1
|
Dong L, Liu Y. Exploring the Substrate-Assisted Dehydration of Chorismate Catalyzed by Dehydratase MqnA from QM/MM Calculations: The Role of Pocket Residues and the Hydrolysis Mechanism of N17D Mutant. J Chem Inf Model 2023; 63:7499-7507. [PMID: 37970731 DOI: 10.1021/acs.jcim.3c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
MqnA is the first enzyme on the futalosine pathway to menaquinone, which catalyzes the dehydration of chorismate to yield 3-enolpyruvyl-benzoate (3-EPB). MqnA is also the only chorismate dehydratase known so far. In this work, based on the recently determined crystal structures, we constructed the enzyme-substrate complex models and conducted quantum mechanics/molecular mechanics (QM/MM) calculations to elucidate the reaction details of MqnA and the critical roles of pocket residues. The calculation results confirm that the MqnA-catalyzed dehydration of chorismate follows the substrate-assisted E1cb mechanism, in which the enol carboxylate in the side chain of the substrate is responsible for deprotonating the C3 of chorismate. This proton transfer process is much slower than C4-OH departure. Calculations on different mutants reveal that S86 and N17 are important for anchoring the enol carboxylate of the substrate in a favorable conformation to extract the C3-proton. The strong H-bonds formed between the enol carboxylate of chorismate and S86/N17 play a key role in stabilizing the reaction intermediate. Consistent with the experimental observations, our calculations demonstrate that the MqnA N17D mutant also shows hydrolase activity and the typical enzyme-catalyzed hydrolysis mechanism is elucidated. The protonated D17 is responsible for saturating the methylene group of chorismate to start the hydrolysis reaction. The orientation of the carboxyl group of D17 is key in determining MqnA to be a dehydratase or hydrolase.
Collapse
Affiliation(s)
- Lihua Dong
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
2
|
Liebeschuetz JW. The Good, the Bad, and the Twisted Revisited: An Analysis of Ligand Geometry in Highly Resolved Protein-Ligand X-ray Structures. J Med Chem 2021; 64:7533-7543. [PMID: 34060310 DOI: 10.1021/acs.jmedchem.1c00228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An analysis of the rotatable bond geometry of drug-like ligand models is reported for high-resolution (<1.1 Å) crystallographic protein-ligand complexes. In cases where the ligand fit to the electron density is very good, unusual torsional geometry is rare and, most often, though not exclusively, associated with strong polar, metal, or covalent ligand-protein interactions. It is rarely associated with a torsional strain of greater than 2 kcal mol-1 by calculation. An unusual torsional geometry is more prevalent where the fit to electron density is not perfect. Multiple low-strain conformer bindings were observed in 21% of the set and, it is suggested, may also lie behind many of the 35% of single-occupancy cases, where a poor fit to the e-density was found. It is concluded that multiple conformer ligand binding is an under-recognized phenomenon in structure-based drug design and that there is a need for more robust crystallographic refinement methods to better handle such cases.
Collapse
Affiliation(s)
- John W Liebeschuetz
- Skilos Chemoinformatics, 159 Water Street, Cambridge CB4 1PB, United Kingdom.,Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Milton, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
3
|
Hubrich F, Müller M, Andexer JN. Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chem Commun (Camb) 2021; 57:2441-2463. [PMID: 33605953 DOI: 10.1039/d0cc08078k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chorismate and isochorismate represent an important branching point connecting primary and secondary metabolism in bacteria, fungi, archaea and plants. Chorismate- and isochorismate-converting enzymes are potential targets for new bioactive compounds, as well as valuable biocatalysts for the in vivo and in vitro synthesis of fine chemicals. The diversity of the products of chorismate- and isochorismate-converting enzymes is reflected in the enzymatic three-dimensional structures and molecular mechanisms. Due to the high reactivity of chorismate and its derivatives, these enzymes have evolved to be accurately tailored to their respective reaction; at the same time, many of them exhibit a fascinating flexibility regarding side reactions and acceptance of alternative substrates. Here, we give an overview of the different (sub)families of chorismate- and isochorismate-converting enzymes, their molecular mechanisms, and three-dimensional structures. In addition, we highlight important results of mutagenetic approaches that generate a broader understanding of the influence of distinct active site residues for product formation and the conversion of one subfamily into another. Based on this, we discuss to what extent the recent advances in the field might influence the general mechanistic understanding of chorismate- and isochorismate-converting enzymes. Recent discoveries of new chorismate-derived products and pathways, as well as biocatalytic conversions of non-physiological substrates, highlight how this vast field is expected to continue developing in the future.
