1
|
Singh V, Biswas P. Estimating the mean first passage time of protein misfolding. Phys Chem Chem Phys 2018; 20:5692-5698. [PMID: 29410980 DOI: 10.1039/c7cp06918a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most theoretical and experimental studies confirm that proteins fold in the time scale of microseconds to milliseconds, but the kinetics of the protein misfolding remains largely unexplored. The kinetics of unfolding-folding-misfolding equilibrium in proteins is formulated in the analytical framework of the Master equation. The folded, unfolded and the misfolded state are characterized in terms of their respective contacts. The Mean First Passage Time (MFPT) to acquire the misfolded conformation from the native or folded state is derived from this equation with different boundary conditions. The MFPT is found to be practically independent of the length of the protein, the number of native contacts and the rate constant for the misfolded to the folded state. The results obtained from the survival probability are directly correlated to the age of onset and appearance of misfolding diseases in humans.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | | |
Collapse
|
2
|
Jahn M, Tych K, Girstmair H, Steinmaßl M, Hugel T, Buchner J, Rief M. Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy. Structure 2018; 26:96-105.e4. [DOI: 10.1016/j.str.2017.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/16/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
3
|
Tian P, Best RB. Structural Determinants of Misfolding in Multidomain Proteins. PLoS Comput Biol 2016; 12:e1004933. [PMID: 27163669 PMCID: PMC4862688 DOI: 10.1371/journal.pcbi.1004933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
Recent single molecule experiments, using either atomic force microscopy (AFM) or Förster resonance energy transfer (FRET) have shown that multidomain proteins containing tandem repeats may form stable misfolded structures. Topology-based simulation models have been used successfully to generate models for these structures with domain-swapped features, fully consistent with the available data. However, it is also known that some multidomain protein folds exhibit no evidence for misfolding, even when adjacent domains have identical sequences. Here we pose the question: what factors influence the propensity of a given fold to undergo domain-swapped misfolding? Using a coarse-grained simulation model, we can reproduce the known propensities of multidomain proteins to form domain-swapped misfolds, where data is available. Contrary to what might be naively expected based on the previously described misfolding mechanism, we find that the extent of misfolding is not determined by the relative folding rates or barrier heights for forming the domains present in the initial intermediates leading to folded or misfolded structures. Instead, it appears that the propensity is more closely related to the relative stability of the domains present in folded and misfolded intermediates. We show that these findings can be rationalized if the folded and misfolded domains are part of the same folding funnel, with commitment to one structure or the other occurring only at a relatively late stage of folding. Nonetheless, the results are still fully consistent with the kinetic models previously proposed to explain misfolding, with a specific interpretation of the observed rate coefficients. Finally, we investigate the relation between interdomain linker length and misfolding, and propose a simple alchemical model to predict the propensity for domain-swapped misfolding of multidomain proteins.
Collapse
Affiliation(s)
- Pengfei Tian
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments. Proc Natl Acad Sci U S A 2016; 113:1232-7. [PMID: 26787848 DOI: 10.1073/pnas.1518827113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Folding of small proteins often occurs in a two-state manner and is well understood both experimentally and theoretically. However, many proteins are much larger and often populate misfolded states, complicating their folding process significantly. Here we study the complete folding and assembly process of the 1,418 amino acid, dimeric chaperone Hsp90 using single-molecule optical tweezers. Although the isolated C-terminal domain shows two-state folding, we find that the isolated N-terminal as well as the middle domain populate ensembles of fast-forming, misfolded states. These intradomain misfolds slow down folding by an order of magnitude. Modeling folding as a competition between productive and misfolding pathways allows us to fully describe the folding kinetics. Beyond intradomain misfolding, folding of the full-length protein is further slowed by the formation of interdomain misfolds, suggesting that with growing chain lengths, such misfolds will dominate folding kinetics. Interestingly, we find that small stretching forces applied to the chain can accelerate folding by preventing the formation of cross-domain misfolding intermediates by leading the protein along productive pathways to the native state. The same effect is achieved by cotranslational folding at the ribosome in vivo.
