1
|
El-Hage O, Mikdache A, Boueid MJ, Degerny C, Tawk M. Schwann cells have a limited window of time in which to initiate myelination signaling during early migration in vivo. Cells Dev 2025; 181:203993. [PMID: 39755275 DOI: 10.1016/j.cdev.2024.203993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
The temporal control of mitotic exit of individual Schwann cells (SCs) is essential for radial sorting and peripheral myelination. However, it remains unknown when, during their multiple rounds of division, SCs initiate myelin signaling in vivo. By manipulating SC division during development, we report that when SCs skip their division during migration, but not during radial sorting, they fail to myelinate peripheral axons. This coincides with a sharp decrease in Laminin expression within the posterior lateral line nerve. Interestingly, elevating cAMP levels or forcing Laminin 2 expression within individual SCs restore their ability to myelinate, despite missing mitosis during migration. Our results demonstrate a limited time window during which migrating SCs initiate Laminin expression to gradually activate the Laminin/Gpr126/cAMP signaling required for radial sorting and myelination at later stages in vivo.
Collapse
Affiliation(s)
- Océane El-Hage
- Université Paris-Saclay, Hôpital Kremlin Bicêtre, U1195, Inserm, 94276 Le Kremlin Bicêtre, France
| | - Aya Mikdache
- Université Paris-Saclay, Hôpital Kremlin Bicêtre, U1195, Inserm, 94276 Le Kremlin Bicêtre, France; UMR 3215 - U934, Institut Curie, 75005 Paris, France
| | - Marie-José Boueid
- Université Paris-Saclay, Hôpital Kremlin Bicêtre, U1195, Inserm, 94276 Le Kremlin Bicêtre, France
| | - Cindy Degerny
- Université Paris-Saclay, Hôpital Kremlin Bicêtre, U1195, Inserm, 94276 Le Kremlin Bicêtre, France.
| | - Marcel Tawk
- Université Paris-Saclay, Hôpital Kremlin Bicêtre, U1195, Inserm, 94276 Le Kremlin Bicêtre, France.
| |
Collapse
|
2
|
Ulsamer A, Martínez-Limón A, Bader S, Rodríguez-Acebes S, Freire R, Méndez J, de Nadal E, Posas F. Regulation of Claspin by the p38 stress-activated protein kinase protects cells from DNA damage. Cell Rep 2022; 40:111375. [PMID: 36130506 DOI: 10.1016/j.celrep.2022.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022] Open
Abstract
Stress-activated protein kinases (SAPKs) enhance survival in response to environmental changes. In yeast, the Hog1 SAPK and Mrc1, a protein required for DNA replication, define a safeguard mechanism that allows eukaryotic cells to prevent genomic instability upon stress during S-phase. Here we show that, in mammals, the p38 SAPK and Claspin-the functional homolog of Mrc1-protect cells from DNA damage upon osmostress during S-phase. We demonstrate that p38 phosphorylates Claspin and either the mutation of the p38-phosphorylation sites in Claspin or p38 inhibition suppresses the protective role of Claspin on DNA damage. In addition, wild-type Claspin but not the p38-unphosphorylatable mutant has a protective effect on cell survival in response to cisplatin treatment. These findings reveal a role of Claspin in response to chemotherapeutic drugs. Thus, this pathway protects S-phase integrity from different insults and it is conserved from yeast to mammals.
