-of-register and in-register arrangements of β-sheets suggests that Sup35 monomers adopt an out-of-register arrangement in the dimer. A similar analysis performed for Aβ peptide demonstrates that the out-of-register antiparallel β-sheet arrangement of monomers also occurs in this peptide. Although the rupture of hydrogen bonds is the major contributor to dimer dissociation, the aromatic-aromatic interaction also contributes to the dimer rupture process.
Collapse
Affiliation(s)
- Yuliang Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
21
|
Li Y, Wu Z, He W, Qin C, Yao J, Zhou J, Yin L. Globular Protein-Coated Paclitaxel Nanosuspensions: Interaction Mechanism, Direct Cytosolic Delivery, and Significant Improvement in Pharmacokinetics. Mol Pharm 2015; 12:1485-500. [DOI: 10.1021/mp5008037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongji Li
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhannan Wu
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Qin
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
22
|
Portillo A, Hashemi M, Zhang Y, Breydo L, Uversky VN, Lyubchenko YL. Role of monomer arrangement in the amyloid self-assembly. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:218-28. [PMID: 25542374 DOI: 10.1016/j.bbapap.2014.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/24/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023]
Abstract
Assembly of amyloid proteins into aggregates requires the ordering of the monomers in oligomers and especially in such highly organized structures as fibrils. This ordering is accompanied by structural transitions leading to the formation of ordered β-structural motifs in proteins and peptides lacking secondary structures. To characterize the effect of the monomer arrangements on the aggregation process at various stages, we performed comparative studies of the yeast prion protein Sup35 heptapeptide (GNNQQNY) along with its dimeric form CGNNQQNY-(d-Pro)-G-GNNQQNY. The (d-Pro)-G linker in this construct is capable of adopting a β-turn, facilitating the assembly of the dimer into the dimeric antiparallel hairpin structure (AP-hairpin). We applied Atomic Force Microscopy (AFM) techniques to follow peptide-peptide interactions at the single molecule level, to visualize the morphology of aggregates formed by both constructs, thioflavin T (ThT) fluorescence to follow the aggregation kinetics, and circular dichroism (CD) spectroscopy to characterize the secondary structure of the constructs. The ThT fluorescence data showed that the AP-hairpin aggregation kinetics is insensitive to the external environment such as ionic strength and pH contrary to the monomers the kinetics of which depends dramatically on the ionic strength and pH. The AFM topographic imaging revealed that AP-hairpins primarily assemble into globular aggregates, whereas linear fibrils are primary assemblies of the monomers suggesting that both constructs follow different aggregation pathways during the self-assembly. These morphological differences are in line with the AFM force spectroscopy experiments and CD spectroscopy measurements, suggesting that the AP-hairpin is structurally rigid regardless of changes of environmental factors.
Collapse
Affiliation(s)
- Alexander Portillo
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Mohtadin Hashemi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yuliang Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Leonid Breydo
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33647, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33647, USA; Department of Biological Science, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
23
|
Tepper K, Biernat J, Kumar S, Wegmann S, Timm T, Hübschmann S, Redecke L, Mandelkow EM, Müller DJ, Mandelkow E. Oligomer formation of tau protein hyperphosphorylated in cells. J Biol Chem 2014; 289:34389-407. [PMID: 25339173 PMCID: PMC4256367 DOI: 10.1074/jbc.m114.611368] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abnormal phosphorylation (“hyperphosphorylation”) and aggregation of Tau protein are hallmarks of Alzheimer disease and other tauopathies, but their causative connection is still a matter of debate. Tau with Alzheimer-like phosphorylation is also present in hibernating animals, mitosis, or during embryonic development, without leading to pathophysiology or neurodegeneration. Thus, the role of phosphorylation and the distinction between physiological and pathological phosphorylation needs to be further refined. So far, the systematic investigation of highly phosphorylated Tau was difficult because a reliable method of preparing reproducible quantities was not available. Here, we generated full-length Tau (2N4R) in Sf9 cells in a well defined phosphorylation state containing up to ∼20 phosphates as judged by mass spectrometry and Western blotting with phospho-specific antibodies. Despite the high concentration in living Sf9 cells (estimated ∼230 μm) and high phosphorylation, the protein was not aggregated. However, after purification, the highly phosphorylated protein readily formed oligomers, whereas fibrils were observed only rarely. Exposure of mature primary neuronal cultures to oligomeric phospho-Tau caused reduction of spine density on dendrites but did not change the overall cell viability.
