1
|
Lipsh-Sokolik R, Khersonsky O, Schröder SP, de Boer C, Hoch SY, Davies GJ, Overkleeft HS, Fleishman SJ. Combinatorial assembly and design of enzymes. Science 2023; 379:195-201. [PMID: 36634164 DOI: 10.1126/science.ade9434] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The design of structurally diverse enzymes is constrained by long-range interactions that are necessary for accurate folding. We introduce an atomistic and machine learning strategy for the combinatorial assembly and design of enzymes (CADENZ) to design fragments that combine with one another to generate diverse, low-energy structures with stable catalytic constellations. We applied CADENZ to endoxylanases and used activity-based protein profiling to recover thousands of structurally diverse enzymes. Functional designs exhibit high active-site preorganization and more stable and compact packing outside the active site. Implementing these lessons into CADENZ led to a 10-fold improved hit rate and more than 10,000 recovered enzymes. This design-test-learn loop can be applied, in principle, to any modular protein family, yielding huge diversity and general lessons on protein design principles.
Collapse
Affiliation(s)
- R Lipsh-Sokolik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - O Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - S P Schröder
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, Netherlands
| | - C de Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, Netherlands
| | - S-Y Hoch
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - G J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, UK
| | - H S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, Netherlands
| | - S J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
2
|
Abstract
Many enzymes that show a large specificity in binding the enzymatic transition state with a higher affinity than the substrate utilize substrate binding energy to drive protein conformational changes to form caged substrate complexes. These protein cages provide strong stabilization of enzymatic transition states. Using part of the substrate binding energy to drive the protein conformational change avoids a similar strong stabilization of the Michaelis complex and irreversible ligand binding. A seminal step in the development of modern enzyme catalysts was the evolution of enzymes that couple substrate binding to a conformational change. These include enzymes that function in glycolysis (triosephosphate isomerase), the biosynthesis of lipids (glycerol phosphate dehydrogenase), the hexose monophosphate shunt (6-phosphogluconate dehydrogenase), and the mevalonate pathway (isopentenyl diphosphate isomerase), catalyze the final step in the biosynthesis of pyrimidine nucleotides (orotidine monophosphate decarboxylase), and regulate the cellular levels of adenine nucleotides (adenylate kinase). The evolution of enzymes that undergo ligand-driven conformational changes to form active protein-substrate cages is proposed to proceed by selection of variants, in which the selected side chain substitutions destabilize a second protein conformer that shows compensating enhanced binding interactions with the substrate. The advantages inherent to enzymes that incorporate a conformational change into the catalytic cycle provide a strong driving force for the evolution of flexible protein folds such as the TIM barrel. The appearance of these folds represented a watershed event in enzyme evolution that enabled the rapid propagation of enzyme activities within enzyme superfamilies.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
3
|
Blaber M. Variable and Conserved Regions of Secondary Structure in the β-Trefoil Fold: Structure Versus Function. Front Mol Biosci 2022; 9:889943. [PMID: 35517858 PMCID: PMC9062101 DOI: 10.3389/fmolb.2022.889943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
β-trefoil proteins exhibit an approximate C3 rotational symmetry. An analysis of the secondary structure for members of this diverse superfamily of proteins indicates that it is comprised of remarkably conserved β-strands and highly-divergent turn regions. A fundamental “minimal” architecture can be identified that is devoid of heterogenous and extended turn regions, and is conserved among all family members. Conversely, the different functional families of β-trefoils can potentially be identified by their unique turn patterns (or turn “signature”). Such analyses provide clues as to the evolution of the β-trefoil family, suggesting a folding/stability role for the β-strands and a functional role for turn regions. This viewpoint can also guide de novo protein design of β-trefoil proteins having novel functionality.
Collapse
Affiliation(s)
- Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
4
|
Heizinger L, Merkl R. Evidence for the preferential reuse of sub-domain motifs in primordial protein folds. Proteins 2021; 89:1167-1179. [PMID: 33957009 DOI: 10.1002/prot.26089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 11/06/2022]
Abstract
A comparison of protein backbones makes clear that not more than approximately 1400 different folds exist, each specifying the three-dimensional topology of a protein domain. Large proteins are composed of specific domain combinations and many domains can accommodate different functions. These findings confirm that the reuse of domains is key for the evolution of multi-domain proteins. If reuse was also the driving force for domain evolution, ancestral fragments of sub-domain size exist that are shared between domains possessing significantly different topologies. For the fully automated detection of putatively ancestral motifs, we developed the algorithm Fragstatt that compares proteins pairwise to identify fragments, that is, instantiations of the same motif. To reach maximal sensitivity, Fragstatt compares sequences by means of cascaded alignments of profile Hidden Markov Models. If the fragment sequences are sufficiently similar, the program determines and scores the structural concordance of the fragments. By analyzing a comprehensive set of proteins from the CATH database, Fragstatt identified 12 532 partially overlapping and structurally similar motifs that clustered to 134 unique motifs. The dissemination of these motifs is limited: We found only two domain topologies that contain two different motifs and generally, these motifs occur in not more than 18% of the CATH topologies. Interestingly, motifs are enriched in topologies that are considered ancestral. Thus, our findings suggest that the reuse of sub-domain sized fragments was relevant in early phases of protein evolution and became less important later on.