Collapse
Affiliation(s)
- Arnau Ulsamer
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Adrián Martínez-Limón
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Sina Bader
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sara Rodríguez-Acebes
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernández Almagro, 28029 Madrid, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias-FIISC, Ofra s/n, 38320 La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernández Almagro, 28029 Madrid, Spain
| | - Eulàlia de Nadal
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Francesc Posas
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Noguchi C, Wang L, Shetty M, Mell JC, Sell C, Noguchi E. Maf1 limits RNA polymerase III-directed transcription to preserve genomic integrity and extend lifespan. Cell Cycle 2021; 20:247-255. [PMID: 33475456 DOI: 10.1080/15384101.2021.1874697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A key to longevity assurance is the nutrient-sensing mTOR pathway. Inhibition of mTOR extends lifespan in a variety of organisms. However, the downstream effectors of the mTOR pathway for lifespan regulation are elusive. In a recent report, we described the role of Maf1 as a critical lifespan regulator downstream of the mTOR pathway in fission yeast. Maf1 is the master negative regulator of RNA polymerase III-directed transcription (e.g. tRNAs and 5S rRNAs) and is regulated by mTOR-mediated phosphorylation. We demonstrated that Maf1 is required for lifespan extension under calorie restriction or when mTOR is inhibited. We also showed that Maf1 prevents DNA damage at tRNA genes, which appears to contribute to lifespan maintenance by Maf1. Here we highlight these observations and present additional results to discuss the role of the mTOR-Maf1-Pol III axis in promoting genomic integrity in the face of DNA replication-transcription conflicts in order to maintain normal lifespan.
Collapse
Affiliation(s)
- Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, PA, USA
| | - Lucy Wang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, PA, USA
| | - Mihir Shetty
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, PA, USA
| | - Joshua Chang Mell
- Department of Microbiology & Immunology, Centers for Genomics Sciences, Drexel University College of Medicine , Philadelphia, PA, USA
| | - Christian Sell
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, PA, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, PA, USA
| |
Collapse
|
4
|
Global Genome Demethylation Causes Transcription-Associated DNA Double Strand Breaks in HPV-Associated Head and Neck Cancer Cells. Cancers (Basel) 2020; 13:cancers13010021. [PMID: 33374558 PMCID: PMC7793113 DOI: 10.3390/cancers13010021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
High levels of DNA methylation at CpG loci are associated with transcriptional repression of tumor suppressor genes and dysregulation of DNA repair genes. Human papilloma virus (HPV)-associated head and neck squamous cell carcinomas (HNSCC) have high levels of DNA methylation and methylation has been associated with dampening of an innate immune response in virally infected cells. We have been exploring demethylation as a potential treatment in HPV+ HNSCC and recently reported results of a window clinical trial showing that HNSCCs are particularly sensitive to demethylating agent 5-azacytidine (5-aza). Mechanistically, sensitivity is partially due to downregulation of HPV genes expression and restoration of tumor suppressors p53 and Rb. Here, for the first time, we show that 5-azaC treatment of HPV+ HNSCC induces replication and transcription-associated DNA double strand breaks (DSBs) that occur preferentially at demethylated genomic DNA. Blocking replication or transcription prevented formation of DNA DSBs and reduced sensitivity of HPV-positive head and neck cancer cells to 5-azaC, demonstrating that both replication and active transcription are required for formation of DSBs associated with 5-azaC.
Collapse
|
5
|
Jiménez J, Queralt E, Posas F, de Nadal E. The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis. Cell Cycle 2020; 19:2105-2118. [PMID: 32794416 PMCID: PMC7513861 DOI: 10.1080/15384101.2020.1804222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During evolution, cells have developed a plethora of mechanisms to optimize survival in a changing and unpredictable environment. In this regard, they have evolved networks that include environmental sensors, signaling transduction molecules and response mechanisms. Hog1 (yeast) and p38 (mammals) stress-activated protein kinases (SAPKs) are activated upon stress and they drive a full collection of cell adaptive responses aimed to maximize survival. SAPKs are extensively used to learn about the mechanisms through which cells adapt to changing environments. In addition to regulating gene expression and metabolism, SAPKs control cell cycle progression. In this review, we will discuss the latest findings related to the SAPK-driven regulation of mitosis upon osmostress in yeast.
