1
|
The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin. Int J Mol Sci 2022; 23:ijms23031220. [PMID: 35163146 PMCID: PMC8835826 DOI: 10.3390/ijms23031220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Two isoforms of human cardiac myosin, alpha and beta, share significant sequence similarities but show different kinetics. The alpha isoform is a faster motor; it spends less time being strongly bound to actin during the actomyosin cycle. With alpha isoform, actomyosin dissociates faster upon ATP binding, and the affinity of ADP to actomyosin is weaker. One can suggest that the isoform-specific actomyosin kinetics is regulated at the nucleotide binding site of human cardiac myosin. Myosin is a P-loop ATPase; the nucleotide-binding site consists of P-loop and loops switch 1 and 2. All three loops position MgATP for successful hydrolysis. Loops sequence is conserved in both myosin isoforms, and we hypothesize that the isoform-specific structural element near the active site regulates the rate of nucleotide binding and release. Previously we ran molecular dynamics simulations and found that loop S291-E317 near loop switch 1 is more compact and exhibits larger fluctuations of the position of amino acid residues in beta isoform than in alpha. In alpha isoform, the loop forms a salt bridge with loop switch 1, the bridge is not present in beta isoform. Two isoleucines I303 and I313 of loop S291-E317 are replaced with valines in alpha isoform. We introduced a double mutation I303V:I313V in beta isoform background and studied how the mutation affects the rate of ATP binding and ADP dissociation from actomyosin. We found that ATP-induced actomyosin dissociation occurs faster in the mutant, but the rate of ADP release remains the same as in the wild-type beta isoform. Due to the proximity of loop S291-E317 and loop switch 1, a faster rate of ATP-induced actomyosin dissociation indicates that loop S291-E317 affects structural dynamics of loop switch 1, and that loop switch 1 controls ATP binding to the active site. A similar rate of ADP dissociation from actomyosin in the mutant and wild-type myosin constructs indicates that loop switch 1 does not control ADP release from actomyosin.
Collapse
|
2
|
Pospich S, Sweeney HL, Houdusse A, Raunser S. High-resolution structures of the actomyosin-V complex in three nucleotide states provide insights into the force generation mechanism. eLife 2021; 10:e73724. [PMID: 34812732 PMCID: PMC8735999 DOI: 10.7554/elife.73724] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular motor myosin undergoes a series of major structural transitions during its force-producing motor cycle. The underlying mechanism and its coupling to ATP hydrolysis and actin binding are only partially understood, mostly due to sparse structural data on actin-bound states of myosin. Here, we report 26 high-resolution cryo-EM structures of the actomyosin-V complex in the strong-ADP, rigor, and a previously unseen post-rigor transition state that binds the ATP analog AppNHp. The structures reveal a high flexibility of myosin in each state and provide valuable insights into the structural transitions of myosin-V upon ADP release and binding of AppNHp, as well as the actomyosin interface. In addition, they show how myosin is able to specifically alter the structure of F-actin.
Collapse
Affiliation(s)
- Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - H Lee Sweeney
- Department of Pharmacology and Therapeutics and the Myology Institute, University of FloridaGainesvilleUnited States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Centre National de la Recherche ScientifiqueParisFrance
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
3
|
Walker BC, Walczak CE, Cochran JC. Switch-1 instability at the active site decouples ATP hydrolysis from force generation in myosin II. Cytoskeleton (Hoboken) 2021; 78:3-13. [PMID: 33381891 PMCID: PMC7986744 DOI: 10.1002/cm.21650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022]
Abstract
Myosin active site elements (i.e., switch‐1) bind both ATP and a divalent metal to coordinate ATP hydrolysis. ATP hydrolysis at the active site is linked via allosteric communication to the actin polymer binding site and lever arm movement, thus coupling the free energy of ATP hydrolysis to force generation. How active site motifs are functionally linked to actin binding and the power stroke is still poorly understood. We hypothesize that destabilizing switch‐1 movement at the active site will negatively affect the tight coupling of the ATPase catalytic cycle to force production. Using a metal‐switch system, we tested the effect of interfering with switch‐1 coordination of the divalent metal cofactor on force generation. We found that while ATPase activity increased, motility was inhibited. Our results demonstrate that a single atom change that affects the switch‐1 interaction with the divalent metal directly affects actin binding and productive force generation. Even slight modification of the switch‐1 divalent metal coordination can decouple ATP hydrolysis from motility. Switch‐1 movement is therefore critical for both structural communication with the actin binding site, as well as coupling the energy of ATP hydrolysis to force generation.