Collapse
Affiliation(s)
- Leonhard Heizinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Furukawa R, Toma W, Yamazaki K, Akanuma S. Ancestral sequence reconstruction produces thermally stable enzymes with mesophilic enzyme-like catalytic properties. Sci Rep 2020; 10:15493. [PMID: 32968141 PMCID: PMC7511310 DOI: 10.1038/s41598-020-72418-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
Enzymes have high catalytic efficiency and low environmental impact, and are therefore potentially useful tools for various industrial processes. Crucially, however, natural enzymes do not always have the properties required for specific processes. It may be necessary, therefore, to design, engineer, and evolve enzymes with properties that are not found in natural enzymes. In particular, the creation of enzymes that are thermally stable and catalytically active at low temperature is desirable for processes involving both high and low temperatures. In the current study, we designed two ancestral sequences of 3-isopropylmalate dehydrogenase by an ancestral sequence reconstruction technique based on a phylogenetic analysis of extant homologous amino acid sequences. Genes encoding the designed sequences were artificially synthesized and expressed in Escherichia coli. The reconstructed enzymes were found to be slightly more thermally stable than the extant thermophilic homologue from Thermus thermophilus. Moreover, they had considerably higher low-temperature catalytic activity as compared with the T. thermophilus enzyme. Detailed analyses of their temperature-dependent specific activities and kinetic properties showed that the reconstructed enzymes have catalytic properties similar to those of mesophilic homologues. Collectively, our study demonstrates that ancestral sequence reconstruction can produce a thermally stable enzyme with catalytic properties adapted to low-temperature reactions.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Wakako Toma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Koji Yamazaki
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
6
|
Tenorio CA, Longo LM, Parker JB, Lee J, Blaber M. Ab initio folding of a trefoil-fold motif reveals structural similarity with a β-propeller blade motif. Protein Sci 2020; 29:1172-1185. [PMID: 32142181 DOI: 10.1002/pro.3850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 01/05/2023]
Abstract
Many protein architectures exhibit evidence of internal rotational symmetry postulated to be the result of gene duplication/fusion events involving a primordial polypeptide motif. A common feature of such structures is a domain-swapped arrangement at the interface of the N- and C-termini motifs and postulated to provide cooperative interactions that promote folding and stability. De novo designed symmetric protein architectures have demonstrated an ability to accommodate circular permutation of the N- and C-termini in the overall architecture; however, the folding requirement of the primordial motif is poorly understood, and tolerance to circular permutation is essentially unknown. The β-trefoil protein fold is a threefold-symmetric architecture where the repeating ~42-mer "trefoil-fold" motif assembles via a domain-swapped arrangement. The trefoil-fold structure in isolation exposes considerable hydrophobic area that is otherwise buried in the intact β-trefoil trimeric assembly. The trefoil-fold sequence is not predicted to adopt the trefoil-fold architecture in ab initio folding studies; rather, the predicted fold is closely related to a compact "blade" motif from the β-propeller architecture. Expression of a trefoil-fold sequence and circular permutants shows that only the wild-type N-terminal motif definition yields an intact β-trefoil trimeric assembly, while permutants yield monomers. The results elucidate the folding requirements of the primordial trefoil-fold motif, and also suggest that this motif may sample a compact conformation that limits hydrophobic residue exposure, contains key trefoil-fold structural features, but is more structurally homologous to a β-propeller blade motif.
Collapse
Affiliation(s)
- Connie A Tenorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Liam M Longo
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Joseph B Parker
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Jihun Lee
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | | |
Collapse
|
7
|
Zheng F, Vermaas JV, Zheng J, Wang Y, Tu T, Wang X, Xie X, Yao B, Beckham GT, Luo H. Activity and Thermostability of GH5 Endoglucanase Chimeras from Mesophilic and Thermophilic Parents. Appl Environ Microbiol 2019; 85:e02079-18. [PMID: 30552196 PMCID: PMC6384118 DOI: 10.1128/aem.02079-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022] Open
Abstract
Cellulases from glycoside hydrolase family 5 (GH5) are key endoglucanase enzymes in the degradation of diverse polysaccharide substrates and are used in industrial enzyme cocktails to break down biomass. The GH5 family shares a canonical (βα)8-barrel structure, where each (βα) module is essential for the enzyme's stability and activity. Despite their shared topology, the thermostability of GH5 endoglucanase enzymes can vary significantly, and highly thermostable variants are often sought for industrial applications. Based on the previously characterized thermophilic GH5 endoglucanase Egl5A from Talaromyces emersonii (TeEgl5A), which has an optimal temperature of 90°C, we created 10 hybrid enzymes with elements of the mesophilic endoglucanase Cel5 from Stegonsporium opalus (SoCel5) to determine which elements are responsible for enhanced thermostability. Five of the expressed hybrid enzymes exhibit enzyme activity. Two of these hybrids exhibited pronounced increases in the temperature optimum (10 and 20°C), the temperature at which the protein lost 50% of its activity (T50) (15 and 19°C), and the melting temperature (Tm ) (16.5 and 22.9°C) and extended half-lives (t1/2) (∼240- and 650-fold at 55°C) relative to the values for the mesophilic parent enzyme and demonstrated improved catalytic efficiency on selected substrates. The successful hybridization strategies were validated experimentally in another GH5 endoglucanase, Cel5 from Aspergillus niger (AnCel5), which demonstrated a similar increase in thermostability. Based on molecular dynamics (MD) simulations of both the SoCel5 and TeEgl5A parent enzymes and their hybrids, we hypothesize that improved hydrophobic packing of the interface between α2 and α3 is the primary mechanism by which the hybrid enzymes increase their thermostability relative to that of the mesophilic parent SoCel5.IMPORTANCE Thermal stability is an essential property of enzymes in many industrial biotechnological applications, as high temperatures improve bioreactor throughput. Many protein engineering approaches, such as rational design and directed evolution, have been employed to improve the thermal properties of mesophilic enzymes. Structure-based recombination has also been used to fuse TIM barrel fragments, and even fragments from unrelated folds, to generate new structures. However, little research has been done on GH5 endoglucanases. In this study, two GH5 endoglucanases exhibiting TIM barrel structure, SoCel5 and TeEgl5A, with different thermal properties, were hybridized to study the roles of different (βα) motifs. This work illustrates the role that structure-guided recombination can play in helping to identify sequence function relationships within GH5 enzymes by supplementing natural diversity with synthetic diversity.
