1
|
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz MA, Calderwood DA, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nat Commun 2023; 14:8011. [PMID: 38049429 PMCID: PMC10695988 DOI: 10.1038/s41467-023-43612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
The filamentous actin (F-actin) cytoskeleton is a composite material consisting of cortical actin and bundled F-actin stress fibers, which together mediate the mechanical behaviors of the cell, from cell division to cell migration. However, as mechanical forces are typically measured upon transmission to the extracellular matrix, the internal distribution of forces within the cytoskeleton is unknown. Likewise, how distinct F-actin architectures contribute to the generation and transmission of mechanical forces is unclear. Therefore, we have developed a molecular tension sensor that embeds into the F-actin cytoskeleton. Using this sensor, we measure tension within stress fibers and cortical actin, as the cell is subject to uniaxial stretch. We find that the mechanical response, as measured by FRET, depends on the direction of applied stretch relative to the cell's axis of alignment. When the cell is aligned parallel to the direction of the stretch, stress fibers and cortical actin both accumulate tension. By contrast, when aligned perpendicular to the direction of stretch, stress fibers relax tension while the cortex accumulates tension, indicating mechanical anisotropy within the cytoskeleton. We further show that myosin inhibition regulates this anisotropy. Thus, the mechanical anisotropy of the cell and the coordination between distinct F-actin architectures vary and depend upon applied load.
Collapse
Affiliation(s)
- Sorosh Amiri
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Mechanical Engineering and Material Science, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Camelia Muresan
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Xingbo Shang
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | | | - Martin A Schwartz
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Yale Cardiovascular Research Center, 300 George St, New Haven, CT, 06511, USA
| | - David A Calderwood
- Department of Pharmacology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
| | - Michael Murrell
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, 217 Prospect Street, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
2
|
Purification of Myosin from Bovine Tracheal Smooth Muscle, Filament Formation and Endogenous Association of Its Regulatory Complex. Cells 2023; 12:cells12030514. [PMID: 36766856 PMCID: PMC9914928 DOI: 10.3390/cells12030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
Dynamic regulation of myosin filaments is a crucial factor in the ability of airway smooth muscle (ASM) to adapt to a wide length range. Increased stability or robustness of myosin filaments may play a role in the pathophysiology of asthmatic airways. Biochemical techniques for the purification of myosin and associated regulatory proteins could help elucidate potential alterations in myosin filament properties of asthmatic ASM. An effective myosin purification approach was originally developed for chicken gizzard smooth muscle myosin. More recently, we successfully adapted the procedure to bovine tracheal smooth muscle. This method yields purified myosin with or without the endogenous regulatory complex of myosin light chain kinase and myosin light chain phosphatase. The tight association of the regulatory complex with the assembled myosin filaments can be valuable in functional experiments. The purification protocol discussed here allows for enzymatic comparisons of myosin regulatory proteins. Furthermore, we detail the methodology for quantification and removal of the co-purified regulatory enzymes as a tool for exploring potentially altered phenotypes of the contractile apparatus in diseases such as asthma.
Collapse
|
3
|
Sobieszek A. Self-assembly of smooth muscle myosin filaments: adaptation of filament length by telokin and Mg·ATP. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:449-463. [PMID: 35821526 DOI: 10.1007/s00249-022-01608-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/11/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The contractile apparatus of smooth muscle is malleable to accommodate stress and strain exerted on the muscle cell and to maintain optimal contractility. Structural lability of smooth muscle myosin filaments is believed to play an important role in the cell's malleability. However, the mechanism and regulation of myosin filament formation is still poorly understood. In the present in vitro study, using a static light scattering method, length distributions were obtained from suspensions of short myosin filaments (SFs) formed by rapid dilution or long ones (LFs) formed by slow dialysis. The distributions indicated the presence of dynamic equilibriums between soluble myosin and the SFs; i.e.: trimers, hexamers and mini filaments, covering the range up to 0.75 µm. The LFs were more stable, exhibiting favorable sizes at about 1.25, 2.4 and 4.5 µm. More distinct distributions were obtained from filaments adsorbed to a glass surface, by evanescent wave scattering and local electric field enhancement. Addition of telokin (TL) to the suspensions of unphosphorylated SFs resulted in widening of the soluble range, while in the case of the LFs this shift was larger, and accompanied by reduced contribution of the soluble myosin species. Such changes were largely absent in the case of phosphorylated myosin. In contrast, the presence of Mg·ATP resulted in elongation of the filaments and clear separation of filaments from soluble myosin species. Thus, TL and Mg·ATP appeared to modify the distribution of myosin filament lengths, i.e., increasing the lengths in preparing for phosphorylation, or reducing it to aid dephosphorylation.
