1
|
Noller HF. The ribosome comes to life. Cell 2024; 187:6486-6500. [PMID: 39547209 DOI: 10.1016/j.cell.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
The ribosome, together with its tRNA substrates, links genotype to phenotype by translating the genetic information carried by mRNA into protein. During the past half-century, the structure and mechanisms of action of the ribosome have emerged from mystery and confusion. It is now evident that the ribosome is an ancient RNA-based molecular machine of staggering structural complexity and that it is fundamentally similar in all living organisms. The three central functions of protein synthesis-decoding, catalysis of peptide bond formation, and translocation of mRNA and tRNA-are based on elegant mechanisms that evolved from the properties of RNA, the founding macromolecule of life. Moreover, all three of these functions (and even life itself) seem to proceed in defiance of entropy. Protein synthesis thus appears to exploit both the energy of GTP hydrolysis and peptide bond formation to constrain the directionality and accuracy of events taking place on the ribosome.
Collapse
Affiliation(s)
- Harry F Noller
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
2
|
Abstract
Biochemistry and molecular biology rely on the recognition of structural complementarity between molecules. Molecular interactions must be both quickly reversible, i.e., tenuous, and specific. How the cell reconciles these conflicting demands is the subject of this article. The problem and its theoretical solution are discussed within the wider theoretical context of the thermodynamics of stochastic processes (stochastic thermodynamics). The solution-an irreversible reaction cycle that decreases internal error at the expense of entropy export into the environment-is shown to be widely employed by biological processes that transmit genetic and regulatory information. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hinrich Boeger
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California;
| |
Collapse
|
3
|
Zhang L, Wang Y, Dai H, Zhou J. Structural and functional studies revealed key mechanisms underlying elongation step of protein translation. Acta Biochim Biophys Sin (Shanghai) 2020; 52:749-756. [PMID: 32400848 DOI: 10.1093/abbs/gmaa046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 11/12/2022] Open
Abstract
The ribosome is an ancient and universally conserved macromolecular machine that synthesizes proteins in all organisms. Since the discovery of the ribosome by electron microscopy in the mid-1950s, rapid progress has been made in research on it, regarding its architecture and functions. As a machine that synthesizes polypeptides, the sequential addition of amino acids to a growing polypeptide chain occurs during a phase called the elongation cycle. This is the core step of protein translation and is highly conserved between bacteria and eukarya. The elongation cycle involves codon recognition by aminoacyl tRNAs, catalysis of peptide bond formation, and the most complex operation of translation-translocation. In this review, we discuss the fundamental results from structural and functional studies over the past decades that have led to understanding of the three key questions underlying translation.
Collapse
Affiliation(s)
- Ling Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yinghui Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong Dai
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Noller HF. The parable of the caveman and the Ferrari: protein synthesis and the RNA world. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0187. [PMID: 28138073 DOI: 10.1098/rstb.2016.0187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/12/2022] Open
Abstract
The basic steps of protein synthesis are carried out by the ribosome, a very large and complex ribonucleoprotein particle. In keeping with its proposed emergence from an RNA world, all three of its core mechanisms-aminoacyl-tRNA selection, catalysis of peptide bond formation and coupled translocation of mRNA and tRNA-are embodied in the properties of ribosomal RNA, while its proteins play a supportive role.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Harry F Noller
- Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA .,Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
5
|
Rozov A, Demeshkina N, Westhof E, Yusupov M, Yusupova G. New Structural Insights into Translational Miscoding. Trends Biochem Sci 2016; 41:798-814. [PMID: 27372401 DOI: 10.1016/j.tibs.2016.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023]
Abstract
The fidelity of translation depends strongly on the selection of the correct aminoacyl-tRNA that is complementary to the mRNA codon present in the ribosomal decoding center. The ribosome occasionally makes mistakes by selecting the wrong substrate from the pool of aminoacyl-tRNAs. Here, we summarize recent structural advances that may help to clarify the origin of missense errors that occur during decoding. These developments suggest that discrimination between tRNAs is based primarily on steric complementarity and shape acceptance rather than on the number of hydrogen bonds between the molding of the decoding center and the codon-anticodon duplex. They strengthen the hypothesis that spatial mimicry, due either to base tautomerism or ionization, drives infidelity in ribosomal translation.
Collapse
Affiliation(s)
- Alexey Rozov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Natalia Demeshkina
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS UPR9002/University of Strasbourg, Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Rozov A, Westhof E, Yusupov M, Yusupova G. The ribosome prohibits the G•U wobble geometry at the first position of the codon-anticodon helix. Nucleic Acids Res 2016; 44:6434-41. [PMID: 27174928 PMCID: PMC5291260 DOI: 10.1093/nar/gkw431] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/06/2016] [Indexed: 01/05/2023] Open
Abstract
Precise conversion of genetic information into proteins is essential to cellular health. However, a margin of error exists and is at its highest on the stage of translation of mRNA by the ribosome. Here we present three crystal structures of 70S ribosome complexes with messenger RNA and transfer RNAs and show that when a G•U base pair is at the first position of the codon-anticodon helix a conventional wobble pair cannot form because of inescapable steric clash between the guanosine of the A codon and the key nucleotide of decoding center adenosine 1493 of 16S rRNA. In our structure the rigid ribosomal decoding center, which is identically shaped for cognate or near-cognate tRNAs, forces this pair to adopt a geometry close to that of a canonical G•C pair. We further strengthen our hypothesis that spatial mimicry due either to base tautomerism or ionization dominates the translation infidelity mechanism.
Collapse
Affiliation(s)
- Alexey Rozov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS, UMR7104/University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Eric Westhof
- Architecture & Reactivity of RNA, University of Strasbourg, Institute of Molecular and Cellular Biology of the CNRS, UPR9002, 15 rue R. Descartes, 67084 Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS, UMR7104/University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS, UMR7104/University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
7
|
Sanbonmatsu KY. Flipping through the Genetic Code: New Developments in Discrimination between Cognate and Near-Cognate tRNAs and the Effect of Antibiotics. J Mol Biol 2014; 426:3197-3200. [DOI: 10.1016/j.jmb.2014.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Westhof E, Yusupov M, Yusupova G. Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. F1000PRIME REPORTS 2014; 6:19. [PMID: 24765524 PMCID: PMC3974571 DOI: 10.12703/p6-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The natural bases of nucleic acids have a strong preference for one tautomer form, guaranteeing fidelity in their hydrogen bonding potential. However, base pairs observed in recent crystal structures of polymerases and ribosomes are best explained by an alternative base tautomer, leading to the formation of base pairs with Watson-Crick-like geometries. These observations set limits to geometric selection in molecular recognition of complementary Watson-Crick pairs for fidelity in replication and translation processes.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de Biologie Moléculaire et CellulaireCNRS, 15 rue René Descartes, F-67084 Strasbourg CedexFrance
| | - Marat Yusupov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS, INSERM, Université de Strasbourg, F-67400 IllkirchFrance
| | - Gulnara Yusupova
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS, INSERM, Université de Strasbourg, F-67400 IllkirchFrance
| |
Collapse
|
9
|
Ostankovitch M. Dynamic Mechanisms in the Life Cycle of an RNA Molecule. J Mol Biol 2013; 425:3747-9. [DOI: 10.1016/j.jmb.2013.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 11/26/2022]
|