Collapse
Affiliation(s)
- Fei Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Josh V Vermaas
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Jie Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaoyu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
8
|
Straub K, Linde M, Kropp C, Blanquart S, Babinger P, Merkl R. Sequence selection by FitSS4ASR alleviates ancestral sequence reconstruction as exemplified for geranylgeranylglyceryl phosphate synthase. Biol Chem 2019; 400:367-381. [PMID: 30763032 DOI: 10.1515/hsz-2018-0344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/07/2018] [Indexed: 11/15/2022]
Abstract
For evolutionary studies, but also for protein engineering, ancestral sequence reconstruction (ASR) has become an indispensable tool. The first step of every ASR protocol is the preparation of a representative sequence set containing at most a few hundred recent homologs whose composition determines decisively the outcome of a reconstruction. A common approach for sequence selection consists of several rounds of manual recompilation that is driven by embedded phylogenetic analyses of the varied sequence sets. For ASR of a geranylgeranylglyceryl phosphate synthase, we additionally utilized FitSS4ASR, which replaces this time-consuming protocol with an efficient and more rational approach. FitSS4ASR applies orthogonal filters to a set of homologs to eliminate outlier sequences and those bearing only a weak phylogenetic signal. To demonstrate the usefulness of FitSS4ASR, we determined experimentally the oligomerization state of eight predecessors, which is a delicate and taxon-specific property. Corresponding ancestors deduced in a manual approach and by means of FitSS4ASR had the same dimeric or hexameric conformation; this concordance testifies to the efficiency of FitSS4ASR for sequence selection. FitSS4ASR-based results of two other ASR experiments were added to the Supporting Information. Program and documentation are available at https://gitlab.bioinf.ur.de/hek61586/FitSS4ASR.
Collapse
Affiliation(s)
- Kristina Straub
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Mona Linde
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Cosimo Kropp
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Samuel Blanquart
- University of Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
9
|
Schulte‐Sasse M, Pardo‐Ávila F, Pulido‐Mayoral NO, Vázquez‐Lobo A, Costas M, García‐Hernández E, Rodríguez‐Romero A, Fernández‐Velasco DA. Structural, thermodynamic and catalytic characterization of an ancestral triosephosphate isomerase reveal early evolutionary coupling between monomer association and function. FEBS J 2019; 286:882-900. [DOI: 10.1111/febs.14741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mariana Schulte‐Sasse
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Fátima Pardo‐Ávila
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Nancy O. Pulido‐Mayoral
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica Departamento de Fisicoquímica Facultad de Química Universidad Nacional Autónoma de México Mexico
| | | | | | - Daniel Alejandro Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| |
Collapse
|
10
|
Akanuma S. Characterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere. Life (Basel) 2017; 7:life7030033. [PMID: 28783077 PMCID: PMC5617958 DOI: 10.3390/life7030033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 01/02/2023] Open
Abstract
Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth’s early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advances in phylogenetic analysis, and an increasing number of protein sequences available in public databases, have made it possible to infer ancestral protein sequences possessed by ancient organisms. However, the in silico studies that assess the ancestral base content of ribosomal RNAs, the frequency of each amino acid in ancestral proteins, and estimate the environmental temperatures of ancient organisms, show conflicting results. The characterization of ancestral proteins reconstructed in vitro suggests that ancient organisms had very thermally stable proteins, and therefore were thermophilic or hyperthermophilic. Experimental data supports the idea that only thermophilic ancestors survived the catastrophic increase in temperature of the biosphere that was likely associated with meteorite impacts during the early history of Earth. In addition, by expanding the timescale and including more ancestral proteins for reconstruction, it appears as though the Earth’s surface temperature gradually decreased over time, from Archean to present.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan.
| |
Collapse
|
11
|
Holinski A, Heyn K, Merkl R, Sterner R. Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex. Proteins 2017; 85:312-321. [PMID: 27936490 DOI: 10.1002/prot.25225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023]
Abstract
It is important to identify hotspot residues that determine protein-protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA-HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA-HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site-directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high-affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312-321. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandra Holinski
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Kristina Heyn
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| |
Collapse
|
12
|
Recurring sequence-structure motifs in (βα) 8-barrel proteins and experimental optimization of a chimeric protein designed based on such motifs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:165-175. [PMID: 27836620 DOI: 10.1016/j.bbapap.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 11/22/2022]
Abstract
An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the βα and αβ modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds.
Collapse
|
13
|
Using natural sequences and modularity to design common and novel protein topologies. Curr Opin Struct Biol 2016; 38:26-36. [PMID: 27270240 DOI: 10.1016/j.sbi.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Protein design is still a challenging undertaking, often requiring multiple attempts or iterations for success. Typically, the source of failure is unclear, and scoring metrics appear similar between successful and failed cases. Nevertheless, the use of sequence statistics, modularity and symmetry from natural proteins, combined with computational design both at the coarse-grained and atomistic levels is propelling a new wave of design efforts to success. Here we highlight recent examples of design, showing how the wealth of natural protein sequence and topology data may be leveraged to reduce the search space and increase the likelihood of achieving desired outcomes.
Collapse
|
14
|
Khersonsky O, Fleishman SJ. Why reinvent the wheel? Building new proteins based on ready-made parts. Protein Sci 2016; 25:1179-87. [PMID: 26821641 DOI: 10.1002/pro.2892] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
We protein engineers are ambivalent about evolution: on the one hand, evolution inspires us with myriad examples of biomolecular binders, sensors, and catalysts; on the other hand, these examples are seldom well-adapted to the engineering tasks we have in mind. Protein engineers have therefore modified natural proteins by point substitutions and fragment exchanges in an effort to generate new functions. A counterpoint to such design efforts, which is being pursued now with greater success, is to completely eschew the starting materials provided by nature and to design new protein functions from scratch by using de novo molecular modeling and design. While important progress has been made in both directions, some areas of protein design are still beyond reach. To this end, we advocate a synthesis of these two strategies: by using design calculations to both recombine and optimize fragments from natural proteins, we can build stable and as of yet un-sampled structures, thereby granting access to an expanded repertoire of conformations and desired functions. We propose that future methods that combine phylogenetic analysis, structure and sequence bioinformatics, and atomistic modeling may well succeed where any one of these approaches has failed on its own.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
15
|
The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism. J Mol Evol 2016; 82:17-26. [PMID: 26733481 PMCID: PMC4709378 DOI: 10.1007/s00239-015-9722-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/11/2015] [Indexed: 12/30/2022]
Abstract
The triosephosphate isomerase (TIM) barrel protein fold is a structurally repetitive architecture that is present in approximately 10 % of all enzymes. It is generally assumed that this ubiquity in modern proteomes reflects an essential historical role in early protein-mediated metabolism. Here, we provide quantitative and comparative analyses to support several hypotheses about the early importance of the TIM barrel architecture. An information theoretical analysis of protein structures supports the hypothesis that the TIM barrel architecture could arise more easily by duplication and recombination compared to other mixed α/β structures. We show that TIM barrel enzymes corresponding to the most taxonomically broad superfamilies also have the broadest range of functions, often aided by metal and nucleotide-derived cofactors that are thought to reflect an earlier stage of metabolic evolution. By comparison to other putatively ancient protein architectures, we find that the functional diversity of TIM barrel proteins cannot be explained simply by their antiquity. Instead, the breadth of TIM barrel functions can be explained, in part, by the incorporation of a broad range of cofactors, a trend that does not appear to be shared by proteins in general. These results support the hypothesis that the simple and functionally general TIM barrel architecture may have arisen early in the evolution of protein biosynthesis and provided an ideal scaffold to facilitate the metabolic transition from ribozymes, peptides, and geochemical catalysts to modern protein enzymes.
