1
|
Xie Y, Kuai L, Peng Q, Wang Q, Wang H, Li X, Qi J, Ding Q, Shi Y, Gao GF. Structural basis of DNA replication fidelity of the Mpox virus. Proc Natl Acad Sci U S A 2025; 122:e2411686122. [PMID: 40035768 PMCID: PMC11912389 DOI: 10.1073/pnas.2411686122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/10/2025] [Indexed: 03/06/2025] Open
Abstract
The Mpox virus (MPXV) is an orthopoxvirus that caused a global outbreak in 2022. The poxvirus DNA polymerase complex is responsible for the replication and integrity of the viral genome; however, the molecular mechanisms underlying DNA replication fidelity are still unclear. In this study, we determined the cryoelectron microscopy (cryo-EM) structures of the MPXV F8-A22-E4 polymerase holoenzyme in its editing state, in complex with mismatched primer-template DNA and DNA containing uracil deoxynucleotide. We showed that the MPXV polymerase has a similar replication-to-edit transition mechanism to proofread the mismatched nucleotides like the B-family DNA polymerases of other species. The unique processivity cofactor A22-E4 undergoes conformational changes in different working states and might affect the proofreading process. Moreover, we elucidated the base excision repair (BER) function of E4 as a uracil-DNA glycosylase and the coupling mechanism of genome replication and BER, characteristic of poxviruses. Our findings greatly enhance our molecular understanding of DNA replication fidelity of orthopoxviruses and will stimulate the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Yufeng Xie
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing100084, China
| | - Lu Kuai
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Qi Peng
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Qian Wang
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Han Wang
- College of Future Technology, Peking University, Beijing100871, China
| | - Xiaomei Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan030032, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Beijing Life Science Academy, Beijing102209, China
| | - Qiang Ding
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing100084, China
| | - Yi Shi
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Beijing Life Science Academy, Beijing102209, China
- Medical School, University of Chinese Academy of Sciences, Beijing100049, China
- Center for Influenza Research and Early-warning, Chinese Academy of Sciences–The World Academy of Sciences Center of Excellence for Emerging Infectious Disease, Chinese Academy of Sciences, Beijing100101, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing100052, China
| | - George F. Gao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing100084, China
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan030032, China
- Beijing Life Science Academy, Beijing102209, China
- Medical School, University of Chinese Academy of Sciences, Beijing100049, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing100052, China
| |
Collapse
|
2
|
Roske JJ, Yeeles JTP. Structural basis for processive daughter-strand synthesis and proofreading by the human leading-strand DNA polymerase Pol ε. Nat Struct Mol Biol 2024; 31:1921-1931. [PMID: 39112807 PMCID: PMC11638069 DOI: 10.1038/s41594-024-01370-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/11/2024] [Indexed: 10/18/2024]
Abstract
During chromosome replication, the nascent leading strand is synthesized by DNA polymerase epsilon (Pol ε), which associates with the sliding clamp processivity factor proliferating cell nuclear antigen (PCNA) to form a processive holoenzyme. For high-fidelity DNA synthesis, Pol ε relies on nucleotide selectivity and its proofreading ability to detect and excise a misincorporated nucleotide. Here, we present cryo-electron microscopy (cryo-EM) structures of human Pol ε in complex with PCNA, DNA and an incoming nucleotide, revealing how Pol ε associates with PCNA through its PCNA-interacting peptide box and additional unique features of its catalytic domain. Furthermore, by solving a series of cryo-EM structures of Pol ε at a mismatch-containing DNA, we elucidate how Pol ε senses and edits a misincorporated nucleotide. Our structures delineate steps along an intramolecular switching mechanism between polymerase and exonuclease activities, providing the basis for a proofreading mechanism in B-family replicative polymerases.
Collapse
|
3
|
Kuai L, Sun J, Peng Q, Zhao X, Yuan B, Liu S, Bi Y, Shi Y. Cryo-EM structure of DNA polymerase of African swine fever virus. Nucleic Acids Res 2024; 52:10717-10729. [PMID: 39189451 PMCID: PMC11417396 DOI: 10.1093/nar/gkae739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
African swine fever virus (ASFV) is one of the most important causative agents of animal diseases and can cause highly fatal diseases in swine. ASFV DNA polymerase (DNAPol) is responsible for genome replication and highly conserved in all viral genotypes showing an ideal target for drug development. Here, we systematically determined the structures of ASFV DNAPol in apo, replicating and editing states. Structural analysis revealed that ASFV DNAPol had a classical right-handed structure and showed the highest similarity to the structure of human polymerase delta. Intriguingly, ASFV DNAPol has a much longer fingers subdomain, and the thumb and palm subdomain form a unique interaction that has never been seen. Mutagenesis work revealed that the loss of this unique interaction decreased the enzymatic activity. We also found that the β-hairpin of ASFV DNAPol is located below the template strand in the editing state, which is different from the editing structures of other known B family DNAPols with the β-hairpin above the template strand. It suggests that B family DNAPols have evolved two ways to facilitate the dsDNA unwinding during the transition from replicating into editing state. These findings figured out the working mechanism of ASFV DNAPol and will provide a critical structural basis for the development of antiviral drugs.
Collapse
Affiliation(s)
- Lu Kuai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Life Science Academy, Beijing 102209, China
| | - Junqing Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Life Science Academy, Beijing 102209, China
| | - Xuejin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Life Science Academy, Beijing 102209, China
| | - Bin Yuan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Liu
- Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Life Science Academy, Beijing 102209, China
| |
Collapse
|
4
|
Dapkūnas J, Timinskas A, Olechnovič K, Tomkuvienė M, Venclovas Č. PPI3D: a web server for searching, analyzing and modeling protein-protein, protein-peptide and protein-nucleic acid interactions. Nucleic Acids Res 2024; 52:W264-W271. [PMID: 38619046 PMCID: PMC11223826 DOI: 10.1093/nar/gkae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Structure-resolved protein interactions with other proteins, peptides and nucleic acids are key for understanding molecular mechanisms. The PPI3D web server enables researchers to query preprocessed and clustered structural data, analyze the results and make homology-based inferences for protein interactions. PPI3D offers three interaction exploration modes: (i) all interactions for proteins homologous to the query, (ii) interactions between two proteins or their homologs and (iii) interactions within a specific PDB entry. The server allows interactive analysis of the identified interactions in both summarized and detailed manner. This includes protein annotations, structures, the interface residues and the corresponding contact surface areas. In addition, users can make inferences about residues at the interaction interface for the query protein(s) from the sequence alignments and homology models. The weekly updated PPI3D database includes all the interaction interfaces and binding sites from PDB, clustered based on both protein sequence and structural similarity, yielding non-redundant datasets without loss of alternative interaction modes. Consequently, the PPI3D users avoid being flooded with redundant information, a typical situation for intensely studied proteins. Furthermore, PPI3D provides a possibility to download user-defined sets of interaction interfaces and analyze them locally. The PPI3D web server is available at https://bioinformatics.lt/ppi3d.
