1
|
Daniel Y, Dufour-Gaume F, Vergnaud A, Denis M, Giaume L, Rozec B, Prat N, Lauzier B. Adjuvant therapies for management of hemorrhagic shock: a narrative review. Crit Care 2025; 29:138. [PMID: 40158128 PMCID: PMC11955146 DOI: 10.1186/s13054-025-05368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Severe bleeding remains a leading cause of death in patients with major trauma, despite improvements in care during the acute phase, especially the application of damage control concepts. Death from hemorrhage occurs rapidly after the initial trauma, in most cases before the patient has had a chance to reach a hospital. Thus, the development of adjuvant drugs that would increase the survival of injured patients is necessary. Among the many avenues of research in this area, one is to improve cell survival during tissue hypoxia. During hemorrhagic shock, oxygen delivery to cells decreases and, despite increased oxygen extraction, anaerobic metabolism occurs, leading to acidosis, coagulopathy, apoptosis, and organ dysfunction. METHODS We selected six treatments that may help cells cope with this situation and could be used as adjuvant therapies during the initial resuscitation of severe trauma patients, including out-of-hospital settings: niacin, thiazolidinediones, prolyl hydroxylase domain inhibitors, O-GlcNAcylation stimulation, histone deacetylase inhibitors, and adenosine-lidocaine-magnesium solution. For each treatment, the biological mechanism involved and a systematic review of its interest in hemorrhagic shock (preclinical data and human clinical trials) are presented. CONCLUSION Promising molecules, some of which are already used in humans for other indications, give us hope for human clinical trials in the field of hemorrhagic shock in the near future.
Collapse
Affiliation(s)
- Yann Daniel
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France.
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France.
| | - Frédérique Dufour-Gaume
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France
| | - Amandine Vergnaud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Louise Giaume
- Institut de Recherche Biomédicale des Armées (IRBA), 91220, Bretigny-sur-Orge, France
| | - Bertrand Rozec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Nicolas Prat
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France
- Institut de Recherche Biomédicale des Armées (IRBA), 91220, Bretigny-sur-Orge, France
| | - Benjamin Lauzier
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| |
Collapse
|
2
|
The VRK1 chromatin kinase regulates the acetyltransferase activity of Tip60/KAT5 by sequential phosphorylations in response to DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194887. [DOI: 10.1016/j.bbagrm.2022.194887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
3
|
Lazo PA. Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer? Cancers (Basel) 2022; 14:cancers14164050. [PMID: 36011043 PMCID: PMC9406467 DOI: 10.3390/cancers14164050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 12/18/2022] Open
Abstract
Synthetic lethality strategies are likely to be integrated in effective and specific cancer treatments. These strategies combine different specific targets, either in similar or cooperating pathways. Chromatin remodeling underlies, directly or indirectly, all processes of tumor biology. In this context, the combined targeting of proteins associated with different aspects of chromatin remodeling can be exploited to find new alternative targets or to improve treatment for specific individual tumors or patients. There are two major types of proteins, epigenetic modifiers of histones and nuclear or chromatin kinases, all of which are druggable targets. Among epigenetic enzymes, there are four major families: histones acetylases, deacetylases, methylases and demethylases. All these enzymes are druggable. Among chromatin kinases are those associated with DNA damage responses, such as Aurora A/B, Haspin, ATM, ATR, DNA-PK and VRK1-a nucleosomal histone kinase. All these proteins converge on the dynamic regulation chromatin organization, and its functions condition the tumor cell viability. Therefore, the combined targeting of these epigenetic enzymes, in synthetic lethality strategies, can sensitize tumor cells to toxic DNA-damage-based treatments, reducing their toxicity and the selective pressure for tumor resistance and increasing their immunogenicity, which will lead to an improvement in disease-free survival and quality of life.