Collapse
Affiliation(s)
- Apolinary Sobieszek
- Austrian Academy of Sciences, Dr. Iganz-Seipel-Platz 2, 1010, Vienna, Austria.
| |
Collapse
|
4
|
Yao Y, Feng Q, Shen J. Myosin light chain kinase regulates intestinal permeability of mucosal homeostasis in Crohn's disease. Expert Rev Clin Immunol 2020; 16:1127-1141. [PMID: 33183108 DOI: 10.1080/1744666x.2021.1850269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Researchers have investigated the potential role of intestinal permeability in Crohn's disease pathogenesis. Intestinal permeability is usually mediated by cytoskeleton and intercellular junctions. The myosin light chain kinase (MLCK) is an enzyme that activates the myosin light chain to exert its function related to cytoskeleton contraction and tight junction regulation. The correlation between MLCK and Crohn's disease pathogenesis has been consistently proven. Areas covered: This study aims to expand the understanding of the regulation and function of MLCK in Crohn's disease. An extensive literature search in the MEDLINE database (via PubMed) has been performed up to Oct. 2020. The roles of MLCK in tight junction activation, intestinal permeability enhancement, and cell signal regulation are comprehensively discussed. Expert opinion: Targeting the MLCK-related pathways such as TNF-α in CD treatment has been put into clinical use. More accurate targeting such as MLCK and TNFR2 has been proposed to reduce side effects. MLCK may also have the potential to become biomarkers in fields like CD activity. With the application of cutting age research methods and tools, the MLCK research could be accelerated.
Collapse
Affiliation(s)
- Yiran Yao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
5
|
Kelley CA, Wirshing ACE, Zaidel-Bar R, Cram EJ. The myosin light-chain kinase MLCK-1 relocalizes during Caenorhabditis elegans ovulation to promote actomyosin bundle assembly and drive contraction. Mol Biol Cell 2018; 29:1975-1991. [PMID: 30088798 PMCID: PMC6232974 DOI: 10.1091/mbc.e18-01-0056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We identify the Caenorhabditis elegans myosin light-chain kinase, MLCK-1, required for contraction of spermathecae. During contraction, MLCK-1 moves from the apical cell boundaries to the basal actomyosin bundles, where it stabilizes myosin downstream of calcium signaling. MLCK and ROCK act in distinct subsets of cells to coordinate the timing of contraction.
Collapse
Affiliation(s)
| | | | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
6
|
S-Nitrosoglutathione Reductase Underlies the Dysfunctional Relaxation to Nitric Oxide in Preterm Labor. Sci Rep 2018; 8:5614. [PMID: 29618799 PMCID: PMC5884813 DOI: 10.1038/s41598-018-23371-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Tocolytics show limited efficacy to prevent preterm delivery. In uterine smooth muscle cGMP accumulation following addition of nitric oxide (NO) has little effect on relaxation suggesting a role for protein S-nitrosation. In human myometrial tissues from women in labor at term (TL), or spontaneously in labor preterm (sPTL), direct stimulation of soluble guanylyl cyclase (sGC) fails to relax myometrium, while the same treatment relaxes vascular smooth muscle completely. Unlike term myometrium, effects of NO are not only blunted in sPTL, but global protein S-nitrosation is also diminished, suggesting a dysfunctional response to NO-mediated protein S-nitrosation. Examination of the enzymatic regulator of endogenous S-nitrosoglutathione availability, S-nitrosoglutathione reductase, reveals increased expression of the reductase in preterm myometrium associated with decreased total protein S-nitrosation. Blockade of S-nitrosoglutathione reductase relaxes sPTL tissue. Addition of NO donor to the actin motility assay attenuates force. Failure of sGC activation to mediate relaxation in sPTL tissues, together with the ability of NO to relax TL, but not sPTL myometrium, suggests a unique pathway for NO-mediated relaxation in myometrium. Our results suggest that examining the action of S-nitrosation on critical contraction associated proteins central to the regulation of uterine smooth muscle contraction can reveal new tocolytic targets.