Collapse
Affiliation(s)
- Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
5
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. Nucleic Acids Res 2024; 52:6347-6359. [PMID: 38661211 PMCID: PMC11194089 DOI: 10.1093/nar/gkae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lia M Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Lawler JL, Terrell S, Coen DM. The conserved RNP motif of the herpes simplex virus 1 family B DNA polymerase is crucial for viral DNA synthesis but not polymerase activity. Virology 2024; 594:110035. [PMID: 38554655 DOI: 10.1016/j.virol.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.
Collapse
Affiliation(s)
- Jessica L Lawler
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Committee on Virology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Shariya Terrell
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Committee on Virology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Debnath T, Cisneros GA. Investigation of the stability of D5SIC-DNAM-incorporated DNA duplex in Taq polymerase binary system: a systematic classical MD approach. Phys Chem Chem Phys 2024; 26:7287-7295. [PMID: 38353000 PMCID: PMC11078294 DOI: 10.1039/d3cp05571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
DNA polymerases are fundamental enzymes that play a crucial role in processing DNA with high fidelity and accuracy ensuring the faithful transmission of genetic information. The recognition of unnatural base pairs (UBPs) by polymerases, enabling their replication, represents a significant and groundbreaking discovery with profound implications for genetic expansion. Romesberg et al. examined the impact of DNA containing 2,6-dimethyl-2H-isoquiniline-1-thione: D5SIC (DS) and 2-methoxy-3-methylnaphthalene: DNAM (DN) UBPs bound to T. aquaticus DNA polymerase (Taq) through crystal structure analysis. Here, we have used polarizable and nonpolarizable classical molecular dynamics (MD) simulations to investigate the structural aspects and stability of Taq in complex with a DNA duplex including a DS-DN pair in the terminal 3' and 5' positions. Our results suggest that the flexibility of UBP-incorporated DNA in the terminal position is arrested by the polymerase, thus preventing fraying and mispairing. Our investigation also reveals that the UBP remains in an intercalated conformation inside the active site, exhibiting two distinct orientations in agreement with experimental findings. Our analysis pinpoints particular residues responsible for favorable interactions with the UBP, with some relying on van der Waals interactions while other on Coulombic forces.
Collapse
Affiliation(s)
- Tanay Debnath
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA
| |
Collapse
|
8
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580553. [PMID: 38405983 PMCID: PMC10889028 DOI: 10.1101/2024.02.15.580553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A. Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lia M. Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Carré L, Henneke G, Henry E, Flament D, Girard É, Franzetti B. DNA Polymerization in Icy Moon Abyssal Pressure Conditions. ASTROBIOLOGY 2024; 24:151-162. [PMID: 36622808 DOI: 10.1089/ast.2021.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Evidence of stable liquid water oceans beneath the ice crust of moons within the Solar System is of great interest for astrobiology. In particular, subglacial oceans may present hydrothermal processes in their abysses, similarly to terrestrial hydrothermal vents. Therefore, terrestrial extremophilic deep life can be considered a model for putative icy moon extraterrestrial life. However, the comparison between putative extraterrestrial abysses and their terrestrial counterparts suffers from a potentially determinant difference. Indeed, some icy moons oceans may be so deep that the hydrostatic pressure would exceed the maximal pressure at which hydrothermal vent organisms have been isolated. While terrestrial microorganisms that are able to survive in such conditions are known, the effect of high pressure on fundamental biochemical processes is still unclear. In this study, the effects of high hydrostatic pressure on DNA synthesis catalyzed by DNA polymerases are investigated for the first time. The effect on both strand displacement and primer extension activities is measured, and pressure tolerance is compared between enzymes of various thermophilic organisms isolated at different depths.
Collapse
Affiliation(s)
- Lorenzo Carré
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Ghislaine Henneke
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, Université de Brest, Plouzané, France
| | - Etienne Henry
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, Université de Brest, Plouzané, France
| | - Didier Flament
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, Université de Brest, Plouzané, France
| | - Éric Girard
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Bruno Franzetti
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| |
Collapse
|
10
|
Betancurt-Anzola L, Martínez-Carranza M, Delarue M, Zatopek KM, Gardner AF, Sauguet L. Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases. Nat Commun 2023; 14:8306. [PMID: 38097591 PMCID: PMC10721889 DOI: 10.1038/s41467-023-44125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Replicative DNA polymerases duplicate entire genomes at high fidelity. This feature is shared among the three domains of life and is facilitated by their dual polymerase and exonuclease activities. Family D replicative DNA polymerases (PolD), found exclusively in Archaea, contain an unusual RNA polymerase-like catalytic core, and a unique Mre11-like proofreading active site. Here, we present cryo-EM structures of PolD trapped in a proofreading mode, revealing an unanticipated correction mechanism that extends the repertoire of protein domains known to be involved in DNA proofreading. Based on our experimental structures, mutants of PolD were designed and their contribution to mismatch bypass and exonuclease kinetics was determined. This study sheds light on the convergent evolution of structurally distinct families of DNA polymerases, and the domain acquisition and exchange mechanism that occurred during the evolution of the replisome in the three domains of life.
Collapse
Affiliation(s)
- Leonardo Betancurt-Anzola
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
- New England Biolabs France, 5 Rue Henri Auguste Desbruères, 91000, Évry-Courcouronnes, France
- Sorbonne Université, Collège Doctoral, ED 515, Paris, France
| | - Markel Martínez-Carranza
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Marc Delarue
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Kelly M Zatopek
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA.
| | - Andrew F Gardner
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA.