Collapse
|
16
|
Cahn JKB, Brinkmann-Chen S, Buller AR, Arnold FH. Artificial domain duplication replicates evolutionary history of ketol-acid reductoisomerases. Protein Sci 2015; 25:1241-8. [PMID: 26644020 DOI: 10.1002/pro.2852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022]
Abstract
The duplication of protein structural domains has been proposed as a common mechanism for the generation of new protein folds. A particularly interesting case is the class II ketol-acid reductoisomerase (KARI), which putatively arose from an ancestral class I KARI by duplication of the C-terminal domain and corresponding loss of obligate dimerization. As a result, the class II enzymes acquired a deeply embedded figure-of-eight knot. To test this evolutionary hypothesis we constructed a novel class II KARI by duplicating the C-terminal domain of a hyperthermostable class I KARI. The new protein is monomeric, as confirmed by gel filtration and X-ray crystallography, and has the deeply knotted class II KARI fold. Surprisingly, its catalytic activity is nearly unchanged from the parent KARI. This provides strong evidence in support of domain duplication as the mechanism for the evolution of the class II KARI fold and demonstrates the ability of domain duplication to generate topological novelty in a function-neutral manner.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Andrew R Buller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| |
Collapse
|
17
|
Alva V, Söding J, Lupas AN. A vocabulary of ancient peptides at the origin of folded proteins. eLife 2015; 4:e09410. [PMID: 26653858 PMCID: PMC4739770 DOI: 10.7554/elife.09410] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/13/2015] [Indexed: 01/01/2023] Open
Abstract
The seemingly limitless diversity of proteins in nature arose from only a few thousand domain prototypes, but the origin of these themselves has remained unclear. We are pursuing the hypothesis that they arose by fusion and accretion from an ancestral set of peptides active as co-factors in RNA-dependent replication and catalysis. Should this be true, contemporary domains may still contain vestiges of such peptides, which could be reconstructed by a comparative approach in the same way in which ancient vocabularies have been reconstructed by the comparative study of modern languages. To test this, we compared domains representative of known folds and identified 40 fragments whose similarity is indicative of common descent, yet which occur in domains currently not thought to be homologous. These fragments are widespread in the most ancient folds and enriched for iron-sulfur- and nucleic acid-binding. We propose that they represent the observable remnants of a primordial RNA-peptide world.
Collapse
Affiliation(s)
- Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Johannes Söding
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
18
|
Xia X, Longo LM, Sutherland MA, Blaber M. Evolution of a protein folding nucleus. Protein Sci 2015; 25:1227-40. [PMID: 26610273 DOI: 10.1002/pro.2848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022]
Abstract
The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome.
Collapse
Affiliation(s)
- Xue Xia
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300
| | - Liam M Longo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mason A Sutherland
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300
| | - Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300
| |
Collapse
|
19
|
Bhargav SP, Vahokoski J, Kallio JP, Torda AE, Kursula P, Kursula I. Two independently folding units of Plasmodium profilin suggest evolution via gene fusion. Cell Mol Life Sci 2015; 72:4193-203. [PMID: 26012696 PMCID: PMC11113795 DOI: 10.1007/s00018-015-1932-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Gene fusion is a common mechanism of protein evolution that has mainly been discussed in the context of multidomain or symmetric proteins. Less is known about fusion of ancestral genes to produce small single-domain proteins. Here, we show with a domain-swapped mutant Plasmodium profilin that this small, globular, apparently single-domain protein consists of two foldons. The separation of binding sites for different protein ligands in the two halves suggests evolution via an ancient gene fusion event, analogous to the formation of multidomain proteins. Finally, the two fragments can be assembled together after expression as two separate gene products. The possibility to engineer both domain-swapped dimers and half-profilins that can be assembled back to a full profilin provides perspectives for engineering of novel protein folds, e.g., with different scaffolding functions.
Collapse
Affiliation(s)
| | - Juha Vahokoski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - Juha Pekka Kallio
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607, Hamburg, Germany
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Andrew E Torda
- Centre for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146, Hamburg, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607, Hamburg, Germany.
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany.
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
20
|
Noda-García L, Juárez-Vázquez AL, Ávila-Arcos MC, Verduzco-Castro EA, Montero-Morán G, Gaytán P, Carrillo-Tripp M, Barona-Gómez F. Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)₈ isomerase evolutionary intermediates from a diverse metagenome. BMC Evol Biol 2015; 15:107. [PMID: 26058375 PMCID: PMC4462073 DOI: 10.1186/s12862-015-0378-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/11/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Current sequence-based approaches to identify enzyme functional shifts, such as enzyme promiscuity, have proven to be highly dependent on a priori functional knowledge, hampering our ability to reconstruct evolutionary history behind these mechanisms. Hidden Markov Model (HMM) profiles, broadly used to classify enzyme families, can be useful to distinguish between closely related enzyme families with different specificities. The (βα)8-isomerase HisA/PriA enzyme family, involved in L-histidine (HisA, mono-substrate) biosynthesis in most bacteria and plants, but also in L-tryptophan (HisA/TrpF or PriA, dual-substrate) biosynthesis in most Actinobacteria, has been used as model system to explore evolutionary hypotheses and therefore has a considerable amount of evolutionary, functional and structural knowledge available. We searched for functional evolutionary intermediates between the HisA and PriA enzyme families in order to understand the functional divergence between these families. RESULTS We constructed a HMM profile that correctly classifies sequences of unknown function into the HisA and PriA enzyme sub-families. Using this HMM profile, we mined a large metagenome to identify plausible evolutionary intermediate sequences between HisA and PriA. These sequences were used to perform phylogenetic reconstructions and to identify functionally conserved amino acids. Biochemical characterization of one selected enzyme (CAM1) with a mutation within the functionally essential N-terminus phosphate-binding site, namely, an alanine instead of a glycine in HisA or a serine in PriA, showed that this evolutionary intermediate has dual-substrate specificity. Moreover, site-directed mutagenesis of this alanine residue, either backwards into a glycine or forward into a serine, revealed the robustness of this enzyme. None of these mutations, presumably upon functionally essential amino acids, significantly abolished its enzyme activities. A truncated version of this enzyme (CAM2) predicted to adopt a (βα)6-fold, and thus entirely lacking a C-terminus phosphate-binding site, was identified and shown to have HisA activity. CONCLUSION As expected, reconstruction of the evolution of PriA from HisA with HMM profiles suggest that functional shifts involve mutations in evolutionarily intermediate enzymes of otherwise functionally essential residues or motifs. These results are in agreement with a link between promiscuous enzymes and intragenic epistasis. HMM provides a convenient approach for gaining insights into these evolutionary processes.