Collapse
|
7
|
Baumann F, Bauer MS, Rees M, Alexandrovich A, Gautel M, Pippig DA, Gaub HE. Increasing evidence of mechanical force as a functional regulator in smooth muscle myosin light chain kinase. eLife 2017; 6:e26473. [PMID: 28696205 PMCID: PMC5505704 DOI: 10.7554/elife.26473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022] Open
Abstract
Mechanosensitive proteins are key players in cytoskeletal remodeling, muscle contraction, cell migration and differentiation processes. Smooth muscle myosin light chain kinase (smMLCK) is a member of a diverse group of serine/threonine kinases that feature cytoskeletal association. Its catalytic activity is triggered by a conformational change upon Ca2+/calmodulin (Ca2+/CaM) binding. Due to its significant homology with the force-activated titin kinase, smMLCK is suspected to be also regulatable by mechanical stress. In this study, a CaM-independent activation mechanism for smMLCK by mechanical release of the inhibitory elements is investigated via high throughput AFM single-molecule force spectroscopy. The characteristic pattern of transitions between different smMLCK states and their variations in the presence of different substrates and ligands are presented. Interaction between kinase domain and regulatory light chain (RLC) substrate is identified in the absence of CaM, indicating restored substrate-binding capability due to mechanically induced removal of the auto-inhibitory regulatory region.
Collapse
Affiliation(s)
- Fabian Baumann
- Chair for Applied Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Magnus Sebastian Bauer
- Chair for Applied Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Rees
- Randall Division of Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, London, United Kingdom
| | - Alexander Alexandrovich
- Randall Division of Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, London, United Kingdom
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, London, United Kingdom
| | - Diana Angela Pippig
- Chair for Applied Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann Eduard Gaub
- Chair for Applied Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Chitano P, Wang L, Tin GYY, Ikebe M, Paré PD, Seow CY. Smooth muscle function and myosin polymerization. J Cell Sci 2017; 130:2468-2480. [DOI: 10.1242/jcs.202812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/01/2017] [Indexed: 01/28/2023] Open
Abstract
Smooth muscle is able to function over a much broader length range than striated muscle. The ability to maintain contractility after a large length change is thought to be due to an adaptive process involving restructuring of the contractile apparatus to maximize overlap between the contractile filaments. The molecular mechanism for the length-adaptive behavior is largely unknown. In smooth muscle adapted to different lengths we quantified myosin monomers, basal and activation-induced myosin light chain (MLC) phosphorylation, shortening-velocity, power-output and active force. The muscle was able to generate a constant maximal force over a 2-fold length range when it was allowed to go through isometric contraction/relaxation cycles after each length change (length adaptation). In the relaxed state myosin monomer concentration and basal MLC phosphorylation decreased linearly, while in the activated state activation-induced MLC phosphorylation and shortening-velocity/power-output increased linearly with muscle length. The results suggest that recruitment of myosin monomers and oligomers into the actin filament lattice (where they form force-generating filaments) occurs during muscle adaptation to longer length with the opposite occurring during adaptation to shorter length.