Collapse
Affiliation(s)
- Benjamin C Walker
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Claire E Walczak
- Medical Sciences, Indiana University School of Medicine-Bloomington, Bloomington, Indiana, USA
| | - Jared C Cochran
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Cochran JC, Thompson ME, Kull FJ. Metal switch-controlled myosin II from Dictyostelium discoideum supports closure of nucleotide pocket during ATP binding coupled to detachment from actin filaments. J Biol Chem 2013; 288:28312-23. [PMID: 23960071 DOI: 10.1074/jbc.m113.466045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-proteins, kinesins, and myosins are hydrolases that utilize a common protein fold and divalent metal cofactor (typically Mg(2+)) to coordinate purine nucleotide hydrolysis. The nucleoside triphosphorylase activities of these enzymes are activated through allosteric communication between the nucleotide-binding site and the activator/effector/polymer interface to convert the free energy of nucleotide hydrolysis into molecular switching (G-proteins) or force generation (kinesins and myosin). We have investigated the ATPase mechanisms of wild-type and the S237C mutant of non-muscle myosin II motor from Dictyostelium discoideum. The S237C substitution occurs in the conserved metal-interacting switch-1, and we show that this substitution modulates the actomyosin interaction based on the divalent metal present in solution. Surprisingly, S237C shows rapid basal steady-state Mg(2+)- or Mn(2+)-ATPase kinetics, but upon binding actin, its MgATPase is inhibited. This actin inhibition is relieved by Mn(2+), providing a direct and experimentally reversible linkage of switch-1 and the actin-binding cleft through the swapping of divalent metals in the reaction. Using pyrenyl-labeled F-actin, we demonstrate that acto·S237C undergoes slow and weak MgATP binding, which limits the rate of steady-state catalysis. Mn(2+) rescues this effect to near wild-type activity. 2'(3')-O-(N-Methylanthraniloyl)-ADP release experiments show the need for switch-1 interaction with the metal cofactor for tight ADP binding. Our results are consistent with strong reciprocal coupling of nucleoside triphosphate and F-actin binding and provide additional evidence for the allosteric communication pathway between the nucleotide-binding site and the filament-binding region.
Collapse
Affiliation(s)
- Jared C Cochran
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | | | | |
Collapse
|
5
|
Conformational changes at the nucleotide site in the presence of bound ADP do not set the velocity of fast Drosophila myosins. J Muscle Res Cell Motil 2012. [PMID: 23203294 DOI: 10.1007/s10974-012-9331-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The conformational changes in myosin associated with ADP release and their influence on actin sliding velocity are not understood. Following actin binding, the myosin active site is in equilibrium between a closed and open ADP bound state, with the open state previously thought to favor ADP release and thus expected to be favored in faster myosins. However, our recent work with a variety of myosins suggests the opposite, that the open conformation is dominant in slower myosins, which have higher ADP affinities. To test if this correlation holds for fast myosin isoforms, we determined the relationships between conformational pocket dynamics, ADP affinity and velocity of four Drosophila myosins: indirect flight muscle (IFM) myosin (IFI), embryonic muscle myosin (EMB) and two IFI/EMB chimeras. Electron paramagnetic resonance spectra of nucleotide-analog spin probes (SLADP) bound to IFI subfragment-1 in the absence of actin showed a high degree of immobilization, indicating a predominately closed nucleotide pocket. The A·M·SLADP spectra of all four myosins in fibers (actin bound) also indicated an equilibrium favoring the closed conformation with the closed state closing even further. However, the energetics of pocket closure did not correlate with Drosophila myosin actin velocity suggesting our previous model relating pocket dynamics to velocity does not hold for fast myosin isoforms. We conclude that for these fast myosins, and possibly other fast myosins, velocity is controlled by factors other than the ratio of open to closed nucleotide pocket conformation.