Collapse
Affiliation(s)
- Pedro A. Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Ding N, Shao Z, Yuan F, Qu P, Li P, Lu D, Wang J, Zhu Q. Chk1 Inhibition Hinders the Restoration of H3.1K56 and H3.3K56 Acetylation and Reprograms Gene Transcription After DNA Damage Repair. Front Oncol 2022; 12:862592. [PMID: 35494003 PMCID: PMC9046994 DOI: 10.3389/fonc.2022.862592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022] Open
Abstract
H3K56 acetylation (H3K56Ac) was reported to play a critical role in chromatin assembly; thus, H3K56ac participates in the regulation of DNA replication, cell cycle progression, DNA repair, and transcriptional activation. To investigate the influence of DNA damage regulators on the acetylation of histone H3 and gene transcription, U2OS cells expressing SNAP-labeled H3.1 or SNAP-labeled H3.3 were treated with ATM, ATR, or a Chk1 inhibitor after ultraviolet (UV) radiation. The levels of H3.1K56ac, H3.3K56ac, and other H3 site-specific acetylation were checked at different time points until 24 h after UV radiation. The difference in gene transcription levels was also examined by mRNA sequencing. The results identified Chk1 as an important regulator of histone H3K56 acetylation in the restoration of both H3.1K56ac and H3.3K56ac. Moreover, compromising Chk1 activity via chemical inhibitors suppresses gene transcription after UV radiation. The study suggests a previously unknown role of Chk1 in regulating H3K56 and some other site-specific H3 acetylation and in reprograming gene transcription during DNA damage repair.
Collapse
Affiliation(s)
- Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Radiology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, United States
- James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Nan Ding, ; Jufang Wang, ; Qianzheng Zhu,
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fangyun Yuan
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Radiology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, United States
- James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Dong Lu
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Nan Ding, ; Jufang Wang, ; Qianzheng Zhu,
| | - Qianzheng Zhu
- Department of Radiology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, United States
- James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Nan Ding, ; Jufang Wang, ; Qianzheng Zhu,
| |
Collapse
|
5
|
Campillo-Marcos I, Monte-Serrano E, Navarro-Carrasco E, García-González R, Lazo PA. Lysine Methyltransferase Inhibitors Impair H4K20me2 and 53BP1 Foci in Response to DNA Damage in Sarcomas, a Synthetic Lethality Strategy. Front Cell Dev Biol 2021; 9:715126. [PMID: 34540832 PMCID: PMC8446283 DOI: 10.3389/fcell.2021.715126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
Background Chromatin is dynamically remodeled to adapt to all DNA-related processes, including DNA damage responses (DDR). This adaptation requires DNA and histone epigenetic modifications, which are mediated by several types of enzymes; among them are lysine methyltransferases (KMTs). Methods KMT inhibitors, chaetocin and tazemetostat (TZM), were used to study their role in the DDR induced by ionizing radiation or doxorubicin in two human sarcoma cells lines. The effect of these KMT inhibitors was tested by the analysis of chromatin epigenetic modifications, H4K16ac and H4K20me2. DDR was monitored by the formation of γH2AX, MDC1, NBS1 and 53BP1 foci, and the induction of apoptosis. Results Chaetocin and tazemetostat treatments caused a significant increase of H4K16 acetylation, associated with chromatin relaxation, and increased DNA damage, detected by the labeling of free DNA-ends. These inhibitors significantly reduced H4K20 dimethylation levels in response to DNA damage and impaired the recruitment of 53BP1, but not of MDC1 and NBS1, at DNA damaged sites. This modification of epigenetic marks prevents DNA repair by the NHEJ pathway and leads to cell death. Conclusion KMT inhibitors could function as sensitizers to DNA damage-based therapies and be used in novel synthetic lethality strategies for sarcoma treatment.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.,Cancer Epigenetics Group, Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Eva Monte-Serrano
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Elena Navarro-Carrasco
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Raúl García-González
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
7
|
Multi-omic analysis of altered transcriptome and epigenetic signatures in the UV-induced DNA damage response. DNA Repair (Amst) 2021; 106:103172. [PMID: 34298489 DOI: 10.1016/j.dnarep.2021.103172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022]
Abstract
The transcription-related DNA damage response was visualized on a genome-wide scale with great spatial and temporal resolution. Upon UV irradiation, a small proportion of mature RNA transcripts undergo changes, with significant activation of DNA repair factors. Notably, an increase of chromatin accessibility is observed at the immediate early recovery phase and serves as binding sites for selective stage-specific transcription factors. Whole genome analysis of DNA methylation (5mC) delineates pervasive dynamics during DNA repair process, and hypomethylation at gene bodies and 3'UTR is accompanied by induction of DNA damage response genes. Furthermore, temporal-specific m6A RNA methylation has been defined and appears to affect DNA repair by modulation of translation. These findings provide a resource for identifying players required for transcription-coupled nucleotide excision repair and reveal insights into the epigenetic regulation of the transcriptional programs in response to genotoxic stress.