Collapse
Affiliation(s)
- Javier Jiménez
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Department of Ciències Bàsiques, Facultat De Medicina I Ciències De La Salut, Universitat Internacional De Catalunya , Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigacions Biomèdica De Bellvitge (IDIBELL), L'Hospitalet De Llobregat , Barcelona, Spain
| | - Francesc Posas
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| |
Collapse
|
6
|
Kim SS, Xu S, Cui J, Poddar S, Le TM, Hayrapetyan H, Li L, Wu N, Moore AM, Zhou L, Yu AC, Dann AM, Elliott IA, Abt ER, Kim W, Dawson DW, Radu CG, Donahue TR. Histone deacetylase inhibition is synthetically lethal with arginine deprivation in pancreatic cancers with low argininosuccinate synthetase 1 expression. Theranostics 2020; 10:829-840. [PMID: 31903153 PMCID: PMC6929997 DOI: 10.7150/thno.40195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/05/2019] [Indexed: 01/10/2023] Open
Abstract
Arginine (Arg) deprivation is a promising therapeutic approach for tumors with low argininosuccinate synthetase 1 (ASS1) expression. However, its efficacy as a single agent therapy needs to be improved as resistance is frequently observed. Methods: A tissue microarray was performed to assess ASS1 expression in surgical specimens of pancreatic ductal adenocarcinoma (PDAC) and its correlation with disease prognosis. An RNA-Seq analysis examined the role of ASS1 in regulating the global gene transcriptome. A high throughput screen of FDA-approved oncology drugs identified synthetic lethality between histone deacetylase (HDAC) inhibitors and Arg deprivation in PDAC cells with low ASS1 expression. We examined HDAC inhibitor panobinostat (PAN) and Arg deprivation in a panel of human PDAC cell lines, in ASS1-high and -knockdown/knockout isogenic models, in both anchorage-dependent and -independent cultures, and in multicellular complex cultures that model the PDAC tumor microenvironment. We examined the effects of combined Arg deprivation and PAN on DNA damage and the protein levels of key DNA repair enzymes. We also evaluated the efficacy of PAN and ADI-PEG20 (an Arg-degrading agent currently in Phase 2 clinical trials) in xenograft models with ASS1-low and -high PDAC tumors. Results: Low ASS1 protein level is a negative prognostic indicator in PDAC. Arg deprivation in ASS1-deficient PDAC cells upregulated asparagine synthetase (ASNS) which redirected aspartate (Asp) from being used for de novo nucleotide biosynthesis, thus causing nucleotide insufficiency and impairing cell cycle S-phase progression. Comprehensively validated, HDAC inhibitors and Arg deprivation showed synthetic lethality in ASS1-low PDAC cells. Mechanistically, combined Arg deprivation and HDAC inhibition triggered degradation of a key DNA repair enzyme C-terminal-binding protein interacting protein (CtIP), resulting in DNA damage and apoptosis. In addition, S-phase-retained ASS1-low PDAC cells (due to Arg deprivation) were also sensitized to DNA damage, thus yielding effective cell death. Compared to single agents, the combination of PAN and ADI-PEG20 showed better efficacy in suppressing ASS1-low PDAC tumor growth in mouse xenograft models. Conclusion: The combination of PAN and ADI-PEG20 is a rational translational therapeutic strategy for treating ASS1-low PDAC tumors through synergistic induction of DNA damage.
Collapse
|
7
|
Transcriptional timing and noise of yeast cell cycle regulators-a single cell and single molecule approach. NPJ Syst Biol Appl 2018; 4:17. [PMID: 29844922 PMCID: PMC5962571 DOI: 10.1038/s41540-018-0053-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Gene expression is a stochastic process and its appropriate regulation is critical for cell cycle progression. Cellular stress response necessitates expression reprogramming and cell cycle arrest. While previous studies are mostly based on bulk experiments influenced by synchronization effects or lack temporal distribution, time-resolved methods on single cells are needed to understand eukaryotic cell cycle in context of noisy gene expression and external perturbations. Using smFISH, microscopy and morphological markers, we monitored mRNA abundances over cell cycle phases and calculated transcriptional noise for SIC1, CLN2, and CLB5, the main G1/S transition regulators in budding yeast. We employed mathematical modeling for in silico synchronization and for derivation of time-courses from single cell data. This approach disclosed detailed quantitative insights into transcriptional regulation with and without stress, not available from bulk experiments before. First, besides the main peak in G1 we found an upshift of CLN2 and CLB5 expression in late mitosis. Second, all three genes showed basal expression throughout cell cycle enlightening that transcription is not divided in on and off but rather in high and low phases. Finally, exposing cells to osmotic stress revealed different periods of transcriptional inhibition for CLN2 and CLB5 and the impact of stress on cell cycle phase duration. Combining experimental and computational approaches allowed us to precisely assess cell cycle progression timing, as well as gene expression dynamics.
