1
|
Blin M, Lacroix L, Petryk N, Jaszczyszyn Y, Chen CL, Hyrien O, Le Tallec B. DNA molecular combing-based replication fork directionality profiling. Nucleic Acids Res 2021; 49:e69. [PMID: 33836085 PMCID: PMC8266662 DOI: 10.1093/nar/gkab219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 01/05/2023] Open
Abstract
The replication strategy of metazoan genomes is still unclear, mainly because definitive maps of replication origins are missing. High-throughput methods are based on population average and thus may exclusively identify efficient initiation sites, whereas inefficient origins go undetected. Single-molecule analyses of specific loci can detect both common and rare initiation events along the targeted regions. However, these usually concentrate on positioning individual events, which only gives an overview of the replication dynamics. Here, we computed the replication fork directionality (RFD) profiles of two large genes in different transcriptional states in chicken DT40 cells, namely untranscribed and transcribed DMD and CCSER1 expressed at WT levels or overexpressed, by aggregating hundreds of oriented replication tracks detected on individual DNA fibres stretched by molecular combing. These profiles reconstituted RFD domains composed of zones of initiation flanking a zone of termination originally observed in mammalian genomes and were highly consistent with independent population-averaging profiles generated by Okazaki fragment sequencing. Importantly, we demonstrate that inefficient origins do not appear as detectable RFD shifts, explaining why dispersed initiation has remained invisible to population-based assays. Our method can both generate quantitative profiles and identify discrete events, thereby constituting a comprehensive approach to study metazoan genome replication.
Collapse
Affiliation(s)
- Marion Blin
- Département de Gastro-entérologie, pôle MAD, Assistance Publique des Hôpitaux de Marseille, Centre Hospitalier Universitaire de Marseille, Marseille, France
| | - Laurent Lacroix
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
| | - Nataliya Petryk
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, F-75005 Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
| | - Benoît Le Tallec
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
| |
Collapse
|
2
|
Wu X, Kabalane H, Kahli M, Petryk N, Laperrousaz B, Jaszczyszyn Y, Drillon G, Nicolini FE, Perot G, Robert A, Fund C, Chibon F, Xia R, Wiels J, Argoul F, Maguer-Satta V, Arneodo A, Audit B, Hyrien O. Developmental and cancer-associated plasticity of DNA replication preferentially targets GC-poor, lowly expressed and late-replicating regions. Nucleic Acids Res 2019; 46:10157-10172. [PMID: 30189101 PMCID: PMC6212843 DOI: 10.1093/nar/gky797] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023] Open
Abstract
The spatiotemporal program of metazoan DNA replication is regulated during development and altered in cancers. We have generated novel OK-seq, Repli-seq and RNA-seq data to compare the DNA replication and gene expression programs of twelve cancer and non-cancer human cell types. Changes in replication fork directionality (RFD) determined by OK-seq are widespread but more frequent within GC-poor isochores and largely disconnected from transcription changes. Cancer cell RFD profiles cluster with non-cancer cells of similar developmental origin but not with different cancer types. Importantly, recurrent RFD changes are detected in specific tumour progression pathways. Using a model for establishment and early progression of chronic myeloid leukemia (CML), we identify 1027 replication initiation zones (IZs) that progressively change efficiency during long-term expression of the BCR-ABL1 oncogene, being twice more often downregulated than upregulated. Prolonged expression of BCR-ABL1 results in targeting of new IZs and accentuation of previous efficiency changes. Targeted IZs are predominantly located in GC-poor, late replicating gene deserts and frequently silenced in late CML. Prolonged expression of BCR-ABL1 results in massive deletion of GC-poor, late replicating DNA sequences enriched in origin silencing events. We conclude that BCR-ABL1 expression progressively affects replication and stability of GC-poor, late-replicating regions during CML progression.