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France.
| |
Collapse
|
11
|
Rocque MJ, Leipart V, Kumar Singh A, Mur P, Olsen MF, Engebretsen LF, Martin-Ramos E, Aligué R, Sætrom P, Valle L, Drabløs F, Otterlei M, Sjursen W. Characterization of POLE c.1373A > T p.(Tyr458Phe), causing high cancer risk. Mol Genet Genomics 2023; 298:555-566. [PMID: 36856825 PMCID: PMC10133059 DOI: 10.1007/s00438-023-02000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
The cancer syndrome polymerase proofreading-associated polyposis results from germline mutations in the POLE and POLD1 genes. Mutations in the exonuclease domain of these genes are associated with hyper- and ultra-mutated tumors with a predominance of base substitutions resulting from faulty proofreading during DNA replication. When a new variant is identified by gene testing of POLE and POLD1, it is important to verify whether the variant is associated with PPAP or not, to guide genetic counseling of mutation carriers. In 2015, we reported the likely pathogenic (class 4) germline POLE c.1373A > T p.(Tyr458Phe) variant and we have now characterized this variant to verify that it is a class 5 pathogenic variant. For this purpose, we investigated (1) mutator phenotype in tumors from two carriers, (2) mutation frequency in cell-based mutagenesis assays, and (3) structural consequences based on protein modeling. Whole-exome sequencing of two tumors identified an ultra-mutator phenotype with a predominance of base substitutions, the majority of which are C > T. A SupF mutagenesis assay revealed increased mutation frequency in cells overexpressing the variant of interest as well as in isogenic cells encoding the variant. Moreover, exonuclease repair yeast-based assay supported defect in proofreading activity. Lastly, we present a homology model of human POLE to demonstrate structural consequences leading to pathogenic impact of the p.(Tyr458Phe) mutation. The three lines of evidence, taken together with updated co-segregation and previously published data, allow the germline variant POLE c.1373A > T p.(Tyr458Phe) to be reclassified as a class 5 variant. That means the variant is associated with PPAP.
Collapse
Affiliation(s)
- Mariève J Rocque
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Medical Genetics, St. Olavs Hospital, 7030, Trondheim, Norway
| | - Vilde Leipart
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, 1432, Ås, Norway
| | - Ashish Kumar Singh
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Medical Genetics, St. Olavs Hospital, 7030, Trondheim, Norway
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maren F Olsen
- Department of Medical Genetics, St. Olavs Hospital, 7030, Trondheim, Norway
| | - Lars F Engebretsen
- Department of Medical Genetics, St. Olavs Hospital, 7030, Trondheim, Norway
| | - Edgar Martin-Ramos
- Department of Biomedical Sciences, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Rosa Aligué
- Department of Biomedical Sciences, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Computer and Information Science, NTNU-Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Bioinformatics Core Facility-BioCore, NTNU-Norwegian University of Science and Technology, 7491, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU-Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, 7030, Trondheim, Norway.
- Department of Medical Genetics, St. Olavs Hospital, 7030, Trondheim, Norway.
| |
Collapse
|
12
|
Barbari SR, Beach AK, Markgren JG, Parkash V, Moore E, Johansson E, Shcherbakova PV. Enhanced polymerase activity permits efficient synthesis by cancer-associated DNA polymerase ϵ variants at low dNTP levels. Nucleic Acids Res 2022; 50:8023-8040. [PMID: 35822874 PMCID: PMC9371911 DOI: 10.1093/nar/gkac602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022] Open
Abstract
Amino acid substitutions in the exonuclease domain of DNA polymerase ϵ (Polϵ) cause ultramutated tumors. Studies in model organisms suggested pathogenic mechanisms distinct from a simple loss of exonuclease. These mechanisms remain unclear for most recurrent Polϵ mutations. Particularly, the highly prevalent V411L variant remained a long-standing puzzle with no detectable mutator effect in yeast despite the unequivocal association with ultramutation in cancers. Using purified four-subunit yeast Polϵ, we assessed the consequences of substitutions mimicking human V411L, S459F, F367S, L424V and D275V. While the effects on exonuclease activity vary widely, all common cancer-associated variants have increased DNA polymerase activity. Notably, the analog of Polϵ-V411L is among the strongest polymerases, and structural analysis suggests defective polymerase-to-exonuclease site switching. We further show that the V411L analog produces a robust mutator phenotype in strains that lack mismatch repair, indicating a high rate of replication errors. Lastly, unlike wild-type and exonuclease-dead Polϵ, hyperactive variants efficiently synthesize DNA at low dNTP concentrations. We propose that this characteristic could promote cancer cell survival and preferential participation of mutator polymerases in replication during metabolic stress. Our results support the notion that polymerase fitness, rather than low fidelity alone, is an important determinant of variant pathogenicity.
Collapse
Affiliation(s)
- Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annette K Beach
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joel G Markgren
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Vimal Parkash
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Yuan H, Wang Y, Liu XP. The thumb subdomain of Pyrococcus furiosus DNA polymerase is responsible for deoxyuracil binding, hydrolysis and polymerization of nucleotides. Int J Biochem Cell Biol 2022; 144:106171. [PMID: 35093572 DOI: 10.1016/j.biocel.2022.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/02/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
B-family DNA polymerases, which are found in eukaryotes, archaea, viruses, and some bacteria, participate in DNA replication and repair. Starting from the N-terminus of archaeal and bacterial B-family DNA polymerases, three domains include the N-terminal, exonuclease, and polymerase domains. The N-terminal domain of the archaeal B-family DNA polymerase has a conserved deoxyuracil-binding pocket for specially binding the deoxyuracil base on DNA. The exonuclease domain is responsible for removing the mismatched base pair. The polymerase domain is the core functional domain and takes a highly conserved structure composed of fingers, palm and thumb subdomains. Previous studies have demonstrated that the thumb subdomain mainly functions as a DNA-binding element and has coordination with the exonuclease domain and palm subdomain. To further elucidate the possible functions of the thumb subdomain of archaeal B-family DNA polymerases, the thumb subdomain of Pyrococcus furiosus DNA polymerase was mutated, and the effects on three activities were characterized. Our results demonstrate that the thumb subdomain participates in the three activities of archaeal B-family DNA polymerases as a common structural element. Both the N-terminal deoxyuracil-binding pocket and thumb subdomain are critical for deoxyuracil binding. Moreover, the thumb subdomain assists DNA polymerization and hydrolysis reactions, but it does not contribute to the fidelity of DNA polymerization.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - You Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| |
Collapse
|
14
|
Dodd T, Botto M, Paul F, Fernandez-Leiro R, Lamers MH, Ivanov I. Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path. Nat Commun 2020; 11:5379. [PMID: 33097731 PMCID: PMC7584608 DOI: 10.1038/s41467-020-19165-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Proofreading by replicative DNA polymerases is a fundamental mechanism ensuring DNA replication fidelity. In proofreading, mis-incorporated nucleotides are excised through the 3'-5' exonuclease activity of the DNA polymerase holoenzyme. The exonuclease site is distal from the polymerization site, imposing stringent structural and kinetic requirements for efficient primer strand transfer. Yet, the molecular mechanism of this transfer is not known. Here we employ molecular simulations using recent cryo-EM structures and biochemical analyses to delineate an optimal free energy path connecting the polymerization and exonuclease states of E. coli replicative DNA polymerase Pol III. We identify structures for all intermediates, in which the transitioning primer strand is stabilized by conserved Pol III residues along the fingers, thumb and exonuclease domains. We demonstrate switching kinetics on a tens of milliseconds timescale and unveil a complete pol-to-exo switching mechanism, validated by targeted mutational experiments.