Collapse
|
5
|
Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy. Nat Commun 2015; 6:7093. [PMID: 25963832 PMCID: PMC4432583 DOI: 10.1038/ncomms8093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/01/2015] [Indexed: 11/12/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the open state, but S3 in the closed state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels. Cyclic nucleotide gated channels are activated after binding cyclic nucleotides. Here, using single molecule force spectroscopy, the authors reveal that cyclic nucleotide binding causes conformational changes and tighter coupling of the S4 helix to the pore forming domain.
Collapse
|
6
|
Thirumalai D, Liu Z, O’Brien EP, Reddy G. Protein folding: from theory to practice. Curr Opin Struct Biol 2013; 23:22-9. [DOI: 10.1016/j.sbi.2012.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 01/26/2023]
|
7
|
Zoldák G, Rief M. Force as a single molecule probe of multidimensional protein energy landscapes. Curr Opin Struct Biol 2012; 23:48-57. [PMID: 23279960 DOI: 10.1016/j.sbi.2012.11.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/26/2012] [Accepted: 11/26/2012] [Indexed: 01/06/2023]
Abstract
Force spectroscopy has developed into an indispensable tool for studying folding and binding of proteins on a single molecule level in real time. Design of the pulling geometry allows tuning the reaction coordinate in a very precise manner. Many recent experiments have taken advantage of this possibility and have provided detailed insight the folding pathways on the complex high dimensional energy landscape. Beyond its potential to provide control over the reaction coordinate, force is also an important physiological parameter that affects protein conformation under in vivo conditions. Single molecule force spectroscopy studies have started to unravel the response and adaptation of force bearing protein structures to mechanical loads.
Collapse
Affiliation(s)
- Gabriel Zoldák
- Physik Department E22, Technische Universität München, James-Franck-Strasse, 85748 Garching, Germany
| | | |
Collapse
|
8
|
Gao X, Qin M, Yin P, Liang J, Wang J, Cao Y, Wang W. Single-molecule experiments reveal the flexibility of a Per-ARNT-Sim domain and the kinetic partitioning in the unfolding pathway under force. Biophys J 2012; 102:2149-57. [PMID: 22824279 DOI: 10.1016/j.bpj.2012.03.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/21/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022] Open
Abstract
Per-ARNT-Sim (PAS) domains serve as versatile binding motifs in many signal-transduction proteins and are able to respond to a wide spectrum of chemical or physical signals. Despite their diverse functions, PAS domains share a conserved structure. It has been suggested that the structure of PAS domains is flexible and thus adaptable to many binding partners. However, direct measurement of the flexibility of PAS domains has not yet been provided. Here, we quantitatively measure the mechanical unfolding of a PAS domain, ARNT PAS-B, using single-molecule atomic force microscopy. Our force spectroscopy results indicate that the structure of ARNT PAS-B can be unraveled under mechanical forces as low as ~30 pN due to its broad potential well for the mechanical unfolding transition of ~2 nm. This allows the PAS-B domain to extend by up to 75% of its resting end-to-end distance without unfolding. Moreover, we found that the ARNT PAS-B domain unfolds in two distinct pathways via a kinetic partitioning mechanism. Sixty-seven percent of ARNT PAS-B unfolds through a simple two-state pathway, whereas the other 33% unfolds with a well-defined intermediate state in which the C-terminal β-hairpin is detached. We propose that the structural flexibility and force-induced partial unfolding of PAS-B domains may provide a unique mechanism for them to recruit diverse binding partners and lower the free-energy barrier for the formation of the binding interface.