Collapse
Affiliation(s)
- Florian Hubrich
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
4
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
5
|
Crystal structure of the reactive intermediate/imine deaminase A homolog from the Antarctic bacterium Psychrobacter sp. PAMC 21119. Biochem Biophys Res Commun 2019; 522:585-591. [PMID: 31785813 DOI: 10.1016/j.bbrc.2019.11.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
Abstract
The RidA subfamily proteins catalyze the deamination reaction of enamine/imine intermediates, which are metabolites of amino acids such as threonine and serine. Numerous structural and functional studies have been conducted on RidA isolated from mesophiles and thermophiles. However, little is known about the structure of the RidA proteins isolated from psychrophiles. In the present study, we elucidated the crystal structure of RidA from the Antarctic bacterium Psychrobacter sp. PAMC 21119 (Pp-RidA) at 1.6 Å resolution to identify the structural properties contributing to cold-adaptability. Although the overall structure of Pp-RidA is similar to those of its homologues, it exhibits specific structural arrangements of a loop positioned near the active site, which is assumed to play a role in covering the active site of catalysis. In addition, the surface electrostatic potential of Pp-RidA suggested that it exhibits stronger electrostatic distribution relative to its homologues. Our results provide novel insights into the key determinants of cold-adaptability.
Collapse
|
6
|
Zhang Y, Zhang H, Zheng Q. How Chorismatases Regulate Distinct Reaction Channels in a Single Conserved Active Pocket: Mechanistic Analysis with QM/MM (ONIOM) Investigations. Chemistry 2019; 25:1326-1336. [PMID: 30395358 DOI: 10.1002/chem.201804622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 01/12/2023]
Abstract
The FkbO and Hyg5 subfamilies of chorismatases share the same active-site architectures, but perform distinct reaction mechanisms, that is, FkbO employs a hydrolysis reaction whereas Hyg5 proceeds through an intramolecular mechanism. Despite extensive research efforts, the detailed mechanism of the product selectivity in chorismatases need to be further unmasked. In this study, the effects of the A/G residue group (A244FkbO /G240Hyg5 ) and the V/Q residue group (V209FkbO /Q201Hyg5 ) on the catalytic mechanisms are investigated by employing molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations of the two wild-type models (FkbO/CHO and Hyg5/CHO; CHO=chorismate) and four mutants models (A244G-FkbO/CHO and G240A-Hyg5/CHO; V209Q-FkbO/CHO and Q201V-Hyg5/CHO). Our results showed that the A/G residue group mentioned by previous works would cause changes in the binding states of the substrate and the orientation of the catalytic glutamate, but only these changes affect the product selectivity in chorismatases limitedly. Interestingly, the distal V/Q residue group, which determines the internal water self-regulating ability at the active site, has significant impact on the selectivity of the catalytic mechanisms. The V/Q residue group is suggested to be an important factor to control the catalytic activities in chorismatases. The results are consistent with biochemical and structural experiments, providing novel insight into the mechanism of product selectivity in chorismatases.