Collapse
Affiliation(s)
- Katharina Tepper
- From the DZNE, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany, the CAESAR Research Center, 53175 Bonn, Germany
| | - Jacek Biernat
- From the DZNE, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany, the CAESAR Research Center, 53175 Bonn, Germany
| | - Satish Kumar
- From the DZNE, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany, the CAESAR Research Center, 53175 Bonn, Germany
| | - Susanne Wegmann
- the Department of Biosystems Science and Engineering, ETHZ, 4058 Basel, Switzerland
| | - Thomas Timm
- the Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35390 Giessen, Germany, and
| | - Sabrina Hübschmann
- From the DZNE, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany, the CAESAR Research Center, 53175 Bonn, Germany
| | - Lars Redecke
- the Joint Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg and University of Lübeck, ℅DESY, 22603 Hamburg, Germany
| | - Eva-Maria Mandelkow
- From the DZNE, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany, the CAESAR Research Center, 53175 Bonn, Germany
| | - Daniel J Müller
- the Department of Biosystems Science and Engineering, ETHZ, 4058 Basel, Switzerland
| | - Eckhard Mandelkow
- From the DZNE, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany, the CAESAR Research Center, 53175 Bonn, Germany,
| |
Collapse
|
24
|
Sardar S, Pal S, Maity S, Chakraborty J, Halder UC. Amyloid fibril formation by β-lactoglobulin is inhibited by gold nanoparticles. Int J Biol Macromol 2014; 69:137-45. [DOI: 10.1016/j.ijbiomac.2014.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/16/2023]
|
25
|
Kumar S, Tepper K, Kaniyappan S, Biernat J, Wegmann S, Mandelkow EM, Müller DJ, Mandelkow E. Stages and conformations of the Tau repeat domain during aggregation and its effect on neuronal toxicity. J Biol Chem 2014; 289:20318-32. [PMID: 24825901 PMCID: PMC4106345 DOI: 10.1074/jbc.m114.554725] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several neurodegenerative diseases are characterized by the aggregation and posttranslational modifications of Tau protein. Its “repeat domain” (TauRD) is mainly responsible for the aggregation properties, and oligomeric forms are thought to dominate the toxic effects of Tau. Here we investigated the conformational transitions of this domain during oligomerization and aggregation in different states of β-propensity and pseudo-phosphorylation, using several complementary imaging and spectroscopic methods. Although the repeat domain generally aggregates more readily than full-length Tau, its aggregation was greatly slowed down by phosphorylation or pseudo-phosphorylation at the KXGS motifs, concomitant with an extended phase of oligomerization. Analogous effects were observed with pro-aggregant variants of TauRD. Oligomers became most evident in the case of the pro-aggregant mutant TauRDΔK280, as monitored by atomic force microscopy, and the fluorescence lifetime of Alexa-labeled Tau (time-correlated single photon counting (TCSPC)), consistent with its pronounced toxicity in mouse models. In cell models or primary neurons, neither oligomers nor fibrils of TauRD or TauRDΔK280 had a toxic effect, as seen by assays with lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, respectively. However, oligomers of pro-aggregant TauRDΔK280 specifically caused a loss of spine density in differentiated neurons, indicating a locally restricted impairment of function.