Collapse
Affiliation(s)
- Pasquale Chitano
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Lu Wang
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gabrielle Y. Y. Tin
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, Texas, USA
| | - Peter D. Paré
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y. Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Alcala DB, Haldeman BD, Brizendine RK, Krenc AK, Baker JE, Rock RS, Cremo CR. Myosin light chain kinase steady-state kinetics: comparison of smooth muscle myosin II and nonmuscle myosin IIB as substrates. Cell Biochem Funct 2016; 34:469-474. [PMID: 27528075 DOI: 10.1002/cbf.3209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/31/2023]
Abstract
Myosin light chain kinase (MLCK) phosphorylates S19 of the myosin regulatory light chain (RLC), which is required to activate myosin's ATPase activity and contraction. Smooth muscles are known to display plasticity in response to factors such as inflammation, developmental stage, or stress, which lead to differential expression of nonmuscle and smooth muscle isoforms. Here, we compare steady-state kinetics parameters for phosphorylation of different MLCK substrates: (1) nonmuscle RLC, (2) smooth muscle RLC, and heavy meromyosin subfragments of (3) nonmuscle myosin IIB, and (4) smooth muscle myosin II. We show that MLCK has a ~2-fold higher kcat for both smooth muscle myosin II substrates compared with nonmuscle myosin IIB substrates, whereas Km values were very similar. Myosin light chain kinase has a 1.6-fold and 1.5-fold higher specificity (kcat /Km ) for smooth versus nonmuscle-free RLC and heavy meromyosin, respectively, suggesting that differences in specificity are dictated by RLC sequences. Of the 10 non-identical RLC residues, we ruled out 7 as possible underlying causes of different MLCK kinetics. The remaining 3 residues were found to be surface exposed in the N-terminal half of the RLC, consistent with their importance in substrate recognition. These data are consistent with prior deletion/chimera studies and significantly add to understanding of MLCK myosin interactions. SIGNIFICANCE OF THE STUDY Phosphorylation of nonmuscle and smooth muscle myosin by myosin light chain kinase (MLCK) is required for activation of myosin's ATPase activity. In smooth muscles, nonmuscle myosin coexists with smooth muscle myosin, but the two myosins have very different chemo-mechanical properties relating to their ability to maintain force. Differences in specificity of MLCK for different myosin isoforms had not been previously investigated. We show that the MLCK prefers smooth muscle myosin by a significant factor. These data suggest that nonmuscle myosin is phosphorylated more slowly than smooth muscle myosin during a contraction cycle.
Collapse
Affiliation(s)
- Diego B Alcala
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA
| | - Brian D Haldeman
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA
| | - Richard K Brizendine
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA
| | - Agata K Krenc
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Josh E Baker
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Christine R Cremo
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA.
| |
Collapse
|
10
|
Hong F, Brizendine RK, Carter MS, Alcala DB, Brown AE, Chattin AM, Haldeman BD, Walsh MP, Facemyer KC, Baker JE, Cremo CR. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle. ACTA ACUST UNITED AC 2016; 146:267-80. [PMID: 26415568 PMCID: PMC4586593 DOI: 10.1085/jgp.201511483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle.
Collapse
Affiliation(s)
- Feng Hong
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Richard K Brizendine
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Michael S Carter
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Diego B Alcala
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Avery E Brown
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Amy M Chattin
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Brian D Haldeman
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Michael P Walsh
- Department of Biochemistry and Molecular Biology, University of Calgary Faculty of Medicine, Calgary, Alberta T2N 4N1, Canada
| | - Kevin C Facemyer
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Josh E Baker
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Christine R Cremo
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| |
Collapse
|
11
|
Fairfax ST, Mauban JRH, Hao S, Rizzo MA, Zhang J, Wier WG. Ca(2+) signaling in arterioles and small arteries of conscious, restrained, optical biosensor mice. Front Physiol 2014; 5:387. [PMID: 25339912 PMCID: PMC4188025 DOI: 10.3389/fphys.2014.00387] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/18/2014] [Indexed: 01/23/2023] Open
Abstract
Two-photon fluorescence microscopy and conscious, restrained optical biosensor mice were used to study smooth muscle Ca2+ signaling in ear arterioles. Conscious mice were used in order to preserve normal mean arterial blood pressure (MAP) and sympathetic nerve activity (SNA). ExMLCK mice, which express a genetically-encoded smooth muscle-specific FRET-based Ca2+ indicator, were equipped with blood pressure telemetry and immobilized for imaging. MAP was 101 ± 4 mmHg in conscious restrained mice, similar to the freely mobile state (107 ± 3 mmHg). Oscillatory vasomotion or irregular contractions were observed in most arterioles (71%), with the greatest oscillatory frequency observed at 0.25 s−1. In a typical arteriole with an average diameter of ~35 μm, oscillatory vasomotion of a 5–6 μm magnitude was accompanied by nearly uniform [Ca2+] oscillations from ~0.1 to 0.5 μM, with maximum [Ca2+] occurring immediately before the rapid decrease in diameter. Very rapid, spatially uniform “Ca2+ flashes” were also observed but not asynchronous propagating Ca2+ waves. In contrast, vasomotion and dynamic Ca2+ signals were rarely observed in ear arterioles of anesthetized exMLCK biosensor mice. Hexamethonium (30 μg/g BW, i.p.) caused a fall in MAP to 74 ± 4 mmHg, arteriolar vasodilation, and abolition of vasomotion and synchronous Ca2+ transients. Summary: MAP and heart rate (HR) were normal during high-resolution Ca2+ imaging of conscious, restrained mice. SNA induced continuous vasomotion and irregular vasoconstrictions via spatially uniform Ca2+ signaling within the arterial wall. FRET-based biosensor mice and two-photon imaging provided the first measurements of [Ca2+] in vascular smooth muscle cells in arterioles of conscious animals.