Collapse
Affiliation(s)
- Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Margherita Botto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fabian Paul
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | | | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
15
|
Houlihan G, Arangundy-Franklin S, Porebski BT, Subramanian N, Taylor AI, Holliger P. Discovery and evolution of RNA and XNA reverse transcriptase function and fidelity. Nat Chem 2020; 12:683-690. [PMID: 32690899 DOI: 10.1038/s41557-020-0502-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
The ability of reverse transcriptases (RTs) to synthesize a complementary DNA from natural RNA and a range of unnatural xeno nucleic acid (XNA) template chemistries, underpins key methods in molecular and synthetic genetics. However, RTs have proven challenging to discover and engineer, in particular for the more divergent XNA chemistries. Here we describe a general strategy for the directed evolution of RT function for any template chemistry called compartmentalized bead labelling and demonstrate it by the directed evolution of efficient RTs for 2'-O-methyl RNA and hexitol nucleic acids and the discovery of RTs for the orphan XNA chemistries D-altritol nucleic acid and 2'-methoxyethyl RNA, for which previously no RTs existed. Finally, we describe the engineering of XNA RTs with active exonucleolytic proofreading as well as the directed evolution of RNA RTs with very high complementary DNA synthesis fidelities, even in the absence of proofreading.
Collapse
Affiliation(s)
- Gillian Houlihan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Benjamin T Porebski
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nithya Subramanian
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexander I Taylor
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
16
|
Hogrel G, Lu Y, Alexandre N, Bossé A, Dulermo R, Ishino S, Ishino Y, Flament D. Role of RadA and DNA Polymerases in Recombination-Associated DNA Synthesis in Hyperthermophilic Archaea. Biomolecules 2020; 10:E1045. [PMID: 32674430 PMCID: PMC7407445 DOI: 10.3390/biom10071045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023] Open
Abstract
Among the three domains of life, the process of homologous recombination (HR) plays a central role in the repair of double-strand DNA breaks and the restart of stalled replication forks. Curiously, main protein actors involved in the HR process appear to be essential for hyperthermophilic Archaea raising interesting questions about the role of HR in replication and repair strategies of those Archaea living in extreme conditions. One key actor of this process is the recombinase RadA, which allows the homologous strand search and provides a DNA substrate required for following DNA synthesis and restoring genetic information. DNA polymerase operation after the strand exchange step is unclear in Archaea. Working with Pyrococcus abyssi proteins, here we show that both DNA polymerases, family-B polymerase (PolB) and family-D polymerase (PolD), can take charge of processing the RadA-mediated recombination intermediates. Our results also indicate that PolD is far less efficient, as compared with PolB, to extend the invaded DNA at the displacement-loop (D-loop) substrate. These observations coincide with previous genetic analyses obtained on Thermococcus species showing that PolB is mainly involved in DNA repair without being essential probably because PolD could take over combined with additional partners.
Collapse
Affiliation(s)
- Gaëlle Hogrel
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| | - Yang Lu
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| | - Nicolas Alexandre
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| | - Audrey Bossé
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| | - Rémi Dulermo
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan; (S.I.); (Y.I.)
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan; (S.I.); (Y.I.)
| | - Didier Flament
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| |
Collapse
|
17
|
Killelea T, Palud A, Akcha F, Lemor M, L'haridon S, Godfroy A, Henneke G. The interplay at the replisome mitigates the impact of oxidative damage on the genetic integrity of hyperthermophilic Archaea. eLife 2019; 8:45320. [PMID: 31184586 PMCID: PMC6559790 DOI: 10.7554/elife.45320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
8-oxodeoxyguanosine (8-oxodG), a major oxidised base modification, has been investigated to study its impact on DNA replication in hyperthermophilic Archaea. Here we show that 8-oxodG is formed in the genome of growing cells, with elevated levels following exposure to oxidative stress. Functional characterisation of cell-free extracts and the DNA polymerisation enzymes, PolB, PolD, and the p41/p46 complex, alone or in the presence of accessory factors (PCNA and RPA) indicates that translesion synthesis occurs under replicative conditions. One of the major polymerisation effects was stalling, but each of the individual proteins could insert and extend past 8-oxodG with differing efficiencies. The introduction of RPA and PCNA influenced PolB and PolD in similar ways, yet provided a cumulative enhancement to the polymerisation performance of p41/p46. Overall, 8-oxodG translesion synthesis was seen to be potentially mutagenic leading to errors that are reminiscent of dA:8-oxodG base pairing.
Collapse
Affiliation(s)
- Tom Killelea
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Adeline Palud
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Farida Akcha
- Laboratoire d'Ecotoxicologie, Ifremer, Nantes, France
| | - Mélanie Lemor
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Stephane L'haridon
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Anne Godfroy
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Ghislaine Henneke
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| |
Collapse
|
18
|
Parkash V, Kulkarni Y, Ter Beek J, Shcherbakova PV, Kamerlin SCL, Johansson E. Structural consequence of the most frequently recurring cancer-associated substitution in DNA polymerase ε. Nat Commun 2019; 10:373. [PMID: 30670696 PMCID: PMC6342957 DOI: 10.1038/s41467-018-08114-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022] Open
Abstract
The most frequently recurring cancer-associated DNA polymerase ε (Pol ε) mutation is a P286R substitution in the exonuclease domain. While originally proposed to increase genome instability by disrupting exonucleolytic proofreading, the P286R variant was later found to be significantly more pathogenic than Pol ε proofreading deficiency per se. The mechanisms underlying its stronger impact remained unclear. Here we report the crystal structure of the yeast orthologue, Pol ε−P301R, complexed with DNA and an incoming dNTP. Structural changes in the protein are confined to the exonuclease domain, with R301 pointing towards the exonuclease site. Molecular dynamics simulations suggest that R301 interferes with DNA binding to the exonuclease site, an outcome not observed with the exonuclease-inactive Pol ε−D290A,E292A variant lacking the catalytic residues. These results reveal a distinct mechanism of exonuclease inactivation by the P301R substitution and a likely basis for its dramatically higher mutagenic and tumorigenic effects. Mutations in the human POLE gene are associated with tumours with high mutational loads. Here the authors provide a structural rationale for the mutagenic activity of the cancer-associated DNA polymerase ε P286R variant.