Collapse
Affiliation(s)
- Satish Kumar
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Max Planck Institute for Neurological Research, Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany, and
| | - Katharina Tepper
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Center of Advanced European Studies and Research (CAESAR), 53175 Bonn, Germany
| | - Senthilvelrajan Kaniyappan
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Max Planck Institute for Neurological Research, Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany, and
| | - Jacek Biernat
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Max Planck Institute for Neurological Research, Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany, and the Center of Advanced European Studies and Research (CAESAR), 53175 Bonn, Germany
| | - Susanne Wegmann
- the Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, 4058 Basel, Switzerland
| | - Eva-Maria Mandelkow
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Max Planck Institute for Neurological Research, Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany, and the Center of Advanced European Studies and Research (CAESAR), 53175 Bonn, Germany
| | - Daniel J Müller
- the Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, 4058 Basel, Switzerland
| | - Eckhard Mandelkow
- From the German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, the Max Planck Institute for Neurological Research, Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany, and the Center of Advanced European Studies and Research (CAESAR), 53175 Bonn, Germany,
| |
Collapse
|
26
|
|
27
|
Ma B, You X, Lu F. Inhibitory effects of β-ionone on amyloid fibril formation of β-lactoglobulin. Int J Biol Macromol 2014; 64:162-7. [DOI: 10.1016/j.ijbiomac.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/09/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
|
28
|
马 保. Dithiothreitol Inhibits the Amyloid Fibril Formation of β-Lactoglobulin. Biophysics (Nagoya-shi) 2014. [DOI: 10.12677/biphy.2014.24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
29
|
Depletion of spleen macrophages delays AA amyloid development: a study performed in the rapid mouse model of AA amyloidosis. PLoS One 2013; 8:e79104. [PMID: 24236094 PMCID: PMC3827313 DOI: 10.1371/journal.pone.0079104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
AA amyloidosis is a systemic disease that develops secondary to chronic inflammatory diseases Macrophages are often found in the vicinity of amyloid deposits and considered to play a role in both formation and degradation of amyloid fibrils. In spleen reside at least three types of macrophages, red pulp macrophages (RPM), marginal zone macrophages (MZM), metallophilic marginal zone macrophages (MMZM). MMZM and MZM are located in the marginal zone and express a unique collection of scavenger receptors that are involved in the uptake of blood-born particles. The murine AA amyloid model that resembles the human form of the disease has been used to study amyloid effects on different macrophage populations. Amyloid was induced by intravenous injection of amyloid enhancing factor and subcutaneous injections of silver nitrate and macrophages were identified with specific antibodies. We show that MZMs are highly sensitive to amyloid and decrease in number progressively with increasing amyloid load. Total area of MMZMs is unaffected by amyloid but cells are activated and migrate into the white pulp. In a group of mice spleen macrophages were depleted by an intravenous injection of clodronate filled liposomes. Subsequent injections of AEF and silver nitrate showed a sustained amyloid development. RPMs that constitute the majority of macrophages in spleen, appear insensitive to amyloid and do not participate in amyloid formation.
Collapse
|
30
|
Babcock JJ, Brancaleon L. Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength. Int J Biol Macromol 2013; 53:42-53. [PMID: 23148944 PMCID: PMC3605742 DOI: 10.1016/j.ijbiomac.2012.10.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/25/2012] [Accepted: 10/27/2012] [Indexed: 12/14/2022]
Abstract
The manuscript describes the study of the oligomerization process of bovine serum albumin (BSA) in two different structural monomeric forms: the extended-form (E) at pH 2.0 and the basic-form (B) at pH 9.0. The study was conducted at low protein concentration (1mg/ml) and relatively short incubation time (maximum 56 days) in order to investigate early oligomerization events rather than the formation of mature fibrils. The comparison between the two isoforms show that oligomers form much faster (∼6 days) in the E-form than in the B-form where formation of oligomers requires ∼4 weeks. The oligomers appear to be limited to a maximum of tetramers with size <30 nm. Hydrophobic interactions from exposed neutral amino acid residues in the elongated E-form are the likely cause for the quick formation of aggregates at acidic pH. We used an array of biophysical techniques for the study and determined that oligomerization occurs without further large changes in the secondary structure of the monomers. Under the conditions adopted in this study, aggregation does not seem to exceed the formation of tetramers, even though a very small amount of much larger aggregates seem to form.
