1
|
Roy B, Hridya VM, Mukherjee A. Memory Effects Explain the Fractional Viscosity Dependence of Rates Associated with Internal Friction: Simple Models and Applications to Butane Dihedral Rotation. J Phys Chem B 2024; 128:10615-10624. [PMID: 39436350 DOI: 10.1021/acs.jpcb.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Barrier-crossing rates of biophysical processes, ranging from simple conformational changes to protein folding, often deviate from the Kramers prediction of an inverse viscosity dependence. In many recent studies, this has been attributed to the presence of internal friction within the system. Previously, we showed that memory-dependent friction arising from the nonequilibrium solvation of a single particle crossing a smooth one-dimensional barrier can also cause such a deviation and be misinterpreted as internal friction. Here we introduce a simple diatom model and show that even in the absence of explicit solvent, internal memory effects arise due to coupling of the reaction coordinate motion with frictionally orthogonal degrees of freedom. This results in a fractional viscosity dependence and a deviation from Kramers' theory, typically attributed to the presence of internal friction. This model therefore mimics several biological processes where a local conformational change of a biomolecule is often influenced by its surroundings. This gives rise to an apparent "internal friction" commonly measured in terms of empirical fitting parameters α and σ. We propose a microscopic measure of this internal friction using Grote-Hynes theory which employs memory-dependent friction. We use butane to demonstrate the effect of coupling strength on the internal friction in realistic systems. This model therefore can serve the purpose of understanding internal friction in biological systems in terms of such coupling.
Collapse
Affiliation(s)
- Bikirna Roy
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - V M Hridya
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
2
|
Cohen NR, Kayatekin C, Zitzewitz JA, Bilsel O, Matthews CR. Friction-Limited Folding of Disulfide-Reduced Monomeric SOD1. Biophys J 2020; 118:1992-2000. [PMID: 32191862 DOI: 10.1016/j.bpj.2020.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
The folding reaction of a stable monomeric variant of Cu/Zn superoxide dismutase (mSOD1), an enzyme responsible for the conversion of superoxide free radicals into hydrogen peroxide and oxygen, is known to be among the slowest folding processes that adhere to two-state behavior. The long lifetime, ∼10 s, of the unfolded state presents ample opportunities for the polypeptide chain to transiently sample nonnative structures before the formation of the productive folding transition state. We recently observed the formation of a nonnative structure in a peptide model of the C-terminus of SOD1, a sequence that might serve as a potential source of internal chain friction-limited folding. To test for friction-limited folding, we performed a comprehensive thermodynamic and kinetic analysis of the folding mechanism of mSOD1 in the presence of the viscogens glycerol and glucose. Using a, to our knowledge, novel analysis of the folding reactions, we found the disulfide-reduced form of the protein that exposes the C-terminal sequence, but not its disulfide-oxidized counterpart that protects it, experiences internal chain friction during folding. The sensitivity of the internal friction to the disulfide bond status suggests that one or both of the cross-linked regions play a critical role in driving the friction-limited folding. We speculate that the molecular mechanisms giving rise to the internal friction of disulfide-reduced mSOD1 might play a role in the amyotrophic lateral sclerosis-linked aggregation of SOD1.