Collapse
Affiliation(s)
- Seth T Fairfax
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Joseph R H Mauban
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Scarlett Hao
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Mark A Rizzo
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
12
|
Abstract
AIM: To investigate the expression of myosin light chain kinase (MLCK) in pancreatic tissue of severe acute pancreatitis (SAP) rats.
METHODS: Fifty-six male SD rats were randomly and equally assigned into a normal control group (C) and a SAP group (S). SAP was reproduced in rats of group S by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct, while group C underwent a sham operation. The rats were killed at 6, 12, 24 and 48 h after SAP induction. Serum amylase (AMY) was measured dynamically. The gross and pathological changes in the pancreas were observed under a light microscope. The ultrastructure and tight junction (TJ) changes in the pancreas were observed with an electron microscope. The localization and expression of MLCK in pancreatic tissue were investigated by immunohistochemical method. The concentration of serum tumor necrosis factor α (TNF-α) was determined by ELISA.
RESULTS: Compared to group C, the AMY concentration and pancreatic pathology score were significantly higher (P < 0.05); pancreatic ultrastructure damage was more obvious and TJ widened significantly; MLCK was positively expressed in the cytoplasm of cells in the pancreas, and the mean density was elevated more significantly (P < 0.05); and serum TNF-α concentration significantly increased in group S (P < 0.05). The mean density of MLCK in the pancreas was positively correlated with pathological score and serum TNF-α concentration (r = 0.804, 0.796, P < 0.05 for both).
CONCLUSION: Up-regulated expression of MLCK protein in the pancreas and elevated serum TNF-α concentration may regulate the integrity of intercellular tight junctions, which may be associated with the severity of SAP and play a role in the pathogenesis of acute pancreatitis.
Collapse
|
13
|
Hong F, Facemyer KC, Carter MS, Jackson DR, Haldeman BD, Ruana N, Sutherland C, Walsh MP, Cremo CR, Baker JE. Kinetics of myosin light chain kinase activation of smooth muscle myosin in an in vitro model system. Biochemistry 2013; 52:8489-500. [PMID: 24144337 DOI: 10.1021/bi401001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca²⁺CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vitro system with SMM attached to a coverslip surface. Fitting the time course of SMM phosphorylation to a kinetic model gave an initial phosphorylation rate, kp(o), of ~1.17 heads s⁻¹ MLCK⁻¹. Also, we measured the dwell time of single streptavidin-coated quantum dot-labeled MLCK molecules interacting with surface-attached SMM and phosphorylated SMM using total internal reflection fluorescence microscopy. From these data, the dissociation rate constant from phosphorylated SMM was 0.80 s⁻¹, which was similar to the kp(o) mentioned above and with rates measured in solution. This dissociation rate was essentially independent of the phosphorylation state of SMM. From calculations using our measured dissociation rates and Kd values, and estimates of SMM and MLCK concentrations in muscle, we predict that the dissociation of MLCK from phosphorylated SMM is rate-limiting and that the rate of the phosphorylation step is faster than this dissociation rate. Also, association with SMM (11-46 s⁻¹) would be much faster than with pSMM (<0.1-0.2 s⁻¹). This suggests that the probability of MLCK interacting with unphosphorylated versus phosphorylated SMM is 55-460 times greater. This would avoid sequestering MLCK to unproductive interactions with previously phosphorylated SMM, potentially leading to faster rates of phosphorylation in muscle.