Collapse
|
6
|
Klose D, Klare JP, Grohmann D, Kay CWM, Werner F, Steinhoff HJ. Simulation vs. reality: a comparison of in silico distance predictions with DEER and FRET measurements. PLoS One 2012; 7:e39492. [PMID: 22761805 PMCID: PMC3382601 DOI: 10.1371/journal.pone.0039492] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/21/2012] [Indexed: 11/19/2022] Open
Abstract
Site specific incorporation of molecular probes such as fluorescent- and nitroxide spin-labels into biomolecules, and subsequent analysis by Förster resonance energy transfer (FRET) and double electron-electron resonance (DEER) can elucidate the distance and distance-changes between the probes. However, the probes have an intrinsic conformational flexibility due to the linker by which they are conjugated to the biomolecule. This property minimizes the influence of the label side chain on the structure of the target molecule, but complicates the direct correlation of the experimental inter-label distances with the macromolecular structure or changes thereof. Simulation methods that account for the conformational flexibility and orientation of the probe(s) can be helpful in overcoming this problem. We performed distance measurements using FRET and DEER and explored different simulation techniques to predict inter-label distances using the Rpo4/7 stalk module of the M. jannaschii RNA polymerase. This is a suitable model system because it is rigid and a high-resolution X-ray structure is available. The conformations of the fluorescent labels and nitroxide spin labels on Rpo4/7 were modeled using in vacuo molecular dynamics simulations (MD) and a stochastic Monte Carlo sampling approach. For the nitroxide probes we also performed MD simulations with explicit water and carried out a rotamer library analysis. Our results show that the Monte Carlo simulations are in better agreement with experiments than the MD simulations and the rotamer library approach results in plausible distance predictions. Because the latter is the least computationally demanding of the methods we have explored, and is readily available to many researchers, it prevails as the method of choice for the interpretation of DEER distance distributions.
Collapse
Affiliation(s)
- Daniel Klose
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Johann P. Klare
- Department of Physics, University of Osnabrück, Osnabrück, Germany
- * E-mail: (JPK); (H-JS)
| | - Dina Grohmann
- RNAP Laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Christopher W. M. Kay
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
- London Centre for Nanotechnology, University College London, London, United Kingdom
| | - Finn Werner
- RNAP Laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Heinz-Jürgen Steinhoff
- Department of Physics, University of Osnabrück, Osnabrück, Germany
- * E-mail: (JPK); (H-JS)
| |
Collapse
|
7
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
8
|
Purcell TJ, Naber N, Sutton S, Cooke R, Pate E. EPR spectra and molecular dynamics agree that the nucleotide pocket of myosin V is closed and that it opens on binding actin. J Mol Biol 2011; 411:16-26. [PMID: 21640122 PMCID: PMC3143297 DOI: 10.1016/j.jmb.2011.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
We have used EPR spectroscopy and computational modeling of nucleotide-analog spin probes to investigate conformational changes at the nucleotide site of myosin V. We find that, in the absence of actin, the mobility of a spin-labeled diphosphate analog [spin-labeled ADP (SLADP)] bound at the active site is strongly hindered, suggesting a closed nucleotide pocket. The mobility of the analog increases when the MV·SLADP complex (MV=myosin V) binds to actin, implying an opening of the active site in the A·MV·SLADP complex (A=actin). The probe mobilities are similar to those seen with myosin II, despite the fact that myosin V has dramatically altered kinetics. Molecular dynamics (MD) simulation was used to understand the EPR spectra in terms of the X-ray database. The X-ray structure of MV·ADP·BeFx shows a closed nucleotide site and has been proposed to be the detached state. The MV·ADP structure shows an open nucleotide site and has been proposed to be the A·MV·ADP state at the end of the working powerstroke. MD simulation of SLADP docked in the closed conformation gave a probe mobility comparable to that seen in the EPR spectrum of the MV·SLADP complex. The simulation of the open conformation gave a probe mobility that was 35-40° greater than that observed experimentally for the A·MV·SLADP state. Thus, EPR, X-ray diffraction, and computational analysis support the closed conformation as a myosin V state that is detached from actin. The MD results indicate that the MV·ADP crystal structure, which may correspond to the strained actin-bound post-powerstroke conformation resulting from head-head interaction in the dimeric processive motor, is superopened.
Collapse
Affiliation(s)
- Thomas J. Purcell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Nariman Naber
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - Roger Cooke
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Edward Pate
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| |
Collapse
|
9
|
Decarreau JA, James NG, Chrin LR, Berger CL. Switch I closure simultaneously promotes strong binding to actin and ADP in smooth muscle myosin. J Biol Chem 2011; 286:22300-7. [PMID: 21536675 DOI: 10.1074/jbc.m111.219014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The motor protein myosin uses energy derived from ATP hydrolysis to produce force and motion. Important conserved components (P-loop, switch I, and switch II) help propagate small conformational changes at the active site into large scale conformational changes in distal regions of the protein. Structural and biochemical studies have indicated that switch I may be directly responsible for the reciprocal opening and closing of the actin and nucleotide-binding pockets during the ATPase cycle, thereby aiding in the coordination of these important substrate-binding sites. Smooth muscle myosin has displayed the ability to simultaneously bind tightly to both actin and ADP, although it is unclear how both substrate-binding clefts could be closed if they are rigidly coupled to switch I. Here we use single tryptophan mutants of smooth muscle myosin to determine how conformational changes in switch I are correlated with structural changes in the nucleotide and actin-binding clefts in the presence of actin and ADP. Our results suggest that a closed switch I conformation in the strongly bound actomyosin-ADP complex is responsible for maintaining tight nucleotide binding despite an open nucleotide-binding pocket. This unique state is likely to be crucial for prolonged tension maintenance in smooth muscle.