Collapse
Affiliation(s)
- Lianet Noda-García
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México. .,Current Addresses: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Ana L Juárez-Vázquez
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México.
| | - María C Ávila-Arcos
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México. .,Current Addresses: Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Ernesto A Verduzco-Castro
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México.
| | - Gabriela Montero-Morán
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México. .,Current Addresses: División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México.
| | - Paul Gaytán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, CP 62250, Cuernavaca, México.
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratories, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México.
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México.
| |
Collapse
|
21
|
Longo LM, Kumru OS, Middaugh CR, Blaber M. Evolution and design of protein structure by folding nucleus symmetric expansion. Structure 2014; 22:1377-84. [PMID: 25242458 DOI: 10.1016/j.str.2014.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/02/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022]
Abstract
Models of symmetric protein evolution typically invoke gene duplication and fusion events, in which repetition of a structural motif generates foldable, stable symmetric protein architecture. Success of such evolutionary processes suggests that the duplicated structural motif must be capable of nucleating protein folding. If correct, symmetric expansion of a folding nucleus sequence derived from an extant symmetric fold may be an elegant and computationally tractable solution to de novo protein design. We report the efficient de novo design of a β-trefoil protein by symmetric expansion of a β-trefoil folding nucleus, previously identified by ɸ-value analysis. The resulting protein, having exact sequence symmetry, exhibits superior folding properties compared to its naturally evolved progenitor-with the potential for redundant folding nuclei. In principle, folding nucleus symmetric expansion can be applied to any given symmetric protein fold (that is, nearly one-third of the known proteome) provided information of the folding nucleus is available.
Collapse
Affiliation(s)
- Liam M Longo
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Michael Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA.
| |
Collapse
|
22
|
Evolutionary relationship of two ancient protein superfolds. Nat Chem Biol 2014; 10:710-5. [PMID: 25038785 DOI: 10.1038/nchembio.1579] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/02/2014] [Indexed: 01/29/2023]
Abstract
Proteins are the molecular machines of the cell that fold into specific three-dimensional structures to fulfill their functions. To improve our understanding of how the structure and function of proteins arises, it is crucial to understand how evolution has generated the structural diversity we observe today. Classically, proteins that adopt different folds are considered to be nonhomologous. However, using state-of-the-art tools for homology detection, we found evidence of homology between proteins of two ancient and highly populated protein folds, the (βα)8-barrel and the flavodoxin-like fold. We detected a family of sequences that show intermediate features between both folds and determined what is to our knowledge the first representative crystal structure of one of its members, giving new insights into the evolutionary link of two of the earliest folds. Our findings contribute to an emergent vision where protein superfolds share common ancestry and encourage further approaches to complete the mapping of structure space onto sequence space.
Collapse
|
23
|
Longo LM, Blaber M. Symmetric protein architecture in protein design: top-down symmetric deconstruction. Methods Mol Biol 2014; 1216:161-182. [PMID: 25213415 DOI: 10.1007/978-1-4939-1486-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Top-down symmetric deconstruction (TDSD) is a joint experimental and computational approach to generate a highly stable, functionally benign protein scaffold for intended application in subsequent functional design studies. By focusing on symmetric protein folds, TDSD can leverage the dramatic reduction in sequence space achieved by applying a primary structure symmetric constraint to the design process. Fundamentally, TDSD is an iterative symmetrization process, in which the goal is to maintain or improve properties of thermodynamic stability and folding cooperativity inherent to a starting sequence (the "proxy"). As such, TDSD does not attempt to solve the inverse protein folding problem directly, which is computationally intractable. The present chapter will take the reader through all of the primary steps of TDSD-selecting a proxy, identifying potential mutations, establishing a stability/folding cooperativity screen-relying heavily on a successful TDSD solution for the common β-trefoil fold.
