1
|
Ageely EA, Chilamkurthy R, Jana S, Abdullahu L, O'Reilly D, Jensik PJ, Damha MJ, Gagnon KT. Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles. Nat Commun 2021; 12:6591. [PMID: 34782635 PMCID: PMC8593028 DOI: 10.1038/s41467-021-26989-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas12a is a leading technology for development of model organisms, therapeutics, and diagnostics. These applications could benefit from chemical modifications that stabilize or tune enzyme properties. Here we chemically modify ribonucleotides of the AsCas12a CRISPR RNA 5' handle, a pseudoknot structure that mediates binding to Cas12a. Gene editing in human cells required retention of several native RNA residues corresponding to predicted 2'-hydroxyl contacts. Replacing these RNA residues with a variety of ribose-modified nucleotides revealed 2'-hydroxyl sensitivity. Modified 5' pseudoknots with as little as six out of nineteen RNA residues, with phosphorothioate linkages at remaining RNA positions, yielded heavily modified pseudoknots with robust cell-based editing. High trans activity was usually preserved with cis activity. We show that the 5' pseudoknot can tolerate near complete modification when design is guided by structural and chemical compatibility. Rules for modification of the 5' pseudoknot should accelerate therapeutic development and be valuable for CRISPR-Cas12a diagnostics.
Collapse
Affiliation(s)
- Eman A Ageely
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, USA
| | - Ramadevi Chilamkurthy
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, IL, USA
| | - Sunit Jana
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Daniel O'Reilly
- Department of Chemistry, McGill University, Montreal, Canada
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Philip J Jensik
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Canada.
| | - Keith T Gagnon
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, USA.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
2
|
Zappulla DC. Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions. Molecules 2020; 25:E2750. [PMID: 32545864 PMCID: PMC7356895 DOI: 10.3390/molecules25122750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
It is said that "hindsight is 20-20", so, given the current year, it is an opportune time to review and learn from experiences studying long noncoding RNAs. Investigation of the Saccharomyces cerevisiae telomerase RNA, TLC1, has unveiled striking flexibility in terms of both structural and functional features. Results support the "flexible scaffold" hypothesis for this 1157-nt telomerase RNA. This model describes TLC1 acting as a tether for holoenzyme protein subunits, and it also may apply to a plethora of RNAs beyond telomerase, such as types of lncRNAs. In this short perspective review, I summarize findings from studying the large yeast telomerase ribonucleoprotein (RNP) complex in the hope that this hindsight will sharpen foresight as so many of us seek to mechanistically understand noncoding RNA molecules from vast transcriptomes.
Collapse
Affiliation(s)
- David C Zappulla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
3
|
Brown JA. Unraveling the structure and biological functions of RNA triple helices. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1598. [PMID: 32441456 PMCID: PMC7583470 DOI: 10.1002/wrna.1598] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It has been nearly 63 years since the first characterization of an RNA triple helix in vitro by Gary Felsenfeld, David Davies, and Alexander Rich. An RNA triple helix consists of three strands: A Watson–Crick RNA double helix whose major‐groove establishes hydrogen bonds with the so‐called “third strand”. In the past 15 years, it has been recognized that these major‐groove RNA triple helices, like single‐stranded and double‐stranded RNA, also mediate prominent biological roles inside cells. Thus far, these triple helices are known to mediate catalysis during telomere synthesis and RNA splicing, bind to ligands and ions so that metabolite‐sensing riboswitches can regulate gene expression, and provide a clever strategy to protect the 3′ end of RNA from degradation. Because RNA triple helices play important roles in biology, there is a renewed interest in better understanding the fundamental properties of RNA triple helices and developing methods for their high‐throughput discovery. This review provides an overview of the fundamental biochemical and structural properties of major‐groove RNA triple helices, summarizes the structure and function of naturally occurring RNA triple helices, and describes prospective strategies to isolate RNA triple helices as a means to establish the “triplexome”. This article is categorized under:RNA Structure and Dynamics > RNA Structure and Dynamics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
4
|
Zhang HH, Zhao LD, Zuo P, Yin BC, Ye BC. A telomerase-responsive nanoprobe with theranostic properties in tumor cells. Talanta 2020; 215:120898. [PMID: 32312443 DOI: 10.1016/j.talanta.2020.120898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Multidrug resistance (MDR) is the main cause of treatment failure in clinical cancer chemotherapy due to the presence of P-glycoproteins (P-gp), which widely exist in stubborn drug-resistant tumor membranes and actively pump drugs from inside the tumor cell to the outside. In this study, we report a novel telomerase-responsive nanoprobe with theranostic properties for inhibiting P-gp expression and reversing MDR by gene silencing. This nanoprobe is composed of an AuNP assembled with telomerase primer, antisense oligonucleotide (ASO), and doxorubicin (Dox). When the designed nanoprobe is uptaken by the MDR cancer cells, the Dox and ASO are specifically released due to the extension of telomerase primer triggered by telomerase. The released ASO specifically hybridizes with multidrug resistance 1 (MDR1) mRNA sequence, which encodes the P-gp. As a result, the expression of P-gp is inhibited and the efflux of Dox is prevented with reduced MDR in cancerous cells. The results demonstrate that the nanoprobe based on telomerase switching for drug release and gene silencing, can both target cancer cells for delivering drugs and overcome the effect of efflux pumps. This work presents a novel paradigm for theranostics of MDR cancer and enhances the efficacy of chemotherapeutics.