Collapse
Affiliation(s)
- Xia Wu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France.,Physics Department, East China Normal University, Shanghai, China
| | - Hadi Kabalane
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Malik Kahli
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Nataliya Petryk
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Bastien Laperrousaz
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France.,CNRS UMR5286, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F- 69008 Lyon, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Guenola Drillon
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Frank-Emmanuel Nicolini
- CNRS UMR5286, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F- 69008 Lyon, France.,Centre Léon Bérard, F-69008 Lyon, France
| | - Gaëlle Perot
- INSERM U1218, Institut Bergonié, F-33000 Bordeaux, France
| | - Aude Robert
- UMR 8126, Université Paris-Sud Paris-Saclay, CNRS, Institut Gustave Roussy, Villejuif, France
| | - Cédric Fund
- École Normale Supérieure, PSL Research University, CNRS, Inserm, IBENS, Plateforme Génomique, 75005 Paris, France
| | | | - Ruohong Xia
- Physics Department, East China Normal University, Shanghai, China
| | - Joëlle Wiels
- UMR 8126, Université Paris-Sud Paris-Saclay, CNRS, Institut Gustave Roussy, Villejuif, France
| | - Françoise Argoul
- LOMA, Université de Bordeaux, CNRS, UMR 5798, F-33405 Talence, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F- 69008 Lyon, France
| | - Alain Arneodo
- LOMA, Université de Bordeaux, CNRS, UMR 5798, F-33405 Talence, France
| | - Benjamin Audit
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Olivier Hyrien
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| |
Collapse
|
3
|
Bazarova A, Nieduszynski CA, Akerman I, Burroughs NJ. Bayesian inference of origin firing time distributions, origin interference and licencing probabilities from Next Generation Sequencing data. Nucleic Acids Res 2019; 47:2229-2243. [PMID: 30859196 PMCID: PMC6412128 DOI: 10.1093/nar/gkz094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/27/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
DNA replication is a stochastic process with replication forks emanating from multiple replication origins. The origins must be licenced in G1, and the replisome activated at licenced origins in order to generate bi-directional replication forks in S-phase. Differential firing times lead to origin interference, where a replication fork from an origin can replicate through and inactivate neighbouring origins (origin obscuring). We developed a Bayesian algorithm to characterize origin firing statistics from Okazaki fragment (OF) sequencing data. Our algorithm infers the distributions of firing times and the licencing probabilities for three consecutive origins. We demonstrate that our algorithm can distinguish partial origin licencing and origin obscuring in OF sequencing data from Saccharomyces cerevisiae and human cell types. We used our method to analyse the decreased origin efficiency under loss of Rat1 activity in S. cerevisiae, demonstrating that both reduced licencing and increased obscuring contribute. Moreover, we show that robust analysis is possible using only local data (across three neighbouring origins), and analysis of the whole chromosome is not required. Our algorithm utilizes an approximate likelihood and a reversible jump sampling technique, a methodology that can be extended to analysis of other mechanistic processes measurable through Next Generation Sequencing data.
Collapse
Affiliation(s)
- Alina Bazarova
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Ildem Akerman
- Institute of Metabolism and Systems Research, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Nigel J Burroughs
- Mathematics Institute and Zeeman Institute (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
4
|
Arbona JM, Goldar A, Hyrien O, Arneodo A, Audit B. The eukaryotic bell-shaped temporal rate of DNA replication origin firing emanates from a balance between origin activation and passivation. eLife 2018; 7:35192. [PMID: 29856315 PMCID: PMC6033540 DOI: 10.7554/elife.35192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/31/2018] [Indexed: 01/22/2023] Open
Abstract
The time-dependent rate I(t) of origin firing per length of unreplicated DNA presents a universal bell shape in eukaryotes that has been interpreted as the result of a complex time-evolving interaction between origins and limiting firing factors. Here, we show that a normal diffusion of replication fork components towards localized potential replication origins (p-oris) can more simply account for the I(t) universal bell shape, as a consequence of a competition between the origin firing time and the time needed to replicate DNA separating two neighboring p-oris. We predict the I(t) maximal value to be the product of the replication fork speed with the squared p-ori density. We show that this relation is robustly observed in simulations and in experimental data for several eukaryotes. Our work underlines that fork-component recycling and potential origins localization are sufficient spatial ingredients to explain the universality of DNA replication kinetics. Before a cell can divide, it must duplicate its DNA. In eukaryotes – organisms such as animals and fungi, which store their DNA in the cell’s nucleus – DNA replication starts at specific sites in the genome called replication origins. At each origin sits a protein complex that will activate when it randomly captures an activating protein that diffuses within the nucleus. Once a replication origin activates or “fires”, the complex then splits into two new complexes that move away from each other as they duplicate the DNA. If an active complex collides with an inactive one at another origin, the latter is inactivated – a phenomenon known as origin passivation. When two active complexes meet, they release the activating proteins, which diffuse away and eventually