Collapse
Affiliation(s)
- Vimal Parkash
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden
| | - Yashraj Kulkarni
- Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala, S-751 23, Sweden
| | - Josy Ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden.
| |
Collapse
|
19
|
Lemor M, Kong Z, Henry E, Brizard R, Laurent S, Bossé A, Henneke G. Differential Activities of DNA Polymerases in Processing Ribonucleotides during DNA Synthesis in Archaea. J Mol Biol 2018; 430:4908-4924. [PMID: 30342933 DOI: 10.1016/j.jmb.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/09/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
Consistent with the fact that ribonucleotides (rNTPs) are in excess over deoxyribonucleotides (dNTPs) in vivo, recent findings indicate that replicative DNA polymerases (DNA Pols) are able to insert ribonucleotides (rNMPs) during DNA synthesis, raising crucial questions about the fidelity of DNA replication in both Bacteria and Eukarya. Here, we report that the level of rNTPs is 20-fold higher than that of dNTPs in Pyrococcus abyssi cells. Using dNTP and rNTP concentrations present in vivo, we recorded rNMP incorporation in a template-specific manner during in vitro synthesis, with the family-D DNA Pol (PolD) having the highest propensity compared with the family-B DNA Pol and the p41/p46 complex. We also showed that ribonucleotides accumulate at a relatively high frequency in the genome of wild-type Thermococcales cells, and this frequency significantly increases upon deletion of RNase HII, the major enzyme responsible for the removal of RNA from DNA. Because ribonucleotides remain in genomic DNA, we then analyzed the effects on polymerization activities by the three DNA Pols. Depending on the identity of the base and the sequence context, all three DNA Pols bypass rNMP-containing DNA templates with variable efficiency and nucleotide (mis)incorporation ability. Unexpectedly, we found that PolD correctly base-paired a single ribonucleotide opposite rNMP-containing DNA templates. An evolutionary scenario is discussed concerning rNMP incorporation into DNA and genome stability.
Collapse
Affiliation(s)
- Mélanie Lemor
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Ziqing Kong
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Etienne Henry
- CNRS, Ifremer, Univ Brest, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280, Plouzané, France
| | - Raphaël Brizard
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sébastien Laurent
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Audrey Bossé
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Ghislaine Henneke
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France.
| |
Collapse
|
20
|
Ralec C, Henry E, Lemor M, Killelea T, Henneke G. Calcium-driven DNA synthesis by a high-fidelity DNA polymerase. Nucleic Acids Res 2017; 45:12425-12440. [PMID: 29040737 PMCID: PMC5716173 DOI: 10.1093/nar/gkx927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/04/2017] [Indexed: 11/14/2022] Open
Abstract
Divalent metal ions, usually Mg2+, are required for both DNA synthesis and proofreading functions by DNA polymerases (DNA Pol). Although used as a non-reactive cofactor substitute for binding and crystallographic studies, Ca2+ supports DNA polymerization by only one DNA Pol, Dpo4. Here, we explore whether Ca2+-driven catalysis might apply to high-fidelity (HiFi) family B DNA Pols. The consequences of replacing Mg2+ by Ca2+ on base pairing at the polymerase active site as well as the editing of terminal nucleotides at the exonuclease active site of the archaeal Pyrococcus abyssi DNA Pol (PabPolB) are characterized and compared to other (families B, A, Y, X, D) DNA Pols. Based on primer extension assays, steady-state kinetics and ion-chased experiments, we demonstrate that Ca2+ (and other metal ions) activates DNA synthesis by PabPolB. While showing a slower rate of phosphodiester bond formation, nucleotide selectivity is improved over that of Mg2+. Further mechanistic studies show that the affinities for primer/template are higher in the presence of Ca2+ and reinforced by a correct incoming nucleotide. Conversely, no exonuclease degradation of the terminal nucleotides occurs with Ca2+. Evolutionary and mechanistic insights among DNA Pols are thus discussed.
Collapse
Affiliation(s)
- Céline Ralec
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Etienne Henry
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Mélanie Lemor
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Tom Killelea
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Ghislaine Henneke
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
21
|
Tarbouriech N, Ducournau C, Hutin S, Mas PJ, Man P, Forest E, Hart DJ, Peyrefitte CN, Burmeister WP, Iseni F. The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding. Nat Commun 2017; 8:1455. [PMID: 29129932 PMCID: PMC5682278 DOI: 10.1038/s41467-017-01542-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/26/2017] [Indexed: 11/12/2022] Open
Abstract
Vaccinia virus (VACV), the prototype member of the Poxviridae, replicates in the cytoplasm of an infected cell. The catalytic subunit of the DNA polymerase E9 binds the heterodimeric processivity factor A20/D4 to form the functional polymerase holoenzyme. Here we present the crystal structure of full-length E9 at 2.7 Å resolution that permits identification of important poxvirus-specific structural insertions. One insertion in the palm domain interacts with C-terminal residues of A20 and thus serves as the processivity factor-binding site. This is in strong contrast to all other family B polymerases that bind their co-factors at the C terminus of the thumb domain. The VACV E9 structure also permits rationalization of polymerase inhibitor resistance mutations when compared with the closely related eukaryotic polymerase delta–DNA complex. The catalytic subunit E9 of the vaccinia virus DNA polymerase forms a functional polymerase holoenzyme by interacting with the heterodimeric processivity factor A20/D4. Here the authors present the structure of full-length E9 and show that an insertion within its palm domain binds A20, in a mode different from other family B polymerases.