Collapse
Affiliation(s)
- Yulai Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of, Nano-Micro Architecture Chemistry, Jilin University, Changchun, 130023, P.R. China
| | - Hongxing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of, Nano-Micro Architecture Chemistry, Jilin University, Changchun, 130023, P.R. China
| | - Qingchuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of, Nano-Micro Architecture Chemistry, Jilin University, Changchun, 130023, P.R. China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry, of Education, Jilin University, Changchun, 130023, P.R. China
| |
Collapse
|
7
|
Grüninger MJ, Buchholz PCF, Mordhorst S, Strack P, Müller M, Hubrich F, Pleiss J, Andexer JN. Chorismatases – the family is growing. Org Biomol Chem 2019; 17:2092-2098. [DOI: 10.1039/c8ob03038c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly discovered subfamily of chorismatases catalyses the same reaction as chorismate lyases (cleavage of chorismate to 4-hydroxybenzoate), but does not suffer from product inhibition.
Collapse
Affiliation(s)
- Mads J. Grüninger
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Patrick Strack
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Florian Hubrich
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|
8
|
Wang S, Bilal M, Zong Y, Hu H, Wang W, Zhang X. Development of a Plasmid-Free Biosynthetic Pathway for Enhanced Muconic Acid Production in Pseudomonas chlororaphis HT66. ACS Synth Biol 2018; 7:1131-1142. [PMID: 29608278 DOI: 10.1021/acssynbio.8b00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Muconic acid is a platform chemical and an important intermediate in the degradation process of a series of aromatic compounds. Herein, a plasmid-free synthetic pathway in Pseudomonas chlororaphis HT66 is constructed for the enhanced biosynthesis of muconic acid by connecting endogenous ubiquinone biosynthesis pathway with protocatechuate degradation pathway using chromosomal integration. Instead of being plasmid and inducer dependent, the engineered strains could steadily produce the high muconic acid using glycerol as a carbon source. The engineered strain HT66-MA6 achieved a 3376 mg/L muconic acid production with a yield of 187.56 mg/g glycerol via the following strategies: (1) block muconic acid conversion and enhance muconic acid efflux pumping with phenazine biosynthesis cluster; (2) increase the muconic acid precursors supply through overexpressing the rate-limiting step, and (3) coexpress the "3-dehydroshikimate-derived" route in parallel with the "4-hydroxybenzoic acid-derived" route to create a synthetic "metabolic funnel". Finally, on the basis of the glycerol feeding strategies, the muconic acid yield reached 0.122 mol/mol glycerol. The results suggest that the construction of synthetic pathway with a plasmid-free strategy in P. chlororaphis displays a high biotechnological perspective.
Collapse
|
9
|
High-Resolution X-Ray Structures of Two Functionally Distinct Members of the Cyclic Amide Hydrolase Family of Toblerone Fold Enzymes. Appl Environ Microbiol 2017; 83:AEM.03365-16. [PMID: 28235873 DOI: 10.1128/aem.03365-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/15/2017] [Indexed: 01/28/2023] Open
Abstract
The Toblerone fold was discovered recently when the first structure of the cyclic amide hydrolase, AtzD (a cyanuric acid hydrolase), was elucidated. We surveyed the cyclic amide hydrolase family, finding a strong correlation between phylogenetic distribution and specificity for either cyanuric acid or barbituric acid. One of six classes (IV) could not be tested due to a lack of expression of the proteins from it, and another class (V) had neither cyanuric acid nor barbituric acid hydrolase activity. High-resolution X-ray structures were obtained for a class VI barbituric acid hydrolase (1.7 Å) from a Rhodococcus species and a class V cyclic amide hydrolase (2.4 Å) from a Frankia species for which we were unable to identify a substrate. Both structures were homologous with the tetrameric Toblerone fold enzyme AtzD, demonstrating a high degree of structural conservation within the cyclic amide hydrolase family. The barbituric acid hydrolase structure did not contain zinc, in contrast with early reports of zinc-dependent activity for this enzyme. Instead, each barbituric acid hydrolase monomer contained either Na+ or Mg2+, analogous to the structural metal found in cyanuric acid hydrolase. The Frankia cyclic amide hydrolase contained no metal but instead formed unusual, reversible, intermolecular vicinal disulfide bonds that contributed to the thermal stability of the protein. The active sites were largely conserved between the three enzymes, differing at six positions, which likely determine substrate specificity.IMPORTANCE The Toblerone fold enzymes catalyze an unusual ring-opening hydrolysis with cyclic amide substrates. A survey of these enzymes shows that there is a good correlation between physiological function and phylogenetic distribution within this family of enzymes and provide insights into the evolutionary relationships between the cyanuric acid and barbituric acid hydrolases. This family of enzymes is structurally and mechanistically distinct from other enzyme families; however, to date the structure of just two, physiologically identical, enzymes from this family has been described. We present two new structures: a barbituric acid hydrolase and an enzyme of unknown function. These structures confirm that members of the CyAH family have the unusual Toblerone fold, albeit with some significant differences.