activate other origins in unreplicated DNA. The number of origins that activate each minute divided by the length of unreplicated DNA is referred to as the “rate of origin firing”. In all eukaryotes, this rate – also known as I(t) – follows the same pattern. First, it increases until more than half of the DNA is duplicated. Then it decreases until everything is duplicated. This means that, if plotted out, the graph of origin firing rate would always be a bell-shaped curve, even for organisms with genomes of different sizes that have different numbers of origins. The reason for this universal shape remained unclear. Scientists had tried to create numerical simulations that model the rate of origin firing. However, for these simulations to reproduce the bell-shape curve, a number of untested assumptions had to be made about how DNA replication takes place. In addition, these models ignored the fact that it takes time to replicate the DNA between origins. To take this time into account, Arbona et al. instead decided to model the replication origins as discrete and distinct entities. This way of building the mathematical model succeeded in reproducing the universal bell curve shape without additional assumptions. With this simulation, the balance between origin activation and passivation is enough to achieve the observed pattern. The new model also predicts that the maximum rate of origin firing is determined by the speed of DNA replication and the density of origins in the genome. Arbona et al. verified this prediction in yeast, fly, frog and human cells – organisms with different sized genomes that take between 20 minutes and 8 hours to replicate their DNA. Lastly, the prediction also held true in yeast treated with hydroxyurea, an anticancer drug that slows DNA replication. A better understanding of DNA replication can help scientists to understand how this process is perturbed in cancers and how drugs that target DNA replication can treat these diseases. Future work will explore how the 3D organization of the genome affects the diffusion of activating proteins within the cell nucleus.
Collapse
Affiliation(s)
- Jean-Michel Arbona
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | | | - Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Alain Arneodo
- LOMA, Univ de Bordeaux, CNRS, UMR 5798, Talence, France
| | - Benjamin Audit
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
5
|
Reinhart M, Cardoso MC. A journey through the microscopic ages of DNA replication. PROTOPLASMA 2017; 254:1151-1162. [PMID: 27943022 PMCID: PMC5376393 DOI: 10.1007/s00709-016-1058-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Scientific discoveries and technological advancements are inseparable but not always take place in a coherent chronological manner. In the next, we will provide a seemingly unconnected and serendipitous series of scientific facts that, in the whole, converged to unveil DNA and its duplication. We will not cover here the many and fundamental contributions from microbial genetics and in vitro biochemistry. Rather, in this journey, we will emphasize the interplay between microscopy development culminating on super resolution fluorescence microscopy (i.e., nanoscopy) and digital image analysis and its impact on our understanding of DNA duplication. We will interlace the journey with landmark concepts and experiments that have brought the cellular DNA replication field to its present state.
Collapse
Affiliation(s)
- Marius Reinhart
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.
| |
Collapse
|
6
|
Marks AB, Smith OK, Aladjem MI. Replication origins: determinants or consequences of nuclear organization? Curr Opin Genet Dev 2016; 37:67-75. [PMID: 26845042 PMCID: PMC4914405 DOI: 10.1016/j.gde.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Chromosome replication, gene expression and chromatin assembly all occur on the same template, necessitating a tight spatial and temporal coordination to maintain genomic stability. The distribution of replication initiation events is responsive to local and global changes in chromatin structure and is affected by transcriptional activity. Concomitantly, replication origin sequences, which determine the locations of replication initiation events, can affect chromatin structure and modulate transcriptional efficiency. The flexibility observed in the replication initiation landscape might help achieve complete and accurate genome duplication while coordinating the DNA replication program with transcription and other nuclear processes in a cell-type specific manner. This review discusses the relationships among replication origin distribution, local and global chromatin structures and concomitant nuclear metabolic processes.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Owen K Smith
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations. Sci Rep 2016; 6:22469. [PMID: 26935043 PMCID: PMC4776152 DOI: 10.1038/srep22469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/16/2016] [Indexed: 12/16/2022] Open
Abstract
We propose a non-local model of DNA replication that takes into account the observed
uncertainty on the position and time of replication initiation in eukaryote cell
populations. By picturing replication initiation as a two-state system and
considering all possible transition configurations, and by taking into account the
chromatin’s fractal dimension, we derive an analytical expression for
the rate of replication initiation. This model predicts with no free parameter the
temporal profiles of initiation rate, replication fork density and fraction of
replicated DNA, in quantitative agreement with corresponding experimental data from
both S. cerevisiae and human cells and provides a quantitative estimate of
initiation site redundancy. This study shows that, to a large extent, the program
that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon
that emerges from the stochastic nature of replication origins initiation.