Collapse
|
8
|
Multiple signaling kinases target Mrc1 to prevent genomic instability triggered by transcription-replication conflicts. Nat Commun 2018; 9:379. [PMID: 29371596 PMCID: PMC5785523 DOI: 10.1038/s41467-017-02756-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 12/21/2017] [Indexed: 02/05/2023] Open
Abstract
Conflicts between replication and transcription machineries represent a major source of genomic instability and cells have evolved strategies to prevent such conflicts. However, little is known regarding how cells cope with sudden increases of transcription while replicating. Here, we report the existence of a general mechanism for the protection of genomic integrity upon transcriptional outbursts in S phase that is mediated by Mrc1. The N-terminal phosphorylation of Mrc1 blocked replication and prevented transcription-associated recombination (TAR) and genomic instability during stress-induced gene expression in S phase. An unbiased kinome screening identified several kinases that phosphorylate Mrc1 at the N terminus upon different environmental stresses. Mrc1 function was not restricted to environmental cues but was also required when unscheduled transcription was triggered by low fitness states such as genomic instability or slow growth. Our data indicate that Mrc1 integrates multiple signals, thereby defining a general safeguard mechanism to protect genomic integrity upon transcriptional outbursts. During S phase of the cell cycle, transcription and replication need to be coordinated in order to avoid conflicts leading to potential genomic instability. Here, the authors find that Mrc1 integrates signals from different kinases to regulate replication during unscheduled transcription events.
Collapse
|
9
|
Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress. Curr Genet 2017. [DOI: 10.1007/s00294-017-0724-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Petzold C, Marceau AH, Miller KH, Marqusee S, Keck JL. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity. J Biol Chem 2015; 290:14626-36. [PMID: 25903123 PMCID: PMC4505529 DOI: 10.1074/jbc.m115.655134] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.
Collapse
Affiliation(s)
- Christine Petzold
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Aimee H Marceau
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Katherine H Miller
- California Institute for Quantitative Biosciences, QB3 and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Susan Marqusee
- California Institute for Quantitative Biosciences, QB3 and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - James L Keck
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| |
Collapse
|
11
|
Bai C, Tesker M, Engelberg D. The yeast Hot1 transcription factor is critical for activating a single target gene, STL1. Mol Biol Cell 2015; 26:2357-74. [PMID: 25904326 PMCID: PMC4462951 DOI: 10.1091/mbc.e14-12-1626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/15/2015] [Indexed: 11/24/2022] Open
Abstract
An active variant of the MAPK Hog1 is used to identify its target genes. The promoter of one target, STL1, possesses a Hog1-responsive element (HoRE) that binds the transcription factor Hot1. HoRE is not found in other promoters, and the STL1 mRNA is the only one abolished in hot1Δ cells. Hot1 may be essential for transcription of one gene. Transcription factors are commonly activated by signal transduction cascades and induce expression of many genes. They therefore play critical roles in determining the cell's fate. The yeast Hog1 MAP kinase pathway is believed to control the transcription of hundreds of genes via several transcription factors. To identify the bona fide target genes of Hog1, we inducibly expressed the spontaneously active variant Hog1D170A+F318L in cells lacking the Hog1 activator Pbs2. This system allowed monitoring the effects of Hog1 by itself. Expression of Hog1D170A+F318L in pbs2∆ cells imposed induction of just 105 and suppression of only 26 transcripts by at least twofold. We looked for the Hog1-responsive element within the promoter of the most highly induced gene, STL1 (88-fold). A novel Hog1 responsive element (HoRE) was identified and shown to be the direct target of the transcription factor Hot1. Unexpectedly, we could not find this HoRE in any other yeast promoter. In addition, the only gene whose expression was abolished in hot1∆ cells was STL1. Thus Hot1 is essential for transcription of just one gene, STL1. Hot1 may represent a class of transcription factors that are essential for transcription of a very few genes or even just one.