Collapse
Affiliation(s)
- Noah R Cohen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Can Kayatekin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts; Rare and Neurological Therapeutic Area, Sanofi, Framingham, Massachusetts
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - C R Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
3
|
Zingoni A, Vulpis E, Cecere F, Amendola MG, Fuerst D, Saribekyan T, Achour A, Sandalova T, Nardone I, Peri A, Soriani A, Fionda C, Mariggiò E, Petrucci MT, Ricciardi MR, Mytilineos J, Cippitelli M, Cerboni C, Santoni A. MICA-129 Dimorphism and Soluble MICA Are Associated With the Progression of Multiple Myeloma. Front Immunol 2018; 9:926. [PMID: 29765374 PMCID: PMC5938351 DOI: 10.3389/fimmu.2018.00926] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are immune innate effectors playing a pivotal role in the immunosurveillance of multiple myeloma (MM) since they are able to directly recognize and kill MM cells. In this regard, among activating receptors expressed by NK cells, NKG2D represents an important receptor for the recognition of MM cells, being its ligands expressed by tumor cells, and being able to trigger NK cell cytotoxicity. The MHC class I-related molecule A (MICA) is one of the NKG2D ligands; it is encoded by highly polymorphic genes and exists as membrane-bound and soluble isoforms. Soluble MICA (sMICA) is overexpressed in the serum of MM patients, and its levels correlate with tumor progression. Interestingly, a methionine (Met) to valine (Val) substitution at position 129 of the α2 heavy chain domain classifies the MICA alleles into strong (MICA-129Met) and weak (MICA-129Val) binders to NKG2D receptor. We addressed whether the genetic polymorphisms in the MICA-129 alleles could affect MICA release during MM progression. The frequencies of Val/Val, Val/Met, and Met/Met MICA-129 genotypes in a cohort of 137 MM patients were 36, 43, and 22%, respectively. Interestingly, patients characterized by a Val/Val genotype exhibited the highest levels of sMICA in the sera. In addition, analysis of the frequencies of MICA-129 genotypes among different MM disease states revealed that Val/Val patients had a significant higher frequency of relapse. Interestingly, NKG2D was downmodulated in NK cells derived from MICA-129Met/Met MM patients. Results obtained by structural modeling analysis suggested that the Met to Val dimorphism could affect the capacity of MICA to form an optimal template for NKG2D recognition. In conclusion, our findings indicate that the MICA-129Val/Val variant is associated with significantly higher levels of sMICA and the progression of MM, strongly suggesting that the usage of soluble MICA as prognostic marker has to be definitely combined with the patient MICA genotype.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Elisabetta Vulpis
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Francesca Cecere
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maria G Amendola
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Daniel Fuerst
- German Red Cross Blood Donor Services, Baden-Wuerttemberg-Hessia, Ulm, Germany
| | - Taron Saribekyan
- German Red Cross Blood Donor Services, Baden-Wuerttemberg-Hessia, Ulm, Germany
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Ilaria Nardone
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Agnese Peri
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Elena Mariggiò
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - Maria T Petrucci
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - Maria R Ricciardi
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Joannis Mytilineos
- German Red Cross Blood Donor Services, Baden-Wuerttemberg-Hessia, Ulm, Germany
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Istituto Pasteur Italia-Cenci Bolognetti Fondazione, Rome, Italy
| |
Collapse
|
4
|
Comparative mechanical unfolding studies of spectrin domains R15, R16 and R17. J Struct Biol 2017; 201:162-170. [PMID: 29221897 DOI: 10.1016/j.jsb.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 11/08/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022]
Abstract
Spectrins belong to repetitive three-helix bundle proteins that have vital functions in multicellular organisms and are of potential value in nanotechnology. To reveal the unique physical features of repeat proteins we have studied the structural and mechanical properties of three repeats of chicken brain α-spectrin (R15, R16 and R17) at the atomic level under stretching at constant velocities (0.01, 0.05 and 0.1 Å·ps-1) and constant forces (700 and 900 pN) using molecular dynamics (MD) simulations at T = 300 K. 114 independent MD simulations were performed and their analysis has been done. Despite structural similarity of these domains we have found that R15 is less mechanically stable than R16, which is less stable than R17. This result is in agreement with the thermal unfolding rates. Moreover, we have observed the relationship between mechanical stability, flexibility of the domains and the number of aromatic residues involved in aromatic clusters.
Collapse
|
5
|
A method for rapid high-throughput biophysical analysis of proteins. Sci Rep 2017; 7:9071. [PMID: 28831058 PMCID: PMC5567296 DOI: 10.1038/s41598-017-08664-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
Quantitative determination of protein thermodynamic stability is fundamental to many research areas, both basic and applied. Although chemical-induced denaturation is the gold-standard method, it has been replaced in many settings by semi-quantitative approaches such as thermal stability measurements. The reason for this shift is that chemical denaturation experiments are labour-intensive, sample-costly and time-consuming, and it has been assumed that miniaturisation to a high-throughput format would not be possible without concomitantly comprising data quality. Here we exploit current technologies to create a high-throughput label-free chemical denaturation method that is capable of generating replicate datasets on multiple proteins in parallel on a timescale that is at least ten times faster, much more economical on sample, and with the potential for superior data quality, than the conventional methods used in most research labs currently.