Collapse
|
10
|
Dong L, Liu Y. Comparative studies of the catalytic mechanisms of two chorismatases: CH-fkbo and CH-Hyg5. Proteins 2017; 85:1146-1158. [DOI: 10.1002/prot.25279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Lihua Dong
- School of Chemistry and Chemical Engineering; Shandong University; Jinan Shandong 250100 China
- School of Chemistry and Chemical Engineering; Qilu Normal University; Jinan Shandong 250013 China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering; Shandong University; Jinan Shandong 250100 China
| |
Collapse
|
11
|
Dang L, Liu J, Wang C, Liu H, Wen J. Enhancement of rapamycin production by metabolic engineering in Streptomyces hygroscopicus based on genome-scale metabolic model. ACTA ACUST UNITED AC 2017; 44:259-270. [DOI: 10.1007/s10295-016-1880-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/26/2016] [Indexed: 12/18/2022]
Abstract
Abstract
Rapamycin, as a macrocyclic polyketide with immunosuppressive, antifungal, and anti-tumor activity produced by Streptomyces hygroscopicus, is receiving considerable attention for its significant contribution in medical field. However, the production capacity of the wild strain is very low. Hereby, a computational guided engineering approach was proposed to improve the capability of rapamycin production. First, a genome-scale metabolic model of Streptomyces hygroscopicus ATCC 29253 was constructed based on its annotated genome and biochemical information. The model consists of 1003 reactions, 711 metabolites after manual refinement. Subsequently, several potential genetic targets that likely guaranteed an improved yield of rapamycin were identified by flux balance analysis and minimization of metabolic adjustment algorithm. Furthermore, according to the results of model prediction, target gene pfk (encoding 6-phosphofructokinase) was knocked out, and target genes dahP (encoding 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase) and rapK (encoding chorismatase) were overexpressed in the parent strain ATCC 29253. The yield of rapamycin increased by 30.8% by knocking out gene pfk and increased by 36.2 and 44.8% by overexpression of rapK and dahP, respectively, compared with parent strain. Finally, the combined effect of the genetic modifications was evaluated. The titer of rapamycin reached 250.8 mg/l by knockout of pfk and co-expression of genes dahP and rapK, corresponding to a 142.3% increase relative to that of the parent strain. The relationship between model prediction and experimental results demonstrates the validity and rationality of this approach for target identification and rapamycin production improvement.