Collapse
Affiliation(s)
- Liam M Longo
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | | |
Collapse
|
24
|
Reisinger B, Sperl J, Holinski A, Schmid V, Rajendran C, Carstensen L, Schlee S, Blanquart S, Merkl R, Sterner R. Evidence for the Existence of Elaborate Enzyme Complexes in the Paleoarchean Era. J Am Chem Soc 2013; 136:122-9. [DOI: 10.1021/ja4115677] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bernd Reisinger
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Josef Sperl
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Alexandra Holinski
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Veronika Schmid
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Chitra Rajendran
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Linn Carstensen
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sandra Schlee
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Samuel Blanquart
- Equipe
Bonsai,
Institut National de Recherche en Informatique et en Automatique, INRIA Lille Nord Europe, 40 avenue Halley, 59650 Villeneuve d’Ascq, France
| | - Rainer Merkl
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Reinhard Sterner
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
25
|
Longo L, Lee J, Tenorio C, Blaber M. Alternative Folding Nuclei Definitions Facilitate the Evolution of a Symmetric Protein Fold from a Smaller Peptide Motif. Structure 2013; 21:2042-50. [DOI: 10.1016/j.str.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022]
|
26
|
Adachi M, Shimizu R, Kuroki R, Blaber M. Creation and structure determination of an artificial protein with three complete sequence repeats. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:953-957. [PMID: 24121347 PMCID: PMC3795563 DOI: 10.1107/s0909049513022164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
Symfoil-4P is a de novo protein exhibiting the threefold symmetrical β-trefoil fold designed based on the human acidic fibroblast growth factor. First three asparagine-glycine sequences of Symfoil-4P are replaced with glutamine-glycine (Symfoil-QG) or serine-glycine (Symfoil-SG) sequences protecting from deamidation, and His-Symfoil-II was prepared by introducing a protease digestion site into Symfoil-QG so that Symfoil-II has three complete repeats after removal of the N-terminal histidine tag. The Symfoil-QG and SG and His-Symfoil-II proteins were expressed in Eschericha coli as soluble protein, and purified by nickel affinity chromatography. Symfoil-II was further purified by anion-exchange chromatography after removing the HisTag by proteolysis. Both Symfoil-QG and Symfoil-II were crystallized in 0.1 M Tris-HCl buffer (pH 7.0) containing 1.8 M ammonium sulfate as precipitant at 293 K; several crystal forms were observed for Symfoil-QG and II. The maximum diffraction of Symfoil-QG and II crystals were 1.5 and 1.1 Å resolution, respectively. The Symfoil-II without histidine tag diffracted better than Symfoil-QG with N-terminal histidine tag. Although the crystal packing of Symfoil-II is slightly different from Symfoil-QG and other crystals of Symfoil derivatives having the N-terminal histidine tag, the refined crystal structure of Symfoil-II showed pseudo-threefold symmetry as expected from other Symfoils. Since the removal of the unstructured N-terminal histidine tag did not affect the threefold structure of Symfoil, the improvement of diffraction quality of Symfoil-II may be caused by molecular characteristics of Symfoil-II such as molecular stability.
Collapse
Affiliation(s)
- Motoyasu Adachi
- Molecular Structural Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195, Japan
| | - Rumi Shimizu
- Molecular Structural Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195, Japan
| | - Ryota Kuroki
- Molecular Structural Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195, Japan
| | - Michael Blaber
- Molecular Structural Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195, Japan
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA
| |
Collapse
|
27
|
Ochoa-Leyva A, Montero-Morán G, Saab-Rincón G, Brieba LG, Soberón X. Alternative splice variants in TIM barrel proteins from human genome correlate with the structural and evolutionary modularity of this versatile protein fold. PLoS One 2013; 8:e70582. [PMID: 23950966 PMCID: PMC3741200 DOI: 10.1371/journal.pone.0070582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/20/2013] [Indexed: 12/20/2022] Open
Abstract
After the surprisingly low number of genes identified in the human genome, alternative splicing emerged as a major mechanism to generate protein diversity in higher eukaryotes. However, it is still not known if its prevalence along the genome evolution has contributed to the overall functional protein diversity or if it simply reflects splicing noise. The (βα)8 barrel or TIM barrel is one of the most frequent, versatile, and ancient fold encountered among enzymes. Here, we analyze the structural modifications present in TIM barrel proteins from the human genome product of alternative splicing events. We found that 87% of all splicing events involved deletions; most of these events resulted in protein fragments that corresponded to the (βα)2, (βα)4, (βα)5, (βα)6, and (βα)7 subdomains of TIM barrels. Because approximately 7% of all the splicing events involved internal β-strand substitutions, we decided, based on the genomic data, to design β-strand and α-helix substitutions in a well-studied TIM barrel enzyme. The biochemical characterization of one of the chimeric variants suggests that some of the splice variants in the human genome with β-strand substitutions may be evolving novel functions via either the oligomeric state or substrate specificity. We provide results of how the splice variants represent subdomains that correlate with the independently folding and evolving structural units previously reported. This work is the first to observe a link between the structural features of the barrel and a recurrent genetic mechanism. Our results suggest that it is reasonable to expect that a sizeable fraction of splice variants found in the human genome represent structurally viable functional proteins. Our data provide additional support for the hypothesis of the origin of the TIM barrel fold through the assembly of smaller subdomains. We suggest a model of how nature explores new proteins through alternative splicing as a mechanism to diversify the proteins encoded in the human genome.
Collapse
Affiliation(s)
- Adrián Ochoa-Leyva
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- * E-mail: (AOL); (XS)
| | - Gabriela Montero-Morán
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (AOL); (XS)
| |
Collapse
|
28
|
Establishing catalytic activity on an artificial (βα)8-barrel protein designed from identical half-barrels. FEBS Lett 2013; 587:2798-805. [PMID: 23806364 DOI: 10.1016/j.febslet.2013.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/27/2013] [Accepted: 06/16/2013] [Indexed: 01/28/2023]
Abstract
It has been postulated that the ubiquitous (βα)8-barrel enzyme fold has evolved by duplication and fusion of an ancestral (βα)4-half-barrel. We have previously reconstructed this process in the laboratory by fusing two copies of the C-terminal half-barrel HisF-C of imidazole glycerol phosphate synthase (HisF). The resulting construct HisF-CC was stepwise stabilized to Sym1 and Sym2, which are extremely robust but catalytically inert proteins. Here, we report on the generation of a circular permutant of Sym2 and the establishment of a sugar isomerization reaction on its scaffold. Our results demonstrate that duplication and mutagenesis of (βα)4-half-barrels can readily lead to a stable and catalytically active (βα)8-barrel enzyme.
Collapse
|
29
|
Abstract
Theoretical studies have focused on the environmental temperature of the universal common ancestor of life with conflicting conclusions. Here we provide experimental support for the existence of a thermophilic universal common ancestor. We present the thermal stabilities and catalytic efficiencies of nucleoside diphosphate kinases (NDK), designed using the information contained in predictive phylogenetic trees, that seem to represent the last common ancestors of Archaea and of Bacteria. These enzymes display extreme thermal stabilities, suggesting thermophilic ancestries for Archaea and Bacteria. The results are robust to the uncertainties associated with the sequence predictions and to the tree topologies used to infer the ancestral sequences. Moreover, mutagenesis experiments suggest that the universal ancestor also possessed a very thermostable NDK. Because, as we show, the stability of an NDK is directly related to the environmental temperature of its host organism, our results indicate that the last common ancestor of extant life was a thermophile that flourished at a very high temperature.