Collapse
Affiliation(s)
- Justin A Decarreau
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
10
|
Purcell TJ, Naber N, Franks-Skiba K, Dunn AR, Eldred CC, Berger CL, Málnási-Csizmadia A, Spudich JA, Swank DM, Pate E, Cooke R. Nucleotide pocket thermodynamics measured by EPR reveal how energy partitioning relates myosin speed to efficiency. J Mol Biol 2011; 407:79-91. [PMID: 21185304 PMCID: PMC3347976 DOI: 10.1016/j.jmb.2010.11.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/24/2010] [Accepted: 11/26/2010] [Indexed: 11/26/2022]
Abstract
We have used spin-labeled ADP to investigate the dynamics of the nucleotide-binding pocket in a series of myosins, which have a range of velocities. Electron paramagnetic resonance spectroscopy reveals that the pocket is in equilibrium between open and closed conformations. In the absence of actin, the closed conformation is favored. When myosin binds actin, the open conformation becomes more favored, facilitating nucleotide release. We found that faster myosins favor a more closed pocket in the actomyosin•ADP state, with smaller values of ΔH(0) and ΔS(0), even though these myosins release ADP at a faster rate. A model involving a partitioning of free energy between work-generating steps prior to rate-limiting ADP release explains both the unexpected correlation between velocity and opening of the pocket and the observation that fast myosins are less efficient than slow myosins.
Collapse
Affiliation(s)
- Thomas J Purcell
- Department of Biochemistry and Biophysics, UCSF MC 2240, Genentech Hall Room S416C, 600 16th Street, San Francisco, CA 94158-2517, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Naber N, Larson A, Rice S, Cooke R, Pate E. Multiple conformations of the nucleotide site of Kinesin family motors in the triphosphate state. J Mol Biol 2011; 408:628-42. [PMID: 21277856 DOI: 10.1016/j.jmb.2011.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/04/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
Identifying conformational changes in kinesin family motors associated with nucleotide and microtubule (MT) binding is essential to determining an atomic-level model for force production and motion by the motors. Using the mobility of nucleotide analog spin probes bound at the active sites of kinesin family motors to monitor conformational changes, we previously demonstrated that, in the ADP state, the open nucleotide site closes upon MT binding [Naber, N., Minehardt, T. J., Rice, S., Chen, X., Grammer, J., Matuska, M., et al. (2003). Closing of the nucleotide pocket of kinesin family motors upon binding to microtubules. Science, 300, 798-801]. We now extend these studies to kinesin-1 (K) and ncd (nonclaret disjunctional protein) motors in ATP and ATP-analog states. Our results reveal structural differences between several triphosphate and transition-state analogs bound to both kinesin and ncd in solution. The spectra of kinesin/ncd in the presence of SLADP•AlFx/BeFx and kinesin, with the mutation E236A (K-E236A; does not hydrolyze ATP) bound to ATP, show an open conformation of the nucleotide pocket similar to that seen in the kinesin/ncd•ADP states. In contrast, the triphosphate analogs K•SLAMPPNP and K-E236A•SLAMPPNP induce a more immobilized component of the electron paramagnetic resonance spectrum, implying closing of the nucleotide site. The MT-bound states of all of the triphosphate analogs reveal two novel spectral components. The equilibrium between these two components is only weakly dependent on temperature. Both components have more restricted mobility than observed in MT-bound diphosphate states. Thus, the closing of the nucleotide pocket when the diphosphate state binds to MTs is amplified in the triphosphate state, perhaps promoting accelerated ATP hydrolysis. Consistent with this idea, molecular dynamics simulations show a good correlation between our spectroscopic data, X-ray crystallography, and the electron microscopy of MT-bound triphosphate-analog states.
Collapse
Affiliation(s)
- Nariman Naber
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
12
|
Shelke SA, Sigurdsson ST. Site-Directed Nitroxide Spin Labeling of Biopolymers. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2011. [DOI: 10.1007/430_2011_62] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|