Collapse
|
8
|
Rivero-Rodríguez F, Díaz-Quintana A, Velázquez-Cruz A, González-Arzola K, Gavilan MP, Velázquez-Campoy A, Ríos RM, De la Rosa MA, Díaz-Moreno I. Inhibition of the PP2A activity by the histone chaperone ANP32B is long-range allosterically regulated by respiratory cytochrome c. Redox Biol 2021; 43:101967. [PMID: 33882408 PMCID: PMC8082267 DOI: 10.1016/j.redox.2021.101967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 12/26/2022] Open
Abstract
Repair of injured DNA relies on nucleosome dismantling by histone chaperones and de-phosphorylation events carried out by Protein Phosphatase 2A (PP2A). Typical histone chaperones are the Acidic leucine-rich Nuclear Phosphoprotein 32 family (ANP32) members, e.g. ANP32A, which is also a well-known PP2A inhibitor (a.k.a. I1PP2A). Here we report the novel interaction between the endogenous family member B—so-called ANP32B—and endogenous cytochrome c in cells undergoing camptothecin-induced DNA damage. Soon after DNA lesions but prior to caspase cascade activation, the hemeprotein translocates to the nucleus to target the Low Complexity Acidic Region (LCAR) of ANP32B; in a similar way, our group recently reported that the hemeprotein targets the acidic domain of SET/Template Activating Factor-Iβ (SET/TAF-Iβ), which is another histone chaperone and PP2A inhibitor (a.k.a. I2PP2A). The nucleosome assembly activity of ANP32B is indeed unaffected by cytochrome c binding. Like ANP32A, ANP32B inhibits PP2A activity and is thus herein referred to as I3PP2A. Our data demonstrates that ANP32B-dependent inhibition of PP2A is regulated by respiratory cytochrome c, which induces long-distance allosteric changes in the structured N-terminal domain of ANP32B upon binding to the C-terminal LCAR. In agreement with the reported role of PP2A in the DNA damage response, we propose a model wherein cytochrome c is translocated from the mitochondria into the nucleus upon DNA damage to modulate PP2A activity via its interaction with ANP32B. Respiratory cytochrome c interacts with ANP32B under DNA damage in the nucleus. Cytochrome c binding to ANP32B LCAR restores ANP32B-mediated PP2A inhibition. Cytochrome c emerges as a DNA Damage Response regulator.
Collapse
Affiliation(s)
- Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Alejandro Velázquez-Cruz
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Maria P Gavilan
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville, CSIC, University Pablo de Olavide, Avda. Américo Vespucio 24, Seville, 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSICBIFI,and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragon), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain; Fundación ARAID, Gobierno de Aragón, 50018, Zaragoza, Spain
| | - Rosa M Ríos
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville, CSIC, University Pablo de Olavide, Avda. Américo Vespucio 24, Seville, 41092, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain.
| |
Collapse
|
9
|
Tripuraneni V, Memisoglu G, MacAlpine HK, Tran TQ, Zhu W, Hartemink AJ, Haber JE, MacAlpine DM. Local nucleosome dynamics and eviction following a double-strand break are reversible by NHEJ-mediated repair in the absence of DNA replication. Genome Res 2021; 31:775-788. [PMID: 33811083 PMCID: PMC8092003 DOI: 10.1101/gr.271155.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
We interrogated at nucleotide resolution the spatiotemporal order of chromatin changes that occur immediately following a site-specific double-strand break (DSB) upstream of the PHO5 locus and its subsequent repair by nonhomologous end joining (NHEJ). We observed the immediate eviction of a nucleosome flanking the break and the repositioning of adjacent nucleosomes away from the break. These early chromatin events were independent of the end-processing Mre11-Rad50-Xrs2 (MRX) complex and preceded the MRX-dependent broad eviction of histones and DNA end-resectioning that extends up to ∼8 kb away from the break. We also examined the temporal dynamics of NHEJ-mediated repair in a G1-arrested population. Concomitant with DSB repair by NHEJ, we observed the redeposition and precise repositioning of nucleosomes at their originally occupied positions. This re-establishment of the prelesion chromatin landscape suggests that a DNA replication-independent mechanism exists to preserve epigenome organization following DSB repair.