Collapse
Affiliation(s)
- Feng Hong
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine , Reno, Nevada 99557, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hong F, Facemyer KC, Carter MS, Jackson DR, Haldeman BD, Ruana N, Sutherland C, Walsh MP, Cremo CR, Baker JE. Kinetics of myosin light chain kinase activation of smooth muscle myosin in an in vitro model system. Biochemistry 2013. [PMID: 24144337 DOI: 10.1021/bi4010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca²⁺CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vitro system with SMM attached to a coverslip surface. Fitting the time course of SMM phosphorylation to a kinetic model gave an initial phosphorylation rate, kp(o), of ~1.17 heads s⁻¹ MLCK⁻¹. Also, we measured the dwell time of single streptavidin-coated quantum dot-labeled MLCK molecules interacting with surface-attached SMM and phosphorylated SMM using total internal reflection fluorescence microscopy. From these data, the dissociation rate constant from phosphorylated SMM was 0.80 s⁻¹, which was similar to the kp(o) mentioned above and with rates measured in solution. This dissociation rate was essentially independent of the phosphorylation state of SMM. From calculations using our measured dissociation rates and Kd values, and estimates of SMM and MLCK concentrations in muscle, we predict that the dissociation of MLCK from phosphorylated SMM is rate-limiting and that the rate of the phosphorylation step is faster than this dissociation rate. Also, association with SMM (11-46 s⁻¹) would be much faster than with pSMM (<0.1-0.2 s⁻¹). This suggests that the probability of MLCK interacting with unphosphorylated versus phosphorylated SMM is 55-460 times greater. This would avoid sequestering MLCK to unproductive interactions with previously phosphorylated SMM, potentially leading to faster rates of phosphorylation in muscle.
Collapse
Affiliation(s)
- Feng Hong
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine , Reno, Nevada 99557, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Walsh MP. Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB Life 2011; 63:987-1000. [PMID: 21990256 DOI: 10.1002/iub.527] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/21/2011] [Accepted: 05/31/2011] [Indexed: 12/17/2022]
Abstract
Smooth muscle contraction is activated primarily by phosphorylation at S19 of the 20-kDa regulatory light chain subunits of myosin II (LC(20) ) catalyzed by Ca(2+) /calmodulin-dependent myosin light chain kinase. Other kinases, for example, integrin-linked kinase (ILK), Rho-associated kinase (ROCK), and zipper-interacting protein kinase (ZIPK), can phosphorylate T18 in addition to S19, which increases the actin-activated myosin MgATPase activity at subsaturating actin concentrations ∼3-fold. These phosphorylatable residues and the amino acid sequence surrounding them are highly conserved throughout the animal kingdom; they are also found in an LC(20) homolog within the genome of Monosiga brevicollis, the closest living relative of metazoans. LC(20) diphosphorylation has been detected in mammalian vascular smooth muscle tissues in response to specific contractile stimuli and in pathophysiological situations associated with hypercontractility. LC(20) diphosphorylation has also been observed frequently in cultured cells where it activates force generation. Kinases such as ILK, ROCK, and ZIPK, therefore, are potential therapeutic targets in the treatment of, for example, cerebral vasospasm following subarachnoid hemorrhage and atherosclerosis.
Collapse
Affiliation(s)
- Michael P Walsh
- Smooth Muscle Research Group and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
16
|
Hong F, Haldeman BD, Jackson D, Carter M, Baker JE, Cremo CR. Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 2011. [PMID: 21565153 DOI: 10.1016/j.abb.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca(2+)-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced.
Collapse
Affiliation(s)
- Feng Hong
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, 89557, USA
| | | | | | | | | | | |
Collapse
|
17
|
Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure. Arch Biochem Biophys 2011; 510:160-73. [DOI: 10.1016/j.abb.2011.02.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 12/19/2022]
|
18
|
Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 2011; 510:135-46. [PMID: 21565153 DOI: 10.1016/j.abb.2011.04.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 11/23/2022]
Abstract
The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca(2+)-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced.
Collapse
|
19
|
Gautel M. Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 2011; 462:119-34. [PMID: 21416260 PMCID: PMC3114093 DOI: 10.1007/s00424-011-0946-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, London, SE1 1UL, UK.