Collapse
Affiliation(s)
- Chen Bai
- CREATE-NUS-HUJ Cellular and Molecular Mechanisms of Inflammation Programme, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Masha Tesker
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Engelberg
- CREATE-NUS-HUJ Cellular and Molecular Mechanisms of Inflammation Programme, National University of Singapore, Singapore 138602 Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Martinho RG, Guilgur LG, Prudêncio P. How gene expression in fast-proliferating cells keeps pace. Bioessays 2015; 37:514-24. [PMID: 25823409 DOI: 10.1002/bies.201400195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of living organisms requires a precise coordination of all basic cellular processes, in space and time. Early embryogenesis of most species with externally deposited eggs starts with a series of extremely fast cleavage cycles. These divisions have a strong influence on gene expression as mitosis represses transcription and pre-mRNA processing. In this review, we will describe the distinct adaptations for efficient gene expression and discuss the emerging role of the multifunctional NineTeen Complex (NTC) in gene expression and genomic stability during fast proliferation.
Collapse
Affiliation(s)
- Rui G Martinho
- Departamento de Ciências Biomédicas e Medicina, Regenerative Medicine Program, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | |
Collapse
|
13
|
Tan KW, Pham TM, Furukohri A, Maki H, Akiyama MT. Recombinase and translesion DNA polymerase decrease the speed of replication fork progression during the DNA damage response in Escherichia coli cells. Nucleic Acids Res 2015; 43:1714-25. [PMID: 25628359 PMCID: PMC4330395 DOI: 10.1093/nar/gkv044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The SOS response is a DNA damage response pathway that serves as a general safeguard of genome integrity in bacteria. Extensive studies of the SOS response in Escherichia coli have contributed to establishing the key concepts of cellular responses to DNA damage. However, how the SOS response impacts on the dynamics of DNA replication fork movement remains unknown. We found that inducing the SOS response decreases the mean speed of individual replication forks by 30–50% in E. coli cells, leading to a 20–30% reduction in overall DNA synthesis. dinB and recA belong to a group of genes that are upregulated during the SOS response, and encode the highly conserved proteins DinB (also known as DNA polymerase IV) and RecA, which, respectively, specializes in translesion DNA synthesis and functions as the central recombination protein. Both genes were independently responsible for the SOS-dependent slowdown of replication fork progression. Furthermore, fork speed was reduced when each gene was ectopically expressed in SOS-uninduced cells to the levels at which they are expressed in SOS-induced cells. These results clearly indicate that the increased expression of dinB and recA performs a novel role in restraining the progression of an unperturbed replication fork during the SOS response.
Collapse
Affiliation(s)
- Kang Wei Tan
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tuan Minh Pham
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Asako Furukohri
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hisaji Maki
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masahiro Tatsumi Akiyama
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
14
|
Ostankovitch M, Debatisse M. From the replicon to replication programs in space and time: regulation of DNA replication and implications for genomic instability. J Mol Biol 2013; 425:4659-62. [PMID: 24207007 DOI: 10.1016/j.jmb.2013.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marina Ostankovitch
- Journal of Molecular Biology, Elsevier Inc., 600 Technology Square, Cambridge, MA 02139, USA.
| | | |
Collapse
|