Collapse
Affiliation(s)
- Vinay Tripuraneni
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Gonen Memisoglu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Trung Q Tran
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - Wei Zhu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
10
|
Goh CJH, Wong JH, El Farran C, Tan BX, Coffill CR, Loh YH, Lane D, Arumugam P. Identification of pathways modulating vemurafenib resistance in melanoma cells via a genome-wide CRISPR/Cas9 screen. G3 (BETHESDA, MD.) 2021; 11:jkaa069. [PMID: 33604667 PMCID: PMC8022920 DOI: 10.1093/g3journal/jkaa069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Vemurafenib is a BRAF kinase inhibitor (BRAFi) that is used to treat melanoma patients harboring the constitutively active BRAF-V600E mutation. However, after a few months of treatment patients often develop resistance to vemurafenib leading to disease progression. Sequence analysis of drug-resistant tumor cells and functional genomic screens has identified several genes that regulate vemurafenib resistance. Reactivation of mitogen-activated protein kinase (MAPK) pathway is a recurrent feature of cells that develop resistance to vemurafenib. We performed a genome-scale CRISPR-based knockout screen to identify modulators of vemurafenib resistance in melanoma cells with a highly improved CRISPR sgRNA library called Brunello. We identified 33 genes that regulate resistance to vemurafenib out of which 14 genes have not been reported before. Gene ontology enrichment analysis showed that the hit genes regulate histone modification, transcription and cell cycle. We discuss how inactivation of hit genes might confer resistance to vemurafenib and provide a framework for follow-up investigations.
Collapse
Affiliation(s)
| | - Jin Huei Wong
- Bioinformatics Institute (BII), A*STAR, Singapore 138671, Singapore
| | - Chadi El Farran
- Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Ban Xiong Tan
- Experimental Drug Development Centre, A*STAR, Singapore 138670, Singapore
| | | | - Yuin-Hain Loh
- Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - David Lane
- p53Lab, A*STAR, Singapore 138648, Singapore
| | - Prakash Arumugam
- Bioinformatics Institute (BII), A*STAR, Singapore 138671, Singapore
- Singapore Institute for Food and Biotechnology Innovation, Singapore 138632, Singapore
| |
Collapse
|
11
|
Morgan A, LeGresley S, Fischer C. Remodeler Catalyzed Nucleosome Repositioning: Influence of Structure and Stability. Int J Mol Sci 2020; 22:ijms22010076. [PMID: 33374740 PMCID: PMC7793527 DOI: 10.3390/ijms22010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The packaging of the eukaryotic genome into chromatin regulates the storage of genetic information, including the access of the cell’s DNA metabolism machinery. Indeed, since the processes of DNA replication, translation, and repair require access to the underlying DNA, several mechanisms, both active and passive, have evolved by which chromatin structure can be regulated and modified. One mechanism relies upon the function of chromatin remodeling enzymes which couple the free energy obtained from the binding and hydrolysis of ATP to the mechanical work of repositioning and rearranging nucleosomes. Here, we review recent work on the nucleosome mobilization activity of this essential family of molecular machines.