Collapse
Affiliation(s)
- He-Hua Zhang
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Li-Dong Zhao
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Zuo
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
5
|
Zhang X, Xu X, Yang Z, Burcke AJ, Gates KS, Chen SJ, Gu LQ. Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel. J Am Chem Soc 2015; 137:15742-52. [PMID: 26595106 PMCID: PMC4886178 DOI: 10.1021/jacs.5b07910] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pseudoknots are a fundamental RNA tertiary structure with important roles in regulation of mRNA translation. Molecular force spectroscopic approaches such as optical tweezers can track the pseudoknot's unfolding intermediate states by pulling the RNA chain from both ends, but the kinetic unfolding pathway induced by this method may be different from that in vivo, which occurs during translation and proceeds from the 5' to 3' end. Here we developed a ribosome-mimicking, nanopore pulling assay for dissecting the vectorial unfolding mechanism of pseudoknots. The pseudoknot unfolding pathway in the nanopore, either from the 5' to 3' end or in the reverse direction, can be controlled by a DNA leader that is attached to the pseudoknot at the 5' or 3' ends. The different nanopore conductance between DNA and RNA translocation serves as a marker for the position and structure of the unfolding RNA in the pore. With this design, we provided evidence that the pseudoknot unfolding is a two-step, multistate, metal ion-regulated process depending on the pulling direction. Most notably, unfolding in both directions is rate-limited by the unzipping of the first helix domain (first step), which is Helix-1 in the 5' → 3' direction and Helix-2 in the 3' → 5' direction, suggesting that the initial unfolding step in either pulling direction needs to overcome an energy barrier contributed by the noncanonical triplex base-pairs and coaxial stacking interactions for the tertiary structure stabilization. These findings provide new insights into RNA vectorial unfolding mechanisms, which play an important role in biological functions including frameshifting.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaojun Xu
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Andrew J. Burcke
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Conrad NK. The emerging role of triple helices in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:15-29. [PMID: 24115594 DOI: 10.1002/wrna.1194] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022]
Abstract
The ability of RNA to form sophisticated secondary and tertiary structures enables it to perform a wide variety of cellular functions. One tertiary structure, the RNA triple helix, was first observed in vitro over 50 years ago, but biological activities for triple helices are only beginning to be appreciated. The recent determination of several RNA structures has implicated triple helices in distinct biological functions. For example, the SAM-II riboswitch forms a triple helix that creates a highly specific binding pocket for S-adenosylmethionine. In addition, a triple helix in the conserved pseudoknot domain of the telomerase-associated RNA TER is essential for telomerase activity. A viral RNA cis-acting RNA element called the ENE contributes to the nuclear stability of a viral noncoding RNA by forming a triple helix with the poly(A) tail. Finally, a cellular noncoding RNA, MALAT1, includes a triple helix at its 3'-end that contributes to RNA stability, but surprisingly also supports translation. These examples highlight the diverse roles that RNA triple helices play in biology. Moreover, the dissection of triple helix mechanisms has the potential to uncover fundamental pathways in cell biology.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Zhou Y, Kierzek E, Loo ZP, Antonio M, Yau YH, Chuah YW, Geifman-Shochat S, Kierzek R, Chen G. Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides. Nucleic Acids Res 2013; 41:6664-73. [PMID: 23658228 PMCID: PMC3711454 DOI: 10.1093/nar/gkt352] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and reverse transcription. How chemical modification in TFOs affects RNA triplex stability, however, is not well understood. Here, we incorporated locked nucleic acid, 2-thio U- and 2′-O methyl-modified residues in a series of all pyrimidine RNA TFOs, and we studied the binding to two RNA hairpin structures. The 12-base-triple major-groove pyrimidine–purine–pyrimidine triplex structures form between the duplex regions of RNA/DNA hairpins and the complementary RNA TFOs. Ultraviolet-absorbance-detected thermal melting studies reveal that the locked nucleic acid and 2-thio U modifications in TFOs strongly enhance triplex formation with both parental RNA and DNA duplex regions. In addition, we found that incorporation of 2′-O methyl-modified residues in a TFO destabilizes and stabilizes triplex formation with RNA and DNA duplex regions, respectively. The (de)stabilization of RNA triplex formation may be facilitated through modulation of van der Waals contact, base stacking, hydrogen bonding, backbone pre-organization, geometric compatibility and/or dehydration energy. Better understanding of the molecular determinants of RNA triplex structure stability lays the foundation for designing and discovering novel sequence-specific duplex-binding ligands as diagnostic and therapeutic agents targeting RNA.
Collapse
Affiliation(s)
- Yuan Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Theimer CA, Liu F, Jasper KM. 52 Examining the effects of 2′-OH substitutions on the structure and stability of the S. cerevisiaetelomerase RNA pseudoknot and tertiary structure. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|