Collapse
Affiliation(s)
- Xiang Gao
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Stahl SW, Nash MA, Fried DB, Slutzki M, Barak Y, Bayer EA, Gaub HE. Single-molecule dissection of the high-affinity cohesin-dockerin complex. Proc Natl Acad Sci U S A 2012; 109:20431-6. [PMID: 23188794 PMCID: PMC3528535 DOI: 10.1073/pnas.1211929109] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellulose-degrading enzyme systems are of significant interest from both a scientific and technological perspective due to the diversity of cellulase families, their unique assembly and substrate binding mechanisms, and their potential applications in several key industrial sectors, notably cellulose hydrolysis for second-generation biofuel production. Particularly fascinating are cellulosomes, the multimodular extracellular complexes produced by numerous anaerobic bacteria. Using single-molecule force spectroscopy, we analyzed the mechanical stability of the intermolecular interfaces between the cohesin and the dockerin modules responsible for self-assembly of the cellulosomal components into the multienzyme complex. The observed cohesin-dockerin rupture forces (>120 pN) are among the highest reported for a receptor-ligand system to date. Using an atomic force microscope protocol that quantified single-molecule binding activity, we observed force-induced dissociation of calcium ions from the duplicated loop-helix F-hand motif located within the dockerin module, which in the presence of EDTA resulted in loss of affinity to the cohesin partner. A cohesin amino acid mutation (D39A) that eliminated hydrogen bonding with the dockerin's critically conserved serine residues reduced the observed rupture forces. Consequently, no calcium loss occurred and dockerin activity was maintained throughout multiple forced dissociation events. These results offer insights at the single-molecule level into the stability and folding of an exquisite class of high-affinity protein-protein interactions that dictate fabrication and architecture of cellulose-degrading molecular machines.
Collapse
Affiliation(s)
- Stefan W. Stahl
- Lehrstuhl für Angewandte Physik, Center for NanoScience and Center for Integrative Protein Science, Ludwig-Maximilians-Universität, 80799 Munich, Germany; and
| | - Michael A. Nash
- Lehrstuhl für Angewandte Physik, Center for NanoScience and Center for Integrative Protein Science, Ludwig-Maximilians-Universität, 80799 Munich, Germany; and
| | | | | | - Yoav Barak
- Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Hermann E. Gaub
- Lehrstuhl für Angewandte Physik, Center for NanoScience and Center for Integrative Protein Science, Ludwig-Maximilians-Universität, 80799 Munich, Germany; and
| |
Collapse
|
10
|
Lv C, Tan C, Qin M, Zou D, Cao Y, Wang W. Low folding cooperativity of HP35 revealed by single-molecule force spectroscopy and molecular dynamics simulation. Biophys J 2012; 102:1944-51. [PMID: 22768951 DOI: 10.1016/j.bpj.2012.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022] Open
Abstract
Some small proteins, such as HP35, fold at submicrosecond timescale with low folding cooperativity. Although these proteins have been extensively investigated, still relatively little is known about their folding mechanism. Here, using single-molecule force spectroscopy and steered molecule dynamics simulation, we study the unfolding of HP35 under external force. Our results show that HP35 unfolds at extremely low forces without a well-defined unfolding transition state. Subsequently, we probe the structure of unfolded HP35 using the persistence length obtained in the force spectroscopy. We found that the persistence length of unfolded HP35 is around 0.72 nm, >40% longer than typical unstructured proteins, suggesting that there are a significant amount of residual secondary structures in the unfolded HP35. Molecular dynamics simulation further confirmed this finding and revealed that many native contacts are preserved in HP35, even its two ends have been extended up to 8 nm. Our results therefore suggest that retaining a significant amount of secondary structures in the unfolded state of HP35 may be an efficient way to reduce the entropic cost for the formation of tertiary structure and increase the folding speed, although the folding cooperativity is compromised. Moreover, we anticipate that the methods we used in this work can be extended to the study of other proteins with complex folding behaviors and even intrinsically disordered ones.
Collapse
Affiliation(s)
- Chunmei Lv
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Liu Z, Reddy G, Thirumalai D. Theory of the Molecular Transfer Model for Proteins with Applications to the Folding of the src-SH3 Domain. J Phys Chem B 2012; 116:6707-16. [DOI: 10.1021/jp211941b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenxing Liu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | | | | |
Collapse
|