| |
Collapse
|
20
|
Denelavas A, Weibel F, Prummer M, Imbach A, Clerc RG, Apfel CM, Hertel C. Real-time cellular impedance measurements detect Ca(2+) channel-dependent oscillations of morphology in human H295R adrenoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:754-62. [PMID: 21262275 DOI: 10.1016/j.bbamcr.2011.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/07/2010] [Accepted: 01/13/2011] [Indexed: 01/15/2023]
Abstract
Endocrine cells, such as H295R have been widely used to study secretion of steroid and other hormones. Exocytosis-dependent hormone release is accompanied by an increase in plasma membrane surface area and a decrease in vesicle content. Recovery of vesicles and decrease in plasma membrane area is achieved by endocytotic processes. These changes in the extent of the surface area lead to morphological changes which can be determined by label-free real-time impedance measurements. Exo- and endocytosis have been described to be triggered by activation of L-type Ca(2+) channels. The present study demonstrates that activation of L-type calcium channels induces prolonged oscillating changes in cellular impedance. The data support the hypothesis that a tight regulation of the intracellular Ca(2+) concentration is a prerequisite for the observed cellular impedance oscillations. Furthermore evidence is presented for a mechanism in which the oscillations depend on a Ca(2+)-triggered calmodulin-dependent cascade involving myosin light chain kinase, nonmuscle myosin II and ultimately actin polymerization, a known determinant for cell shape changes and exocytosis in secretory cells. The described assay provides a method to determine continuously prolonged changes in cellular morphology such as exo/endocytosis cycles. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Athanasios Denelavas
- Metabolic Diseases, F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
21
|
Sobieszek A, Sarg B, Lindner H, Seow CY. Phosphorylation of caldesmon by myosin light chain kinase increases its binding affinity for phosphorylated myosin filaments. Biol Chem 2010; 391:1091-104. [DOI: 10.1515/bc.2010.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Phosphorylation of myosin by myosin light chain kinase (MLCK) is essential for smooth muscle contraction. In this study we show that caldesmon (CaD) is also phosphorylated in vitro by MLCK. The phosphorylation is calcium- and calmodulin (CaM)-dependent and requires a MLCK concentration close to that found in vivo. On average, approximately 2 mol P
i
per mol of CaD are incorporated at Thr-626 and Thr-693, with additional partial phosphorylation at Ser-658 and Ser-702. The phosphorylation rate for CaD is 20- to 50-fold slower than that for filamentous myosin; faster relative rates were obtained with CaD added to purified actomyosin or myosin preparations containing endogenous MLCK/CaM complex. Addition of CaM also augmented CaD phosphorylation. We further demonstrate that [32P] labeled CaD binds much more readily to phosphorylated filamentous myosin than to unphosphorylated myosin. For actomyosin, CaD binding affinity doubles after myosin phosphorylation, without a significant change in binding stoichiometry (approx. one CaD per myosin molecule). Unphosphorylated CaD is ineffective in competing with the phosphorylated protein for the binding site(s) on myosin filaments. The ATPase activity of reconstituted actomyosin is inhibited by unphosphorylated CaD, and this inhibition was removed by CaD phosphorylation. Our results suggest that CaD phosphorylation plays a role in modifying actomyosin interaction in vivo, particularly during prolonged muscle activation.
Collapse
|
22
|
Kinase-related protein/telokin inhibits Ca2+-independent contraction in Triton-skinned guinea pig taenia coli. Biochem J 2010; 429:291-302. [PMID: 20459395 DOI: 10.1042/bj20090819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
KRP (kinase-related protein), also known as telokin, has been proposed to inhibit smooth muscle contractility by inhibiting the phosphorylation of the rMLC (regulatory myosin light chain) by the Ca2+-activated MLCK (myosin light chain kinase). Using the phosphatase inhibitor microcystin, we show in the present study that KRP also inhibits Ca2+-independent rMLC phosphorylation and smooth muscle contraction mediated by novel Ca2+-independent rMLC kinases. Incubating KRP-depleted Triton-skinned taenia coli with microcystin at pCa>8 induced a slow contraction reaching 90% of maximal force (Fmax) at pCa 4.5 after approximately 25 min. Loading the fibres with KRP significantly slowed down the force development, i.e. the time to reach 50% of Fmax was increased from 8 min to 35 min. KRP similarly inhibited rMLC phosphorylation of HMM (heavy meromyosin) in vitro by MLCK or by the constitutively active MLCK fragment (61K-MLCK) lacking the myosin-docking KRP domain. A C-terminally truncated KRP defective in myosin binding inhibited neither force nor HMM phosphorylation. Phosphorylated KRP inhibited the rMLC phosphorylation of HMM in vitro and Ca2+-insensitive contractions in fibres similar to unphosphorylated KRP, whereby the phosphorylation state of KRP was not altered in the fibres. We conclude that (i) KRP inhibits not only MLCK-induced contractions, but also those elicited by Ca2+-independent rMLC kinases; (ii) phosphorylation of KRP does not modulate this effect; (iii) binding of KRP to myosin is essential for this inhibition; and (iv) KRP inhibition of rMLC phosphorylation is most probably due to the shielding of the phosphorylation site on the rMLC.