Collapse
Affiliation(s)
- Nicolas Tarbouriech
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Corinne Ducournau
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Stephanie Hutin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Philippe J Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, EMBL, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Petr Man
- BioCeV-Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic.,Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Eric Forest
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Christophe N Peyrefitte
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France.,Emerging Pathogens Laboratory, Fondation Mérieux, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Wim P Burmeister
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France.
| |
Collapse
|
22
|
Walker AR, Cisneros GA. Computational Simulations of DNA Polymerases: Detailed Insights on Structure/Function/Mechanism from Native Proteins to Cancer Variants. Chem Res Toxicol 2017; 30:1922-1935. [PMID: 28877429 PMCID: PMC5696005 DOI: 10.1021/acs.chemrestox.7b00161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Genetic information is vital in the
cell cycle of DNA-based organisms.
DNA polymerases (DNA Pols) are crucial players in transactions dealing
with these processes. Therefore, the detailed understanding of the
structure, function, and mechanism of these proteins has been the
focus of significant effort. Computational simulations have been applied
to investigate various facets of DNA polymerase structure and function.
These simulations have provided significant insights over the years.
This perspective presents the results of various computational studies
that have been employed to research different aspects of DNA polymerases
including detailed reaction mechanism investigation, mutagenicity
of different metal cations, possible factors for fidelity synthesis,
and discovery/functional characterization of cancer-related mutations
on DNA polymerases.
Collapse
Affiliation(s)
- Alice R Walker
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
23
|
Fernandez-Leiro R, Conrad J, Yang JC, Freund SMV, Scheres SHW, Lamers MH. Self-correcting mismatches during high-fidelity DNA replication. Nat Struct Mol Biol 2017; 24:140-143. [PMID: 28067916 DOI: 10.1038/nsmb.3348] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022]
Abstract
Faithful DNA replication is essential to all forms of life and depends on the action of 3'-5' exonucleases that remove misincorporated nucleotides from the newly synthesized strand. However, how the DNA is transferred from the polymerase to the exonuclease active site is not known. Here we present the cryo-EM structure of the editing mode of the catalytic core of the Escherichia coli replisome, revealing a dramatic distortion of the DNA whereby the polymerase thumb domain acts as a wedge that separates the two DNA strands. Importantly, NMR analysis of the DNA substrate shows that the presence of a mismatch increases the fraying of the DNA, thus enabling it to reach the exonuclease active site. Therefore the mismatch corrects itself, whereas the exonuclease subunit plays a passive role. Hence, our work provides unique insights into high-fidelity replication and establishes a new paradigm for the correction of misincorporated nucleotides.
Collapse
Affiliation(s)
| | | | - Ji-Chun Yang
- MRC laboratory of Molecular Biology, Cambridge, UK
| | | | | | | |
Collapse
|
24
|
Xu X, Yan C, Kossmann BR, Ivanov I. Secondary Interaction Interfaces with PCNA Control Conformational Switching of DNA Polymerase PolB from Polymerization to Editing. J Phys Chem B 2016; 120:8379-88. [PMID: 27109703 DOI: 10.1021/acs.jpcb.6b02082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replicative DNA polymerases (Pols) frequently possess two distinct DNA processing activities: DNA synthesis (polymerization) and proofreading (3'-5' exonuclease activity). The polymerase and exonuclease reactions are performed alternately and are spatially separated in different protein domains. Thus, the growing DNA primer terminus has to undergo dynamic conformational switching between two distinct functional sites on the polymerase. Furthermore, the transition from polymerization (pol) mode to exonuclease (exo) mode must occur in the context of a DNA Pol holoenzyme, wherein the polymerase is physically associated with processivity factor proliferating cell nuclear antigen (PCNA) and primer-template DNA. The mechanism of this conformational switching and the role that PCNA plays in it have remained obscure, largely due to the dynamic nature of ternary Pol/PCNA/DNA assemblies. Here, we present computational models of ternary assemblies for archaeal polymerase PolB. We have combined all available structural information for the binary complexes with electron microscopy data and have refined atomistic models for ternary PolB/PCNA/DNA assemblies in pol and exo modes using molecular dynamics simulations. In addition to the canonical PIP-box/interdomain connector loop (IDCL) interface of PolB with PCNA, contact analysis of the simulation trajectories revealed new secondary binding interfaces, distinct between the pol and exo states. Using targeted molecular dynamics, we explored the conformational transition from pol to exo mode. We identified a hinge region between the thumb and palm domains of PolB that is critical for conformational switching. With the thumb domain anchored onto the PCNA surface, the neighboring palm domain executed rotational motion around the hinge, bringing the core of PolB down toward PCNA to form a new interface with the clamp. A helix from PolB containing a patch of arginine residues was involved in the binding, locking the complex in the exo mode conformation. Together, these results provide a structural view of how the transition between the pol and exo states of PolB is coordinated through PCNA to achieve efficient proofreading.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Chunli Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Bradley R Kossmann
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| |
Collapse
|
25
|
Hottin A, Marx A. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Acc Chem Res 2016; 49:418-27. [PMID: 26947566 DOI: 10.1021/acs.accounts.5b00544] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The DNA polymerase-catalyzed incorporation of modified nucleotides is employed in many biological technologies of prime importance, such as next-generation sequencing, nucleic acid-based diagnostics, transcription analysis, and aptamer selection by systematic enrichment of ligands by exponential amplification (SELEX). Recent studies have shown that 2'-deoxynucleoside triphosphates (dNTPs) that are functionalized with modifications at the nucleobase such as dyes, affinity tags, spin and redox labels, or even oligonucleotides are substrates for DNA polymerases, even if modifications of high steric demand are used. The position at which the modification is introduced in the nucleotide has been identified as crucial for retaining substrate activity for DNA polymerases. Modifications are usually attached at the C5 position of pyrimidines and the C7 position of 7-deazapurines. Furthermore, it has been shown that the nature of the modification may impact the efficiency of incorporation of a modified nucleotide into the nascent DNA strand by a DNA polymerase. This Account places functional data obtained in studies of the incorporation of modified nucleotides by DNA polymerases in the context of recently obtained structural data. Crystal structure analysis of a Thermus aquaticus (Taq) DNA polymerase variant (namely, KlenTaq DNA polymerase) in ternary complex with primer-template DNA and several modified nucleotides provided the first structural insights into how nucleobase-modified triphosphates are tolerated. We found that bulky modifications are processed by KlenTaq DNA polymerase as a result of cavities in the protein that enable the modification to extend outside the active site. In addition, we found that the enzyme is able to adapt to different modifications in a flexible manner and adopts different amino acid side-chain conformations at the active site depending on the nature of the nucleotide modification. Different "strategies" (i.e., hydrogen bonding, cation-π interactions) enable the protein to stabilize the respective protein-substrate complex without significantly changing the overall structure of the complex. Interestingly, it was also discovered that a modified nucleotide may be more efficiently processed by KlenTaq DNA polymerase when the 3'-primer terminus is also a modified nucleotide instead of a nonmodified natural one. Indeed, the modifications of two modified nucleotides at adjacent positions can interact with each other (i.e., by π-π interactions) and thereby stabilize the enzyme-substrate complex, resulting in more efficient transformation. Several studies have indicated that archeal DNA polymerases belonging to sequence family B are better suited for the incorporation of nucleobase-modified nucleotides than enzymes from family A. However, significantly less structural data are available for family B DNA polymerases. In order to gain insights into the preference for modified substrates by members of family B, we succeeded in obtaining binary structures of 9°N and KOD DNA polymerases bound to primer-template DNA. We found that the major groove of the archeal family B DNA polymerases is better accessible than in family A DNA polymerases. This might explain the observed superiority of family B DNA polymerases in polymerizing nucleotides that bear bulky modifications located in the major groove, such as modification at C5 of pyrimidines and C7 of 7-deazapurines. Overall, this Account summarizes our recent findings providing structural insight into the mechanism by which modified nucleotides are processed by DNA polymerases. It provides guidelines for the design of modified nucleotides, thus supporting future efforts based on the acceptance of modified nucleotides by DNA polymerases.