Collapse
Affiliation(s)
- Jeremiah J. Babcock
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78242, USA
| | - Lorenzo Brancaleon
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78242, USA
| |
Collapse
|
31
|
Macromolecular crowding modulates the kinetics and morphology of amyloid self-assembly by β-lactoglobulin. Int J Biol Macromol 2013; 53:82-7. [DOI: 10.1016/j.ijbiomac.2012.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/03/2012] [Accepted: 11/05/2012] [Indexed: 11/19/2022]
|
32
|
Sankaranarayanan K, Sreedhar B, Nair B, Dhathathreyan A. Microviscosity-Induced Conformational Transition in β-Lactoglobulin in the Presence of an Ionic Liquid. J Phys Chem B 2013; 117:1234-40. [DOI: 10.1021/jp310198f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - B. Sreedhar
- Inorganic and Physical Chemistry
Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 607, India
| | - B.U. Nair
- Chemical Laboratory, CSIR-CLRI, Adyar, Chennai 600020, India
| | | |
Collapse
|
33
|
Non-native States of Bovine Beta-Lactoglobulin Induced by Acetonitrile: pH-Dependent Unfolding of the Two Genetic Variants A and B. Cell Biochem Biophys 2012; 66:175-85. [DOI: 10.1007/s12013-012-9466-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Hettiarachchi CA, Melton LD, Gerrard JA, Loveday SM. Formation of β-Lactoglobulin Nanofibrils by Microwave Heating Gives a Peptide Composition Different from Conventional Heating. Biomacromolecules 2012; 13:2868-80. [DOI: 10.1021/bm300896r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Charith A. Hettiarachchi
- Riddet Institute, Private Bag 11222, Palmerston North
4442, New Zealand
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland
1142, New Zealand
| | - Laurence D. Melton
- Riddet Institute, Private Bag 11222, Palmerston North
4442, New Zealand
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland
1142, New Zealand
| | - Juliet A. Gerrard
- Riddet Institute, Private Bag 11222, Palmerston North
4442, New Zealand
- Biomolecular
Interaction Centre
and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- Industrial Research Limited,
PO Box 31310, Lower Hutt 5040, New Zealand
| | - Simon M. Loveday
- Riddet Institute, Private Bag 11222, Palmerston North
4442, New Zealand
| |
Collapse
|
35
|
Paredes JM, Casares S, Ruedas-Rama MJ, Fernandez E, Castello F, Varela L, Orte A. Early amyloidogenic oligomerization studied through fluorescence lifetime correlation spectroscopy. Int J Mol Sci 2012; 13:9400-9418. [PMID: 22949804 PMCID: PMC3431802 DOI: 10.3390/ijms13089400] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 12/20/2022] Open
Abstract
Amyloidogenic protein aggregation is a persistent biomedical problem. Despite active research in disease-related aggregation, the need for multidisciplinary approaches to the problem is evident. Recent advances in single-molecule fluorescence spectroscopy are valuable for examining heterogenic biomolecular systems. In this work, we have explored the initial stages of amyloidogenic aggregation by employing fluorescence lifetime correlation spectroscopy (FLCS), an advanced modification of conventional fluorescence correlation spectroscopy (FCS) that utilizes time-resolved information. FLCS provides size distributions and kinetics for the oligomer growth of the SH3 domain of α-spectrin, whose N47A mutant forms amyloid fibrils at pH 3.2 and 37 °C in the presence of salt. The combination of FCS with additional fluorescence lifetime information provides an exciting approach to focus on the initial aggregation stages, allowing a better understanding of the fibrillization process, by providing multidimensional information, valuable in combination with other conventional methodologies.
Collapse
Affiliation(s)
- Jose M. Paredes
- Department of Physical Chemistry, Faculty of Pharmacy, Campus Cartuja, Granada, 18071, Spain; E-Mails: (J.M.P.); (M.J.R.-R.); (F.C.)
| | - Salvador Casares
- Department of Physical Chemistry, Faculty of Sciences, Campus Fuentenueva, Granada, 18071, Spain; E-Mails: (S.C.); (E.F.); (L.V.A.)
| | - Maria J. Ruedas-Rama
- Department of Physical Chemistry, Faculty of Pharmacy, Campus Cartuja, Granada, 18071, Spain; E-Mails: (J.M.P.); (M.J.R.-R.); (F.C.)
| | - Elena Fernandez
- Department of Physical Chemistry, Faculty of Sciences, Campus Fuentenueva, Granada, 18071, Spain; E-Mails: (S.C.); (E.F.); (L.V.A.)
| | - Fabio Castello
- Department of Physical Chemistry, Faculty of Pharmacy, Campus Cartuja, Granada, 18071, Spain; E-Mails: (J.M.P.); (M.J.R.-R.); (F.C.)
| | - Lorena Varela
- Department of Physical Chemistry, Faculty of Sciences, Campus Fuentenueva, Granada, 18071, Spain; E-Mails: (S.C.); (E.F.); (L.V.A.)