Collapse
|
6
|
Cotranslational folding of spectrin domains via partially structured states. Nat Struct Mol Biol 2017; 24:221-225. [DOI: 10.1038/nsmb.3355] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/07/2016] [Indexed: 11/09/2022]
|
7
|
Sacquin-Mora S. Fold and flexibility: what can proteins' mechanical properties tell us about their folding nucleus? J R Soc Interface 2016; 12:rsif.2015.0876. [PMID: 26577596 DOI: 10.1098/rsif.2015.0876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The determination of a protein's folding nucleus, i.e. a set of native contacts playing an important role during its folding process, remains an elusive yet essential problem in biochemistry. In this work, we investigate the mechanical properties of 70 protein structures belonging to 14 protein families presenting various folds using coarse-grain Brownian dynamics simulations. The resulting rigidity profiles combined with multiple sequence alignments show that a limited set of rigid residues, which we call the consensus nucleus, occupy conserved positions along the protein sequence. These residues' side chains form a tight interaction network within the protein's core, thus making our consensus nuclei potential folding nuclei. A review of experimental and theoretical literature shows that most (above 80%) of these residues were indeed identified as folding nucleus member in earlier studies.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
8
|
Chung HS, Piana-Agostinetti S, Shaw DE, Eaton WA. Structural origin of slow diffusion in protein folding. Science 2015; 349:1504-10. [PMID: 26404828 DOI: 10.1126/science.aab1369] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Experimental, theoretical, and computational studies of small proteins suggest that interresidue contacts not present in the folded structure play little or no role in the self-assembly mechanism. Non-native contacts can, however, influence folding kinetics by introducing additional local minima that slow diffusion over the global free-energy barrier between folded and unfolded states. Here, we combine single-molecule fluorescence with all-atom molecular dynamics simulations to discover the structural origin for the slow diffusion that markedly decreases the folding rate for a designed α-helical protein. Our experimental determination of transition path times and our analysis of the simulations point to non-native salt bridges between helices as the source, which provides a quantitative glimpse of how specific intramolecular interactions influence protein folding rates by altering dynamics and not activation free energies.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | | | - David E Shaw
- D. E. Shaw Research, New York, NY 10036, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - William A Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
9
|
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 2014; 564:265-80. [PMID: 24613287 PMCID: PMC4262575 DOI: 10.1016/j.abb.2014.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
10
|
Rimratchada S, McLeish TCB, Radford SE, Paci E. The role of high-dimensional diffusive search, stabilization, and frustration in protein folding. Biophys J 2014; 106:1729-40. [PMID: 24739172 DOI: 10.1016/j.bpj.2014.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/17/2014] [Accepted: 01/31/2014] [Indexed: 11/25/2022] Open
Abstract
Proteins are polymeric molecules with many degrees of conformational freedom whose internal energetic interactions are typically screened to small distances. Therefore, in the high-dimensional conformation space of a protein, the energy landscape is locally relatively flat, in contrast to low-dimensional representations, where, because of the induced entropic contribution to the full free energy, it appears funnel-like. Proteins explore the conformation space by searching these flat subspaces to find a narrow energetic alley that we call a hypergutter and then explore the next, lower-dimensional, subspace. Such a framework provides an effective representation of the energy landscape and folding kinetics that does justice to the essential characteristic of high-dimensionality of the search-space. It also illuminates the important role of nonnative interactions in defining folding pathways. This principle is here illustrated using a coarse-grained model of a family of three-helix bundle proteins whose conformations, once secondary structure has formed, can be defined by six rotational degrees of freedom. Two folding mechanisms are possible, one of which involves an intermediate. The stabilization of intermediate subspaces (or states in low-dimensional projection) in protein folding can either speed up or slow down the folding rate depending on the amount of native and nonnative contacts made in those subspaces. The folding rate increases due to reduced-dimension pathways arising from the mere presence of intermediate states, but decreases if the contacts in the intermediate are very stable and introduce sizeable topological or energetic frustration that needs to be overcome. Remarkably, the hypergutter framework, although depending on just a few physically meaningful parameters, can reproduce all the types of experimentally observed curvature in chevron plots for realizations of this fold.