Collapse
|
8
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
9
|
Petryk N, Kahli M, d'Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O. Replication landscape of the human genome. Nat Commun 2016; 7:10208. [PMID: 26751768 PMCID: PMC4729899 DOI: 10.1038/ncomms10208] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border ‘topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs. The physical origin and termination sites of DNA replication in human cells have remained elusive. Here the authors use Okazaki fragment sequencing to reveal global replication patterns and show how chromatin and transcription modulate the process.
Collapse
Affiliation(s)
- Nataliya Petryk
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Malik Kahli
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| | - Yves d'Aubenton-Carafa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yimin Shen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Maud Silvain
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Chun-Long Chen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Olivier Hyrien
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| |
Collapse
|
10
|
Boulos RE, Drillon G, Argoul F, Arneodo A, Audit B. Structural organization of human replication timing domains. FEBS Lett 2015; 589:2944-57. [PMID: 25912651 DOI: 10.1016/j.febslet.2015.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Recent analysis of genome-wide epigenetic modification data, mean replication timing (MRT) profiles and chromosome conformation data in mammals have provided increasing evidence that flexibility in replication origin usage is regulated locally by the epigenetic landscape and over larger genomic distances by the 3D chromatin architecture. Here, we review the recent results establishing some link between replication domains and chromatin structural domains in pluripotent and various differentiated cell types in human. We reconcile the originally proposed dichotomic picture of early and late constant timing regions that replicate by multiple rather synchronous origins in separated nuclear compartments of open and closed chromatins, with the U-shaped MRT domains bordered by "master" replication origins specified by a localized (∼200-300 kb) zone of open and transcriptionally active chromatin from which a replication wave likely initiates and propagates toward the domain center via a cascade of origin firing. We discuss the relationships between these MRT domains, topologically associated domains and lamina-associated domains. This review sheds a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and the determination of differentiation properties.
Collapse
Affiliation(s)
- Rasha E Boulos
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Guénola Drillon
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Françoise Argoul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Alain Arneodo
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Benjamin Audit
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.
| |
Collapse
|
11
|
Urban JM, Foulk MS, Casella C, Gerbi SA. The hunt for origins of DNA replication in multicellular eukaryotes. F1000PRIME REPORTS 2015; 7:30. [PMID: 25926981 PMCID: PMC4371235 DOI: 10.12703/p7-30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed.
Collapse
Affiliation(s)
- John M. Urban
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| | - Michael S. Foulk
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Department of Biology, Mercyhurst University501 East 38th Street, Erie, PA 16546USA
| | - Cinzia Casella
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Institute for Molecular Medicine, University of Southern DenmarkJB Winsloews Vej 25, 5000 Odense CDenmark
| | - Susan A. Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| |
Collapse
|
12
|
Drillon G, Audit B, Argoul F, Arneodo A. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064102. [PMID: 25563930 DOI: 10.1088/0953-8984/27/6/064102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in the DNA sequence. At the smaller few hundred bp scale of gene promoters, CpG-rich promoters of housekeeping genes found nearby ubiquitous MaOris as well as CpG-poor promoters of tissue-specific genes found nearby cell-type-specific MaOris, both correspond to in vivo NFRs that are not coded as nucleosome-excluding-energy barriers. Whereas the former promoters are likely to correspond to high occupancy transcription factor binding regions, the latter are an illustration that gene regulation in human is typically cell-type-specific.