| | - Angel Orte
- Department of Physical Chemistry, Faculty of Pharmacy, Campus Cartuja, Granada, 18071, Spain; E-Mails: (J.M.P.); (M.J.R.-R.); (F.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-958-243825; Fax: +34-958-244090
| |
Collapse
|
36
|
Invernizzi G, Papaleo E, Sabate R, Ventura S. Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 2012; 44:1541-54. [PMID: 22713792 DOI: 10.1016/j.biocel.2012.05.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/09/2012] [Accepted: 05/27/2012] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms underlying protein misfolding and aggregation has become a central issue in biology and medicine. Compelling evidence show that the formation of amyloid aggregates has a negative impact in cell function and is behind the most prevalent human degenerative disorders, including Alzheimer's Parkinson's and Huntington's diseases or type 2 diabetes. Surprisingly, the same type of macromolecular assembly is used for specialized functions by different organisms, from bacteria to human. Here we address the conformational properties of these aggregates, their formation pathways, their role in human diseases, their functional properties and how bioinformatics tools might be of help to study these protein assemblies.
Collapse
Affiliation(s)
- Gaetano Invernizzi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | | | | |
Collapse
|
37
|
Loveday S, Wang X, Rao M, Anema S, Singh H. β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2011.07.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Amyloid fibril formation by native and modified bovine β-lactoglobulins proceeds through unfolded form of proteins: A comparative study. Biophys Chem 2011; 159:311-20. [DOI: 10.1016/j.bpc.2011.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022]
|
39
|
Wang JM, Yang XQ, Yin SW, Yuan DB, Xia N, Qi JR. Growth kinetics of amyloid-like fibrils derived from individual subunits of soy β-conglycinin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11270-7. [PMID: 21919519 DOI: 10.1021/jf202541m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The amyloid-like fibrillation of soy β-conglycinin subunits (α, α', and β) upon heating (0-20 h) at 85 °C and pH 2.0 was characterized using dynamic light scattering, circular dichroism (CD), binding to amyloid dyes (Thioflavin T and Congo red), and atomic force microscopy. The fibrillation of all three subunits was accompanied by progressive polypeptide hydrolysis. The hydrolysis behaviors, fibrillation kinetics, and morphologies of amyloid-like fibrils considerably varied among α, α', and β subunits. Faster hydrolysis rates and special fragments were observed for the α and α' subunits compared to the β subunit. However, the order of the fibrillation rate and capacity to form β-sheets was α' > β > α, as evidenced by CD and Thioflavin T data. Moreover, sequential growth of twisted screw-structure fibrils, leading to macroscopic fibrils with distinct morphological characteristics, was observed for β-conglycinin and individual subunits. The different fibrillation kinetics and morphologies of α, α', and β subunits appear to be associated with the differences in the amino acid composition and typical sequence of peptides. Besides, the disruption of ordered structure of fibrils occurred upon further heating (6-20 h) due to extensive hydrolysis. These results would suggest that all subunits are involved in the fibrillation of β-conglycinin, following multiple steps including polypeptide hydrolysis, assembly to amyloid structure, and growth into macroscopic fibrils with a fibril shaving process.