Collapse
Affiliation(s)
| | - Tom C B McLeish
- Department of Physics and Biophysical Sciences Institute, Durham University, Durham, United Kingdom.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Emanuele Paci
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom; Department of Physics and Biophysical Sciences Institute, Durham University, Durham, United Kingdom.
| |
Collapse
|
11
|
Shao Q. Probing Sequence Dependence of Folding Pathway of α-Helix Bundle Proteins through Free Energy Landscape Analysis. J Phys Chem B 2014; 118:5891-900. [DOI: 10.1021/jp5043393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design
Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
12
|
Kwa LG, Wensley BG, Alexander CG, Browning SJ, Lichman BR, Clarke J. The folding of a family of three-helix bundle proteins: spectrin R15 has a robust folding nucleus, unlike its homologous neighbours. J Mol Biol 2014; 426:1600-10. [PMID: 24373753 PMCID: PMC3988883 DOI: 10.1016/j.jmb.2013.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/13/2022]
Abstract
Three homologous spectrin domains have remarkably different folding characteristics. We have previously shown that the slow-folding R16 and R17 spectrin domains can be altered to resemble the fast folding R15, in terms of speed of folding (and unfolding), landscape roughness and folding mechanism, simply by substituting five residues in the core. Here we show that, by contrast, R15 cannot be engineered to resemble R16 and R17. It is possible to engineer a slow-folding version of R15, but our analysis shows that this protein neither has a rougher energy landscape nor does change its folding mechanism. Quite remarkably, R15 appears to be a rare example of a protein with a folding nucleus that does not change in position or in size when its folding nucleus is disrupted. Thus, while two members of this protein family are remarkably plastic, the third has apparently a restricted folding landscape.
Collapse
Affiliation(s)
- Lee Gyan Kwa
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Beth G Wensley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Crispin G Alexander
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Stuart J Browning
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Benjamin R Lichman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
13
|
Zhdanov VP, Höök F. Nucleation in mesoscopic systems under transient conditions: peptide-induced pore formation in vesicles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042718. [PMID: 23679460 DOI: 10.1103/physreve.87.042718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 06/02/2023]
Abstract
Attachment of lytic peptides to the lipid membrane of virions or bacteria is often accompanied by their aggregation and pore formation, resulting eventually in membrane rupture and pathogen neutralization. The membrane rupture may occur gradually via formation of many pores or abruptly after the formation of the first pore. In academic studies, this process is observed during interaction of peptides with lipid vesicles. We present an analytical model and the corresponding Monte Carlo simulations focused on the pore formation in such situations. Specifically, we calculate the time of the first nucleation-limited pore-formation event and show the distribution of this time in the regime when the fluctuations of the number of peptides attached to a vesicle are appreciable. The results obtained are used to clarify the mechanism of the pore formation and membrane destabilization observed recently during interaction of highly active α-helical peptide with sub-100-nm lipid vesicles that mimic enveloped viruses with nanoscale membrane curvature. The model proposed and the analysis presented are generic and may be applicable to other meso- and nanosystems.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden.
| | | |
Collapse
|
14
|
Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy. Nat Commun 2013; 3:1195. [PMID: 23149740 PMCID: PMC3514500 DOI: 10.1038/ncomms2204] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/15/2012] [Indexed: 11/09/2022] Open
Abstract
Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes.
Collapse
|
15
|
Nickson AA, Wensley BG, Clarke J. Take home lessons from studies of related proteins. Curr Opin Struct Biol 2012; 23:66-74. [PMID: 23265640 PMCID: PMC3578095 DOI: 10.1016/j.sbi.2012.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/30/2022]
Abstract
The 'Fold Approach' involves a detailed analysis of the folding of several topologically, structurally and/or evolutionarily related proteins. Such studies can reveal determinants of the folding mechanism beyond the gross topology, and can dissect the residues required for folding from those required for stability or function. While this approach has not yet matured to the point where we can predict the native conformation of any polypeptide chain in silico, it has been able to highlight, amongst others, the specific residues that are responsible for nucleation, pathway malleability, kinetic intermediates, chain knotting, internal friction and Paracelsus switches. Some of the most interesting discoveries have resulted from the attempt to explain differences between homologues.
Collapse
Affiliation(s)
- Adrian A Nickson
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.
| | | | | |
Collapse
|