Collapse
Affiliation(s)
- Lanqing Dang
- grid.419897.a 0000 0004 0369 313X Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
| | - Jiao Liu
- grid.419897.a 0000 0004 0369 313X Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
| | - Cheng Wang
- grid.419897.a 0000 0004 0369 313X Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
| | - Huanhuan Liu
- grid.419897.a 0000 0004 0369 313X Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
| | - Jianping Wen
- grid.419897.a 0000 0004 0369 313X Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
- grid.33763.32 0000000417612484 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
| |
Collapse
|
12
|
Su P, Feng T, Zhou X, Zhang S, Zhang Y, Cheng J, Luo Y, Peng J, Zhang Z, Lu X, Zhang D, Liu Y. Isolation of Rhp-PSP, a member of YER057c/YjgF/UK114 protein family with antiviral properties, from the photosynthetic bacterium Rhodopseudomonas palustris strain JSC-3b. Sci Rep 2015; 5:16121. [PMID: 26530252 PMCID: PMC4632080 DOI: 10.1038/srep16121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 01/16/2023] Open
Abstract
Rhodopseudomonas palustris strain JSC-3b isolated from a water canal adjacent to a vegetable field produces a protein that was purified by bioactivity-guided fractionation based on ammonium sulfate precipitation, ion-exchange absorption and size exclusion. The protein was further identified as an endoribonuclease L-PSP (Liver-Perchloric acid-soluble protein) by shotgun mass spectrometry analysis and gene identification, and it is member of YER057c/YjgF/UK114 protein family. Herein, this protein is designated Rhp-PSP. Rhp-PSP exhibited significant inhibitory activities against tobacco mosaic virus (TMV) in vivo and in vitro. To our knowledge, this represents the first report on the antiviral activity of a protein of the YER057c/YjgF/UK114 family and also the first antiviral protein isolated from R. palustris. Our research provides insight into the potential of photosynthetic bacterial resources in biological control of plant virus diseases and sustainable agriculture.
Collapse
Affiliation(s)
- Pin Su
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tuizi Feng
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Songbai Zhang
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ju’e Cheng
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yuanhua Luo
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jing Peng
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhuo Zhang
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Deyong Zhang
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yong Liu
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
13
|
Hubrich F, Juneja P, Müller M, Diederichs K, Welte W, Andexer JN. Chorismatase Mechanisms Reveal Fundamentally Different Types of Reaction in a Single Conserved Protein Fold. J Am Chem Soc 2015; 137:11032-7. [DOI: 10.1021/jacs.5b05559] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian Hubrich
- Institute
of Pharmaceutical Sciences, University of Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| | - Puneet Juneja
- Department
of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Müller
- Institute
of Pharmaceutical Sciences, University of Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| | - Kay Diederichs
- Department
of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Wolfram Welte
- Department
of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jennifer N. Andexer
- Institute
of Pharmaceutical Sciences, University of Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| |
Collapse
|
14
|
In vitro production and purification of isochorismate using a two-enzyme cascade. J Biotechnol 2014; 191:93-8. [DOI: 10.1016/j.jbiotec.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 11/24/2022]
|
15
|
Schöner TA, Fuchs SW, Reinhold-Hurek B, Bode HB. Identification and biosynthesis of a novel xanthomonadin-dialkylresorcinol-hybrid from Azoarcus sp. BH72. PLoS One 2014; 9:e90922. [PMID: 24618669 PMCID: PMC3949708 DOI: 10.1371/journal.pone.0090922] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/06/2014] [Indexed: 12/27/2022] Open
Abstract
A novel xanthomonadin-dialkylresorcinol hybrid named arcuflavin was identified in Azoarcus sp. BH72 by a combination of feeding experiments, HPLC-MS and MALDI-MS and gene clusters encoding the biosynthesis of this non-isoprenoid aryl-polyene containing pigment are reported. A chorismate-utilizing enzyme from the XanB2-type producing 3- and 4-hydroxybenzoic acid and an AMP-ligase encoded by these gene clusters were characterized, that might perform the first two steps of the polyene biosynthesis. Furthermore, a detailed analysis of the already known or novel biosynthesis gene clusters involved in the biosynthesis of polyene containing pigments like arcuflavin, flexirubin and xanthomonadin revealed the presence of similar gene clusters in a wide range of bacterial taxa, suggesting that polyene and polyene-dialkylresorcinol pigments are more widespread than previously realized.
Collapse
Affiliation(s)
- Tim A. Schöner
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Sebastian W. Fuchs
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | | | - Helge B. Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|