Collapse
Affiliation(s)
- Jin-Mei Wang
- Department of Food Science and Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Loveday SM, Su J, Rao MA, Anema SG, Singh H. Effect of Calcium on the Morphology and Functionality of Whey Protein Nanofibrils. Biomacromolecules 2011; 12:3780-8. [DOI: 10.1021/bm201013b] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Simon M. Loveday
- Riddet Institute, Massey University, Private Bag 11 222, New Zealand
| | - Jiahong Su
- Riddet Institute, Massey University, Private Bag 11 222, New Zealand
| | - M. Anandha Rao
- Department of Food Science, Cornell University, Geneva,
New York 14456, United States
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, New Zealand
| |
Collapse
|
41
|
Wang HY, Ying YL, Li Y, Kraatz HB, Long YT. Nanopore Analysis of β-Amyloid Peptide Aggregation Transition Induced by Small Molecules. Anal Chem 2011; 83:1746-52. [DOI: 10.1021/ac1029874] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hai-Yan Wang
- Shanghai Key Laboratory of Functional Materials Chemistry & Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-Lun Ying
- Shanghai Key Laboratory of Functional Materials Chemistry & Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Li
- Shanghai Key Laboratory of Functional Materials Chemistry & Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Heinz-Bernhard Kraatz
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N5A 5B9, Canada
| | - Yi-Tao Long
- Shanghai Key Laboratory of Functional Materials Chemistry & Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
42
|
Jordens S, Adamcik J, Amar-Yuli I, Mezzenga R. Disassembly and Reassembly of Amyloid Fibrils in Water−Ethanol Mixtures. Biomacromolecules 2010; 12:187-93. [DOI: 10.1021/bm101119t] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sophia Jordens
- ETH Zurich, Food & Soft Materials Science, Institute of Food, Nutrition & Health Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland
| | - Jozef Adamcik
- ETH Zurich, Food & Soft Materials Science, Institute of Food, Nutrition & Health Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland
| | - Idit Amar-Yuli
- ETH Zurich, Food & Soft Materials Science, Institute of Food, Nutrition & Health Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Food & Soft Materials Science, Institute of Food, Nutrition & Health Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland
| |
Collapse
|
43
|
Jones OG, Adamcik J, Handschin S, Bolisetty S, Mezzenga R. Fibrillation of β-lactoglobulin at low pH in the presence of a complexing anionic polysaccharide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17449-17458. [PMID: 20968310 DOI: 10.1021/la1026619] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The influence of electrostatic complexation with κ-carrageenan was tested on the fibrillation process of β-lactoglobulin at pH 2.0. Morphology and structural development were monitored through cross correlation dynamic light scattering, transmission electron microscopy, and atomic force microscopy. Scattering indicated that noncomplexed β-lactoglobulin monomers aggregated to form fibrils after 15-90 min of heating at 90 °C. However, electrostatic protein-carrageenan complexes found in the unheated system were unchanged by the thermal process. Images and scattering results showed that carrageenan complexes slowed fibrillation kinetics, possibly through reduction in available monomer concentration. Complexes adhered to fibrils at ends and junctions in TEM images, indicating interactive affinity with the fibers, presumably as heterogeneous nucleation sites.
Collapse
Affiliation(s)
- Owen G Jones
- ETH Zurich, Food and Soft Materials Laboratory, Institute of Food, Nutrition & Heath, Schmelzbergstrasse 9, LFO E22, 8092 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Pronchik J, He X, Giurleo JT, Talaga DS. In Vitro Formation of Amyloid from α-Synuclein Is Dominated by Reactions at Hydrophobic Interfaces. J Am Chem Soc 2010; 132:9797-803. [DOI: 10.1021/ja102896h] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy Pronchik
- Department of Chemistry and Chemical Biology, Wright-Rieman Laboratories, Rutgers, the State University of New Jersey, New Brunswick, 610 Taylor Road, Piscataway, New Jersey 08854
| | - Xianglan He
- Department of Chemistry and Chemical Biology, Wright-Rieman Laboratories, Rutgers, the State University of New Jersey, New Brunswick, 610 Taylor Road, Piscataway, New Jersey 08854
| | - Jason T. Giurleo
- Department of Chemistry and Chemical Biology, Wright-Rieman Laboratories, Rutgers, the State University of New Jersey, New Brunswick, 610 Taylor Road, Piscataway, New Jersey 08854
| | - David S. Talaga
- Department of Chemistry and Chemical Biology, Wright-Rieman Laboratories, Rutgers, the State University of New Jersey, New Brunswick, 610 Taylor Road, Piscataway, New Jersey 08854
| |
Collapse
|
45
|
Steinbach G, Pomozi I, Jánosa DP, Makovitzky J, Garab G. Confocal fluorescence detected linear dichroism imaging of isolated human amyloid fibrils. Role of supercoiling. J Fluoresc 2010; 21:983-9. [PMID: 20556489 DOI: 10.1007/s10895-010-0684-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Amyloids are highly organized insoluble protein aggregates that are associated with a large variety of degenerative diseases. In this work, we investigated the anisotropic architecture of isolated human amyloid samples stained with Congo Red. This was performed by fluorescence detected linear dichroism (FDLD) imaging in a laser scanning confocal microscope that was equipped with a differential polarization attachment using high frequency modulation of the polarization state of the laser beam and a demodulation circuit. Two- and three-dimensional FDLD images of amyloids provided information on the orientation of the electric transition dipoles of the intercalated Congo Red molecules with unprecedented precision and spatial resolution. We show that, in accordance with linear dichroism imaging (Jin et al. Proc Natl Acad Sci USA 100:15294, 2003), amyloids exhibit strong anisotropy with preferential orientation of the dye molecules along the fibrils; estimations on the orientation angle, of around 45°, are given using a model calculation which takes into account the helical organization of the filaments and fibrils. Our data also show that FDLD images display large inhomogeneities, high local values with alternating signs and, in some regions, well identifiable µm-sized periodicities. These features of the anisotropic architecture are accounted for by supercoiling of helically organized amyloid fibrils.