Collapse
|
23
|
Zhang J, Chen L, Raina H, Blaustein MP, Wier WG. In vivo assessment of artery smooth muscle [Ca2+]i and MLCK activation in FRET-based biosensor mice. Am J Physiol Heart Circ Physiol 2010; 299:H946-56. [PMID: 20622107 DOI: 10.1152/ajpheart.00359.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cellular mechanisms that control arterial diameter in vivo, particularly in hypertension, are uncertain. Here, we report a method that permits arterial intracellular Ca(2+) concentration ([Ca(2+)](i)), myosin light-chain kinase (MLCK) activation, and artery external diameter to be recorded simultaneously with arterial blood pressure (BP) in living mice under 1.5% isofluorane anesthesia. The method also enables an assessment of local receptor activity on [Ca(2+)](i), MLCK activity, and diameter in arteries, uncomplicated by systemic effects. Transgenic mice that express, in smooth muscle, a Ca(2+)/calmodulin-activated, Förster resonance energy transfer (FRET)-based "ratiometric", exogenous MLCK biosensor were used. Vasoactive substances were administered either intravenously or locally to segments of exposed femoral or cremaster arteries. In the basal state, mean BP was approximately 90 mmHg, femoral arteries were constricted to 65% of their passive diameter, MLCK fractional activation was 0.14, and [Ca(2+)](i) was 131 nM. Phenylephrine (300 ng/g wt iv) elevated mean BP transiently to approximately 110 mmHg, decreased heart rate, increased femoral artery [Ca(2+)](i) to 244 nM and fractional MLCK activation to 0.24, and decreased artery diameter by 23%. In comparison, local application of 1.0 muM phenylephrine raised [Ca(2+)](i) to 279 nM and fractional MLCK activation to 0.26, and reduced diameter by 25%, but did not affect BP or heart rate. Intravital FRET imaging of exogenous MLCK biosensor mice permits quantification of changes in [Ca(2+)](i) and MLCK activation that accompany small changes in BP. Based on the observed variance of the FRET data, this method should enable the detection of a difference in basal [Ca(2+)](i) of 29 nM between two groups of 12 mice with a significance of P < 0.05.
Collapse
Affiliation(s)
- Jin Zhang
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
24
|
Mabuchi Y, Mabuchi K, Stafford WF, Grabarek Z. Modular structure of smooth muscle Myosin light chain kinase: hydrodynamic modeling and functional implications. Biochemistry 2010; 49:2903-17. [PMID: 20196616 DOI: 10.1021/bi901963e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Smooth muscle myosin light chain kinase (smMLCK) is a calcium-calmodulin complex-dependent enzyme that activates contraction of smooth muscle. The polypeptide chain of rabbit uterine smMLCK (Swiss-Prot entry P29294) contains the catalytic/regulatory domain, three immunoglobulin-related motifs (Ig), one fibronectin-related motif (Fn3), a repetitive, proline-rich segment (PEVK), and, at the N-terminus, a unique F-actin-binding domain. We have evaluated the spatial arrangement of these domains in a recombinant 125 kDa full-length smMLCK and its two catalytically active C-terminal fragments (77 kDa, residues 461-1147, and 61 kDa, residues 461-1002). Electron microscopic images of smMLCK cross-linked to F-actin show particles at variable distances (11-55 nm) from the filament, suggesting that a well-structured C-terminal segment of smMLCK is connected to the actin-binding domain by a long, flexible tether. We have used structural homology and molecular dynamics methods to construct various all-atom representation models of smMLCK and its two fragments. The theoretical sedimentation coefficients computed with HYDROPRO were compared with those determined by sedimentation velocity. We found agreement between the predicted and observed sedimentation coefficients for models in which the independently folded catalytic domain, Fn3, and Ig domains are aligned consecutively on the long axis of the molecule. The PEVK segment is modeled as an extensible linker that enables smMLCK to remain bound to F-actin and simultaneously activate the myosin heads of adjacent myosin filaments at a distance of >or=40 nm. The structural properties of smMLCK may contribute to the elasticity of smooth muscle cells.
Collapse
Affiliation(s)
- Yasuko Mabuchi
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829, USA
| | | | | | | |
Collapse
|