Collapse
Affiliation(s)
- Guénola Drillon
- Université de Lyon, F-69000 Lyon, France. Laboratoire de Physique, CNRS UMR 5672, École Normale Supérieure de Lyon, F-69007 Lyon, France
| | | | | | | |
Collapse
|
13
|
Embryonic stem cell specific "master" replication origins at the heart of the loss of pluripotency. PLoS Comput Biol 2015; 11:e1003969. [PMID: 25658386 PMCID: PMC4319821 DOI: 10.1371/journal.pcbi.1003969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022] Open
Abstract
Epigenetic regulation of the replication program during mammalian cell differentiation remains poorly understood. We performed an integrative analysis of eleven genome-wide epigenetic profiles at 100 kb resolution of Mean Replication Timing (MRT) data in six human cell lines. Compared to the organization in four chromatin states shared by the five somatic cell lines, embryonic stem cell (ESC) line H1 displays (i) a gene-poor but highly dynamic chromatin state (EC4) associated to histone variant H2AZ rather than a HP1-associated heterochromatin state (C4) and (ii) a mid-S accessible chromatin state with bivalent gene marks instead of a polycomb-repressed heterochromatin state. Plastic MRT regions (≲ 20% of the genome) are predominantly localized at the borders of U-shaped timing domains. Whereas somatic-specific U-domain borders are gene-dense GC-rich regions, 31.6% of H1-specific U-domain borders are early EC4 regions enriched in pluripotency transcription factors NANOG and OCT4 despite being GC poor and gene deserts. Silencing of these ESC-specific “master” replication initiation zones during differentiation corresponds to a loss of H2AZ and an enrichment in H3K9me3 mark characteristic of late replicating C4 heterochromatin. These results shed a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and lineage commitment. During development, embryonic stem cell (ESC) enter a program of cell differentiation eventually leading to all the necessary differentiated cell types. Understanding the mechanisms responsible for the underlying modifications of the gene expression program is of fundamental importance, as it will likely have strong impact on the development of regenerative medicine. We show that besides some epigenetic regulation, ubiquitous master replication origins at replication timing U-domain borders shared by 6 human cell types are transcriptionally active open chromatin regions specified by a local enrichment in nucleosome free regions encoded in the DNA sequence suggesting that they have been selected during evolution. In contrast, ESC specific master replication origins bear a unique epigenetic signature (enrichment in CTCF, H2AZ, NANOG, OCT4, …) likely contributing to maintain ESC chromatin in a highly dynamic and accessible state that is refractory to polycomb and HP1 heterochromatin spreading. These ESC specific master origins thus appear as key genomic regions where epigenetic control of chromatin organization is at play to maintain pluripotency of stem cell lineages and to guide lineage commitment to somatic cell types.
Collapse
|
14
|
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol 2015; 208:147-60. [PMID: 25601401 PMCID: PMC4298691 DOI: 10.1083/jcb.201407004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Replication of mammalian genomes starts at sites termed replication origins, which historically have been difficult to locate as a result of large genome sizes, limited power of genetic identification schemes, and rareness and fragility of initiation intermediates. However, origins are now mapped by the thousands using microarrays and sequencing techniques. Independent studies show modest concordance, suggesting that mammalian origins can form at any DNA sequence but are suppressed by read-through transcription or that they can overlap the 5' end or even the entire gene. These results require a critical reevaluation of whether origins form at specific DNA elements and/or epigenetic signals or require no such determinants.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 and Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| |
Collapse
|
15
|
Zaghloul L, Drillon G, Boulos RE, Argoul F, Thermes C, Arneodo A, Audit B. Large replication skew domains delimit GC-poor gene deserts in human. Comput Biol Chem 2014; 53 Pt A:153-65. [PMID: 25224847 DOI: 10.1016/j.compbiolchem.2014.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 01/25/2023]
Abstract
Besides their large-scale organization in isochores, mammalian genomes display megabase-sized regions, spanning both genes and intergenes, where the strand nucleotide composition asymmetry decreases linearly, possibly due to replication activity. These so-called skew-N domains cover about a third of the human genome and are bordered by two skew upward jumps that were hypothesized to compose a subset of "master" replication origins active in the germline. Skew-N domains were shown to exhibit a particular gene organization. Genes with CpG-rich promoters likely expressed in the germline are over represented near the master replication origins, with large genes being co-oriented with replication fork progression, which suggests some coordination of replication and transcription. In this study, we describe another skew structure that covers ∼13% of the human genome and that is bordered by putative master replication origins similar to the ones flanking skew-N domains. These skew-split-N domains have a shape reminiscent of a N, but split in half, leaving in the center a region of null skew whose length increases with domain size. These central regions (median size ∼860 kb) have a homogeneous composition, i.e. both a null and constant skew and a constant and low GC content. They correspond to heterochromatin gene deserts found in low-GC isochores with an average gene density of 0.81 promoters/Mb as compared to 7.73 promoters/Mb genome wide. The analysis of epigenetic marks and replication timing data confirms that, in these late replicating heterochomatic regions, the initiation of replication is likely to be random. This contrasts with the transcriptionally active euchromatin state found around the bordering well positioned master replication origins. Altogether skew-N domains and skew-split-N domains cover about 50% of the human genome.