Collapse
|
30
|
Gangadhara BN, Laine JM, Kathuria SV, Massi F, Matthews CR. Clusters of branched aliphatic side chains serve as cores of stability in the native state of the HisF TIM barrel protein. J Mol Biol 2013; 425:1065-81. [PMID: 23333740 DOI: 10.1016/j.jmb.2013.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 01/01/2013] [Accepted: 01/03/2013] [Indexed: 01/31/2023]
Abstract
Imidazole-3-glycerol phosphate synthase is a heterodimeric allosteric enzyme that catalyzes consecutive reactions in imidazole biosynthesis through its HisF and HisH subunits. The unusually slow unfolding reaction of the isolated HisF TIM barrel domain from the thermophilic bacteria, Thermotoga maritima, enabled an NMR-based site-specific analysis of the main-chain hydrogen bonds that stabilize its native conformation. Very strong protection against exchange with solvent deuterium in the native state was found in a subset of buried positions in α-helices and pervasively in the underlying β-strands associated with a pair of large clusters of isoleucine, leucine and valine (ILV) side chains located in the α7(βα)8(βα)1-2 and α2(βα)3-6β7 segments of the (βα)8 barrel. The most densely packed region of the large cluster, α3(βα)4-6β7, correlates closely with the core of stability previously observed in computational, protein engineering and NMR dynamics studies, demonstrating a key role for this cluster in determining the thermodynamic and structural properties of the native state of HisF. When considered with the results of previous studies where ILV clusters were found to stabilize the hydrogen-bonded networks in folding intermediates for other TIM barrel proteins, it appears that clusters of branched aliphatic side chains can serve as cores of stability across the entire folding reaction coordinate of one of the most common motifs in biology.
Collapse
Affiliation(s)
- Basavanapura N Gangadhara
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
31
|
Blaber M, Lee J, Longo L. Emergence of symmetric protein architecture from a simple peptide motif: evolutionary models. Cell Mol Life Sci 2012; 69:3999-4006. [PMID: 22790181 PMCID: PMC11115074 DOI: 10.1007/s00018-012-1077-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Structural symmetry is observed in the majority of fundamental protein folds and gene duplication and fusion evolutionary processes are postulated to be responsible. However, convergent evolution leading to structural symmetry has also been proposed; additionally, there is debate regarding the extent to which exact primary structure symmetry is compatible with efficient protein folding. Issues of symmetry in protein evolution directly impact strategies for de novo protein design as symmetry can substantially simplify the design process. Additionally, when considering gene duplication and fusion in protein evolution, there are two competing models: "emergent architecture" and "conserved architecture". Recent experimental work has shed light on both the evolutionary process leading to symmetric protein folds as well as the ability of symmetric primary structure to efficiently fold. Such studies largely support a "conserved architecture" evolutionary model, suggesting that complex protein architecture was an early evolutionary achievement involving oligomerization of smaller polypeptides.
Collapse
Affiliation(s)
- Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call St., Tallahassee, FL, 32306-4300, USA,
| | | | | |
Collapse
|
32
|
Longo LM, Blaber M. Protein design at the interface of the pre-biotic and biotic worlds. Arch Biochem Biophys 2012; 526:16-21. [DOI: 10.1016/j.abb.2012.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/23/2012] [Indexed: 12/01/2022]
|
33
|
Carstensen L, Sperl JM, Bocola M, List F, Schmid FX, Sterner R. Conservation of the Folding Mechanism between Designed Primordial (βα)8-Barrel Proteins and Their Modern Descendant. J Am Chem Soc 2012; 134:12786-91. [DOI: 10.1021/ja304951v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linn Carstensen
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Josef M. Sperl
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Marco Bocola
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Felix List
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Franz X. Schmid
- Laboratorium für Biochemie
und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Reinhard Sterner
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
34
|
Blaber M, Lee J. Designing proteins from simple motifs: opportunities in Top-Down Symmetric Deconstruction. Curr Opin Struct Biol 2012; 22:442-50. [PMID: 22726756 DOI: 10.1016/j.sbi.2012.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 11/15/2022]
Abstract
The purpose of this review is to describe the development of 'top-down' approaches to protein design. It will be argued that a diverse number of studies over the past decade, involving many investigators, and focused upon elucidating the role of symmetry in protein evolution and design, are converging into a novel top-down approach to protein design. Top-down design methodologies have successfully produced comparatively simple polypeptide 'building blocks' (typically comprising 40-60 amino acids) useful in generating complex protein architecture, and have produced compelling data in support of macro-evolutionary pathways of protein structure. Furthermore, a distillation of the experimental approaches utilized in such studies suggests the potential for method formalism, one that may accelerate future success in this field.
Collapse
Affiliation(s)
- Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, United States.
| | | |
Collapse
|
35
|
Saab-Rincón G, Olvera L, Olvera M, Rudiño-Piñera E, Benites E, Soberón X, Morett E. Evolutionary Walk between (β/α)8 Barrels: Catalytic Migration from Triosephosphate Isomerase to Thiamin Phosphate Synthase. J Mol Biol 2012; 416:255-70. [DOI: 10.1016/j.jmb.2011.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 11/16/2022]
|
36
|
Broom A, Doxey AC, Lobsanov YD, Berthin LG, Rose DR, Howell PL, McConkey BJ, Meiering EM. Modular evolution and the origins of symmetry: reconstruction of a three-fold symmetric globular protein. Structure 2011; 20:161-71. [PMID: 22178248 DOI: 10.1016/j.str.2011.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/09/2011] [Accepted: 10/24/2011] [Indexed: 10/14/2022]
Abstract
The high frequency of internal structural symmetry in common protein folds is presumed to reflect their evolutionary origins from the repetition and fusion of ancient peptide modules, but little is known about the primary sequence and physical determinants of this process. Unexpectedly, a sequence and structural analysis of symmetric subdomain modules within an abundant and ancient globular fold, the β-trefoil, reveals that modular evolution is not simply a relic of the ancient past, but is an ongoing and recurring mechanism for regenerating symmetry, having occurred independently in numerous existing β-trefoil proteins. We performed a computational reconstruction of a β-trefoil subdomain module and repeated it to form a newly three-fold symmetric globular protein, ThreeFoil. In addition to its near perfect structural identity between symmetric modules, ThreeFoil is highly soluble, performs multivalent carbohydrate binding, and has remarkably high thermal stability. These findings have far-reaching implications for understanding the evolution and design of proteins via subdomain modules.