Collapse
Affiliation(s)
- Audrey Hottin
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
26
|
Archaeal DNA polymerases in biotechnology. Appl Microbiol Biotechnol 2015; 99:6585-97. [DOI: 10.1007/s00253-015-6781-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
27
|
Killelea T, Saint-Pierre C, Ralec C, Gasparutto D, Henneke G. Anomalous electrophoretic migration of short oligodeoxynucleotides labelled with 5'-terminal Cy5 dyes. Electrophoresis 2014; 35:1938-46. [PMID: 24659099 DOI: 10.1002/elps.201400018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 11/10/2022]
Abstract
By using a fluorescent exonuclease assay, we reported unusual electrophoretic mobility of 5'-indocarbo-cyanine 5 (5'-Cy5) labelled DNA fragments in denaturing polyacrylamide gels. Incubation time and enzyme concentration were two parameters involved in the formation of 5'-Cy5-labelled degradation products, while the structure of the substrate was slightly interfering. Replacement of positively charged 5'-Cy5-labelled DNA oligonucleotides (DNA oligos) by electrically neutral 5'-carboxyfluorescein (5'-FAM) labelled DNA oligos abolished the anomalous migration pattern of degradation products. MS analysis demonstrated that anomalously migrating products were in fact 5'-labelled DNA fragments ranging from 1 to 8 nucleotides. Longer 5'-Cy5-labelled DNA fragments migrated at the expected position. Altogether, these data highlighted, for the first time, the influence of the mass/charge ratio of 5'-Cy5-labelled DNA oligos on their electrophoretic mobility. Although obtained by performing 3' to 5' exonuclease assays with the family B DNA polymerase from Pyrococcus abyssi, these observations represent a major concern in DNA technology involving most DNA degrading enzymes.
Collapse
Affiliation(s)
- Tom Killelea
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Plouzané, France; Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, UMR 6197, Plouzané, France; CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Plouzané, France
| | | | | | | | | |
Collapse
|
28
|
Elshawadfy AM, Keith BJ, Ee Ooi H, Kinsman T, Heslop P, Connolly BA. DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction. Front Microbiol 2014; 5:224. [PMID: 24904539 PMCID: PMC4034419 DOI: 10.3389/fmicb.2014.00224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/28/2014] [Indexed: 11/20/2022] Open
Abstract
The polymerase chain reaction (PCR) is widely applied across the biosciences, with archaeal Family-B DNA polymerases being preferred, due to their high thermostability and fidelity. The enzyme from Pyrococcus furiosus (Pfu-Pol) is more frequently used than the similar protein from Thermococcus kodakarensis (Tkod-Pol), despite the latter having better PCR performance. Here the two polymerases have been comprehensively compared, confirming that Tkod-Pol: (1) extends primer-templates more rapidly; (2) has higher processivity; (3) demonstrates superior performance in normal and real time PCR. However, Tkod-Pol is less thermostable than Pfu-Pol and both enzymes have equal fidelities. To understand the favorable properties of Tkod-Pol, hybrid proteins have been prepared. Single, double and triple mutations were used to site arginines, present at the “forked-point” (the junction of the exonuclease and polymerase channels) of Tkod-Pol, at the corresponding locations in Pfu-Pol, slightly improving PCR performance. The Pfu-Pol thumb domain, responsible for double-stranded DNA binding, has been entirely replaced with that from Tkod-Pol, again giving better PCR properties. Combining the “forked-point” and thumb swap mutations resulted in a marked increase in PCR capability, maintenance of high fidelity and retention of the superior thermostability associated with Pfu-Pol. However, even the arginine/thumb swap mutant falls short of Tkod-Pol in PCR, suggesting further improvement within the Pfu-Pol framework is attainable. The significance of this work is the observation that improvements in PCR performance are easily attainable by blending elements from closely related archaeal polymerases, an approach that may, in future, be extended by using more polymerases from these organisms.
Collapse
Affiliation(s)
- Ashraf M Elshawadfy
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Brian J Keith
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - H'Ng Ee Ooi
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Thomas Kinsman
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Pauline Heslop
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Bernard A Connolly
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Killelea T, Ralec C, Bossé A, Henneke G. PCR performance of a thermostable heterodimeric archaeal DNA polymerase. Front Microbiol 2014; 5:195. [PMID: 24847315 PMCID: PMC4019886 DOI: 10.3389/fmicb.2014.00195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/12/2014] [Indexed: 11/17/2022] Open
Abstract
DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.