Collapse
Affiliation(s)
- Lamia Zaghloul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Guénola Drillon
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Rasha E Boulos
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Françoise Argoul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Claude Thermes
- Centre de Génétique Moléculaire, CNRS UPR 3404, Gif-sur-Yvette, France
| | - Alain Arneodo
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Benjamin Audit
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.
| |
Collapse
|
16
|
Dimitriadou E, Van der Aa N, Cheng J, Voet T, Vermeesch JR. Single cell segmental aneuploidy detection is compromised by S phase. Mol Cytogenet 2014; 7:46. [PMID: 25075223 PMCID: PMC4114140 DOI: 10.1186/1755-8166-7-46] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Carriers of balanced translocations are at high risk for unbalanced gametes which can result in recurrent miscarriages or birth defects. Preimplantation genetic diagnosis (PGD) is often offered to select balanced embryos. This selection is currently mainly performed by array CGH on blastomeres. Current methodology does not take into account the phase of the cell cycle, despite the variable copy number status of different genomic regions in S phase. RESULTS Cell lines derived from 3 patients with different chromosomal imbalances were used to evaluate the accuracy of single cell array CGH. The different cell cycle phases were sorted by flow cytometry and 10 single cells were picked per cell line per cell cycle phase, whole genome amplified and analyzed by BAC arrays, the most commonly used platform for PGD purposes. In contrast to G phase, where the imbalances were efficiently identified, less than half of the probes in the regions of interest indicated the presence of the aberration in 17 S-phase cells, resulting in reduced accuracy. CONCLUSIONS The results demonstrate that the accuracy to detect segmental chromosomal imbalances is reduced in S-phase cells, which could be a source of misdiagnosis in PGD. Hence, the cell cycle phase of the analyzed cell is of great importance and should be taken into account during the analysis. This knowledge may guide future technological improvements.
Collapse
Affiliation(s)
- Eftychia Dimitriadou
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Niels Van der Aa
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Jiqiu Cheng
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Joris R Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
17
|
Temporal and spatial regulation of eukaryotic DNA replication: From regulated initiation to genome-scale timing program. Semin Cell Dev Biol 2014; 30:110-20. [DOI: 10.1016/j.semcdb.2014.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
|
18
|
Wu Z, Liu J, Yang H, Xiang H. DNA replication origins in archaea. Front Microbiol 2014; 5:179. [PMID: 24808892 PMCID: PMC4010727 DOI: 10.3389/fmicb.2014.00179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/01/2014] [Indexed: 11/13/2022] Open
Abstract
DNA replication initiation, which starts at specific chromosomal site (known as replication origins), is the key regulatory stage of chromosome replication. Archaea, the third domain of life, use a single or multiple origin(s) to initiate replication of their circular chromosomes. The basic structure of replication origins is conserved among archaea, typically including an AT-rich unwinding region flanked by several conserved repeats (origin recognition box, ORB) that are located adjacent to a replication initiator gene. Both the ORB sequence and the adjacent initiator gene are considerably diverse among different replication origins, while in silico and genetic analyses have indicated the specificity between the initiator genes and their cognate origins. These replicator–initiator pairings are reminiscent of the oriC-dnaA system in bacteria, and a model for the negative regulation of origin activity by a downstream cluster of ORB elements has been recently proposed in haloarchaea. Moreover, comparative genomic analyses have revealed that the mosaics of replicator-initiator pairings in archaeal chromosomes originated from the integration of extrachromosomal elements. This review summarizes the research progress in understanding of archaeal replication origins with particular focus on the utilization, control and evolution of multiple replication origins in haloarchaea.
Collapse
Affiliation(s)
- Zhenfang Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Haibo Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
19
|
Abstract
While large portions of the mammalian genome are known to replicate sequentially in a distinct, tissue-specific order, recent studies suggest that the inactive X chromosome is duplicated rapidly via random, synchronous DNA synthesis at numerous adjacent regions. The rapid duplication of the inactive X chromosome was observed in high-resolution studies visualizing DNA replication patterns in the nucleus, and by allele-specific DNA sequencing studies measuring the extent of DNA synthesis. These studies conclude that inactive X chromosomes complete replication earlier than previously thought and suggest that the strict order of DNA replication detected in the majority of genomic regions is not preserved in non-transcribed, "silent" chromatin. These observations alter current concepts about the regulation of DNA replication in non-transcribed portions of the genome in general and in the inactive X-chromosome in particular.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
20
|
Ostankovitch M, Debatisse M. From the replicon to replication programs in space and time: regulation of DNA replication and implications for genomic instability. J Mol Biol 2013; 425:4659-62. [PMID: 24207007 DOI: 10.1016/j.jmb.2013.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marina Ostankovitch
- Journal of Molecular Biology, Elsevier Inc., 600 Technology Square, Cambridge, MA 02139, USA.
| | | |
Collapse
|