Collapse
Affiliation(s)
- Gábor Steinbach
- Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, Szeged 6701, Hungary
| | | | | | | | | |
Collapse
|
46
|
Bergasa-Caceres F, Rabitz HA. Low Entropic Barrier to the Hydrophobic Collapse of the Prion Protein: Effects of Intermediate States and Conformational Flexibility. J Phys Chem A 2010; 114:6978-82. [DOI: 10.1021/jp909944p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Herschel A. Rabitz
- Department of Chemistry Princeton University Princeton, New Jersey 08544
| |
Collapse
|
47
|
Wang W, Nema S, Teagarden D. Protein aggregation—Pathways and influencing factors. Int J Pharm 2010; 390:89-99. [DOI: 10.1016/j.ijpharm.2010.02.025] [Citation(s) in RCA: 503] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/08/2010] [Accepted: 02/17/2010] [Indexed: 11/25/2022]
|
48
|
Role of small oligomers on the amyloidogenic aggregation free-energy landscape. J Mol Biol 2009; 395:134-54. [PMID: 19837085 DOI: 10.1016/j.jmb.2009.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 10/07/2009] [Accepted: 10/12/2009] [Indexed: 11/20/2022]
Abstract
We combine atomic-force-microscopy particle-size-distribution measurements with earlier measurements on 1-anilino-8-naphthalene sulfonate, thioflavin T, and dynamic light scattering to develop a quantitative kinetic model for the aggregation of beta-lactoglobulin into amyloid. We directly compare our simulations to the population distributions provided by dynamic light scattering and atomic force microscopy. We combine species in the simulation according to structural type for comparison with fluorescence fingerprint results. The kinetic model of amyloidogenesis leads to an aggregation free-energy landscape. We define the roles of and propose a classification scheme for different oligomeric species based on their location in the aggregation free-energy landscape. We relate the different types of oligomers to the amyloid cascade hypothesis and the toxic oligomer hypothesis for amyloid-related diseases. We discuss existing kinetic mechanisms in terms of the different types of oligomers. We provide a possible resolution to the toxic oligomer-amyloid coincidence.
Collapse
|
49
|
Abstract
We use single silicon nitride nanopores to study folded, partially folded, and unfolded single proteins by measuring their excluded volumes. The DNA-calibrated translocation signals of beta-lactoglobulin and histidine-containing phosphocarrier protein match quantitatively with that predicted by a simple sum of the partial volumes of the amino acids in the polypeptide segment inside the pore when translocation stalls due to the primary charge sequence. Our analysis suggests that the majority of the protein molecules were linear or looped during translocation and that the electrical forces present under physiologically relevant potentials can unfold proteins. Our results show that the nanopore translocation signals are sensitive enough to distinguish the folding state of a protein and distinguish between proteins based on the excluded volume of a local segment of the polypeptide chain that transiently stalls in the nanopore due to the primary sequence of charges.
Collapse
Affiliation(s)
- David S Talaga
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
50
|
Hamada D, Tanaka T, Tartaglia GG, Pawar A, Vendruscolo M, Kawamura M, Tamura A, Tanaka N, Dobson CM. Competition between Folding, Native-State Dimerisation and Amyloid Aggregation in β-Lactoglobulin. J Mol Biol 2009; 386:878-90. [DOI: 10.1016/j.jmb.2008.12.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/10/2008] [Accepted: 12/15/2008] [Indexed: 11/15/2022]
|