Collapse
Affiliation(s)
- Tom Killelea
- Université de Bretagne Occidentale, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Céline Ralec
- Université de Bretagne Occidentale, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Audrey Bossé
- Université de Bretagne Occidentale, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Ghislaine Henneke
- Université de Bretagne Occidentale, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| |
Collapse
|
30
|
Trakselis MA, Bauer RJ. Archaeal DNA Polymerases: Enzymatic Abilities, Coordination, and Unique Properties. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Pluchon PF, Fouqueau T, Crezé C, Laurent S, Briffotaux J, Hogrel G, Palud A, Henneke G, Godfroy A, Hausner W, Thomm M, Nicolas J, Flament D. An extended network of genomic maintenance in the archaeon Pyrococcus abyssi highlights unexpected associations between eucaryotic homologs. PLoS One 2013; 8:e79707. [PMID: 24244547 PMCID: PMC3820547 DOI: 10.1371/journal.pone.0079707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
In Archaea, the proteins involved in the genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of eukaryotes. Characterizations of components of the eukaryotic-type replication machinery complex provided many interesting insights into DNA replication in both domains. In contrast, DNA repair processes of hyperthermophilic archaea are less well understood and very little is known about the intertwining between DNA synthesis, repair and recombination pathways. The development of genetic system in hyperthermophilic archaea is still at a modest stage hampering the use of complementary approaches of reverse genetics and biochemistry to elucidate the function of new candidate DNA repair gene. To gain insights into genomic maintenance processes in hyperthermophilic archaea, a protein-interaction network centred on informational processes of Pyrococcus abyssi was generated by affinity purification coupled with mass spectrometry. The network consists of 132 interactions linking 87 proteins. These interactions give insights into the connections of DNA replication with recombination and repair, leading to the discovery of new archaeal components and of associations between eucaryotic homologs. Although this approach did not allow us to clearly delineate new DNA pathways, it provided numerous clues towards the function of new molecular complexes with the potential to better understand genomic maintenance processes in hyperthermophilic archaea. Among others, we found new potential partners of the replication clamp and demonstrated that the single strand DNA binding protein, Replication Protein A, enhances the transcription rate, in vitro, of RNA polymerase. This interaction map provides a valuable tool to explore new aspects of genome integrity in Archaea and also potentially in Eucaryotes.
Collapse
Affiliation(s)
- Pierre-François Pluchon
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Thomas Fouqueau
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Christophe Crezé
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Sébastien Laurent
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Julien Briffotaux
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Gaëlle Hogrel
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Adeline Palud
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Ghislaine Henneke
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Anne Godfroy
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Winfried Hausner
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Michael Thomm
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Jacques Nicolas
- IRISA-INRIA, Campus de Beaulieu, Rennes, France
- * E-mail: (DF); (JN)
| | - Didier Flament
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- * E-mail: (DF); (JN)
| |
Collapse
|
32
|
Wynne SA, Pinheiro VB, Holliger P, Leslie AGW. Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising highly cy-dye labelled DNA. PLoS One 2013; 8:e70892. [PMID: 23940661 PMCID: PMC3733885 DOI: 10.1371/journal.pone.0070892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10) of Pyrococcus furiosus (Pfu) polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP) in PCR and synthesise highly fluorescent “CyDNA” densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide) reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers.
Collapse
Affiliation(s)
- Samantha A. Wynne
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Vitor B. Pinheiro
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andrew G. W. Leslie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Gouge J, Rosario S, Romain F, Beguin P, Delarue M. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism. J Mol Biol 2013; 425:4334-52. [PMID: 23856622 DOI: 10.1016/j.jmb.2013.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022]
Abstract
Terminal deoxynucleotidyltransferase (Tdt) is a non-templated eukaryotic DNA polymerase of the polX family that is responsible for the random addition of nucleotides at the V(D)J junctions of immunoglobulins and T-cell receptors. Here we describe a series of high-resolution X-ray structures that mimic the pre-catalytic state, the post-catalytic state and a competent state that can be transformed into the two other ones in crystallo via the addition of dAMPcPP and Zn(2+), respectively. We examined the effect of Mn(2+), Co(2+) and Zn(2+) because they all have a marked influence on the kinetics of the reaction. We demonstrate a dynamic role of divalent transition metal ions bound to site A: (i) Zn(2+) (or Co(2+)) in Metal A site changes coordination from octahedral to tetrahedral after the chemical step, which explains the known higher affinity of Tdt for the primer strand when these ions are present, and (ii) metal A has to leave to allow the translocation of the primer strand and to clear the active site, a typical feature for a ratchet-like mechanism. Except for Zn(2+), the sugar puckering of the primer strand 3' terminus changes from C2'-endo to C3'-endo during catalysis. In addition, our data are compatible with a scheme where metal A is the last component that binds to the active site to complete its productive assembly, as already inferred in human pol beta. The new structures have potential implications for modeling pol mu, a closely related polX implicated in the repair of DNA double-strand breaks, in a complex with a DNA synapsis.
Collapse
Affiliation(s)
- Jérôme Gouge
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du CNRS, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
34
|
Bergen K, Betz K, Welte W, Diederichs K, Marx A. Structures of KOD and 9°N DNA polymerases complexed with primer template duplex. Chembiochem 2013; 14:1058-62. [PMID: 23733496 DOI: 10.1002/cbic.201300175] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 12/29/2022]
Abstract
Replicate it: Structures of KOD and 9°N DNA polymerases, two enzymes that are widely used to replicate DNA with highly modified nucleotides, were solved at high resolution in complex with primer/template duplex. The data elucidate substrate interaction of the two enzymes and pave the way for further optimisation of the enzymes and substrates.
Collapse
Affiliation(s)
- Konrad Bergen
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
35
|
Richardson TT, Gilroy L, Ishino Y, Connolly BA, Henneke G. Novel inhibition of archaeal family-D DNA polymerase by uracil. Nucleic Acids Res 2013; 41:4207-18. [PMID: 23408858 PMCID: PMC3627576 DOI: 10.1093/nar/gkt083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Archaeal family-D DNA polymerase is inhibited by the presence of uracil in DNA template strands. When the enzyme encounters uracil, following three parameters change: DNA binding increases roughly 2-fold, the rate of polymerization slows by a factor of ≈ 5 and 3'-5' proof-reading exonuclease activity is stimulated by a factor of ≈ 2. Together these changes result in a significant decrease in polymerization activity and a reduction in net DNA synthesis. Pol D appears to interact with template strand uracil irrespective of its distance ahead of the replication fork. Polymerization does not stop at a defined location relative to uracil, rather a general decrease in DNA synthesis is observed. 'Trans' inhibition, the slowing of Pol D by uracil on a DNA strand not being replicated is also observed. It is proposed that Pol D is able to interact with uracil by looping out the single-stranded template, allowing simultaneous contact of both the base and the primer-template junction to give a polymerase-DNA complex with diminished extension ability.
Collapse
Affiliation(s)
- Tomas T Richardson
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|