Collapse
Affiliation(s)
- Aron Broom
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Naumoff DG. Hierarchical classification of glycoside hydrolases. BIOCHEMISTRY (MOSCOW) 2011; 76:622-35. [PMID: 21639842 DOI: 10.1134/s0006297911060022] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with structural and functional features of glycoside hydrolases, a widespread group of enzymes present in almost all living organisms. Their catalytic domains are grouped into 120 amino acid sequence-based families in the international classification of the carbohydrate-active enzymes (CAZy database). At a higher hierarchical level some of these families are combined in 14 clans. Enzymes of the same clan have common evolutionary origin of their genes and share the most important functional characteristics such as composition of the active center, anomeric configuration of cleaved glycosidic bonds, and molecular mechanism of the catalyzed reaction (either inverting, or retaining). There are now extensive data in the literature concerning the relationship between glycoside hydrolase families belonging to different clans and/or included in none of them, as well as information on phylogenetic protein relationship within particular families. Summarizing these data allows us to propose a multilevel hierarchical classification of glycoside hydrolases and their homologs. It is shown that almost the whole variety of the enzyme catalytic domains can be brought into six main folds, large groups of proteins having the same three-dimensional structure and the supposed common evolutionary origin.
Collapse
Affiliation(s)
- D G Naumoff
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, 117312, Russia.
| |
Collapse
|
38
|
Akanuma S, Iwami S, Yokoi T, Nakamura N, Watanabe H, Yokobori SI, Yamagishi A. Phylogeny-Based Design of a B-Subunit of DNA Gyrase and Its ATPase Domain Using a Small Set of Homologous Amino Acid Sequences. J Mol Biol 2011; 412:212-25. [DOI: 10.1016/j.jmb.2011.07.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
39
|
List F, Sterner R, Wilmanns M. Related (βα)8-barrel proteins in histidine and tryptophan biosynthesis: a paradigm to study enzyme evolution. Chembiochem 2011; 12:1487-94. [PMID: 21656890 DOI: 10.1002/cbic.201100082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Felix List
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | | | | |
Collapse
|
40
|
Setiyaputra S, Mackay JP, Patrick WM. The structure of a truncated phosphoribosylanthranilate isomerase suggests a unified model for evolution of the (βα)8 barrel fold. J Mol Biol 2011; 408:291-303. [PMID: 21354426 DOI: 10.1016/j.jmb.2011.02.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 11/18/2022]
Abstract
The (βα)(8) barrel is one of the most common protein folds, and enzymes with this architecture display a remarkable range of catalytic activities. Many of these functions are associated with ancient metabolic pathways, and phylogenetic reconstructions suggest that the (βα)(8) barrel was one of the very first protein folds to emerge. Consequently, there is considerable interest in understanding the evolutionary processes that gave rise to this fold. In particular, much attention has been focused on the plausibility of (βα)(8) barrel evolution from homodimers of half barrels. However, we previously isolated a three-quarter-barrel-sized fragment of a (βα)(8) barrel, termed truncated phosphoribosylanthranilate isomerase (trPRAI), that is soluble and almost as thermostable as full-length N-(5'-phosphoribosyl)anthranilate isomerase (PRAI). Here, we report the NMR-derived structure of trPRAI. The subdomain is monomeric, is well ordered and adopts a native-like structure in solution. Side chains from strands β(1) (Glu3 and Lys5), β(2) (Tyr25) and β(6) (Lys122) of trPRAI repack to shield the hydrophobic core from the solvent. This result demonstrates that three-quarter barrels were viable intermediates in the evolution of the (βα)(8) barrel fold. We propose a unified model for (βα)(8) barrel evolution that combines our data, previously published work and plausible scenarios for the emergence of (initially error-prone) genetic systems. In this model, the earliest proto-cells contained diverse pools of part-barrel subdomains. Combinatorial assembly of these subdomains gave rise to many distinct lineages of (βα)(8) barrel proteins, that is, our model excludes the possibility that there was a single (βα)(8) barrel from which all present examples are descended.
Collapse
Affiliation(s)
- Surya Setiyaputra
- School of Molecular Bioscience, Darlington Campus, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
41
|
Experimental support for the evolution of symmetric protein architecture from a simple peptide motif. Proc Natl Acad Sci U S A 2010; 108:126-30. [PMID: 21173271 DOI: 10.1073/pnas.1015032108] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The majority of protein architectures exhibit elements of structural symmetry, and "gene duplication and fusion" is the evolutionary mechanism generally hypothesized to be responsible for their emergence from simple peptide motifs. Despite the central importance of the gene duplication and fusion hypothesis, experimental support for a plausible evolutionary pathway for a specific protein architecture has yet to be effectively demonstrated. To address this question, a unique "top-down symmetric deconstruction" strategy was utilized to successfully identify a simple peptide motif capable of recapitulating, via gene duplication and fusion processes, a symmetric protein architecture (the threefold symmetric β-trefoil fold). The folding properties of intermediary forms in this deconstruction agree precisely with a previously proposed "conserved architecture" model for symmetric protein evolution. Furthermore, a route through foldable sequence-space between the simple peptide motif and extant protein fold is demonstrated. These results provide compelling experimental support for a plausible evolutionary pathway of symmetric protein architecture via gene duplication and fusion processes.
Collapse
|
42
|
Akanuma S, Yamagishi A. Roles for the two N-terminal (β/α) modules in the folding of a (β/α)8-barrel protein as studied by fragmentation analysis. Proteins 2010; 79:221-31. [DOI: 10.1002/prot.22874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Yadid I, Tawfik DS. Functional β-propeller lectins by tandem duplications of repetitive units. Protein Eng Des Sel 2010; 24:185-95. [DOI: 10.1093/protein/gzq053] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|