Collapse
|
12
|
Histone Variant H2A.J Marks Persistent DNA Damage and Triggers the Secretory Phenotype in Radiation-Induced Senescence. Int J Mol Sci 2020; 21:ijms21239130. [PMID: 33266246 PMCID: PMC7729917 DOI: 10.3390/ijms21239130] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Irreparable double-strand breaks (DSBs) in response to ionizing radiation (IR) trigger prolonged DNA damage response (DDR) and induce premature senescence. Profound chromatin reorganization with formation of senescence-associated heterochromatin foci (SAHF) is an essential epigenetic mechanism for controlling the senescence-associated secretory phenotype (SASP). To decipher molecular mechanisms provoking continuous DDR leading to premature senescence, radiation-induced DSBs (53BP1-foci) and dynamics of histone variant H2A.J incorporation were analyzed together with chromatin re-modeling in human fibroblasts after IR exposure. High-resolution imaging by transmission electron microscopy revealed that persisting 53BP1-foci developed into DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS), consistently located at the periphery of SAHFs. Quantitative immunogold-analysis by electron microscopy revealed that H2A.J, steadily co-localizing with 53BP1, is increasingly incorporated into DNA-SCARS during senescence progression. Strikingly, shRNA-mediated H2A.J depletion in fibroblasts modified senescence-associated chromatin re-structuring and abolished SASP, thereby shutting down the production of inflammatory mediators. These findings provide mechanistic insights into biological phenomena of SASP and suggest that H2A.J inhibition could ablate SASP, without affecting the senescence-associated growth arrest.
Collapse
|
13
|
Kaminaga K, Hamada R, Usami N, Suzuki K, Yokoya A. Targeted Nuclear Irradiation with an X-Ray Microbeam Enhances Total JC-1 Fluorescence from Mitochondria. Radiat Res 2020; 194:511-518. [PMID: 33045074 DOI: 10.1667/rr15110.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/02/2020] [Indexed: 11/03/2022]
Abstract
Several studies have demonstrated that mitochondria are critically involved in the pleiotropic manifestation of radiation effects. While conventional whole-cell irradiation compromises the function of mitochondria, the effects of subcellular targeted radiation are not yet fully understood. In this study, normal human diploid cells with cell-cycle indicators were irradiated using a synchrotron X-ray microbeam, and mitochondrial membrane potential was quantified by JC-1 over the 72-h period postirradiation. Cytoplasmic irradiation was observed to temporarily enlarge the mitochondrial area with high membrane potential, while the total mitochondrial area did not change significantly. Unexpectedly, cell-nucleus irradiation promoted a similar increase not only in the mitochondrial areas with high membrane potential, but also in those with low membrane potential, which gave rise to the apparent increase in the total mitochondrial area. Augmentation of the mitochondrial area with low membrane potential was predominantly observed among G1 cells, suggesting that nucleus irradiation during the G1 phase regulated the mitochondrial dynamics of the cytoplasm, presumably through DNA damage in the nucleus.
Collapse
Affiliation(s)
- Kiichi Kaminaga
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| | - Ryo Hamada
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| | - Noriko Usami
- Photon Factory, Institute of Material Structure Sciences, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Akinari Yokoya
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
14
|
Transcriptional signature of prion-induced neurotoxicity in a Drosophila model of transmissible mammalian prion disease. Biochem J 2020; 477:833-852. [PMID: 32108870 PMCID: PMC7054746 DOI: 10.1042/bcj20190872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Prion diseases are fatal transmissible neurodegenerative conditions of humans and animals that arise through neurotoxicity induced by PrP misfolding. The cellular and molecular mechanisms of prion-induced neurotoxicity remain undefined. Understanding these processes will underpin therapeutic and control strategies for human and animal prion diseases, respectively. Prion diseases are difficult to study in their natural hosts and require the use of tractable animal models. Here we used RNA-Seq-based transcriptome analysis of prion-exposed Drosophila to probe the mechanism of prion-induced neurotoxicity. Adult Drosophila transgenic for pan neuronal expression of ovine PrP targeted to the plasma membrane exhibit a neurotoxic phenotype evidenced by decreased locomotor activity after exposure to ovine prions at the larval stage. Pathway analysis and quantitative PCR of genes differentially expressed in prion-infected Drosophila revealed up-regulation of cell cycle activity and DNA damage response, followed by down-regulation of eIF2 and mTOR signalling. Mitochondrial dysfunction was identified as the principal toxicity pathway in prion-exposed PrP transgenic Drosophila. The transcriptomic changes we observed were specific to PrP targeted to the plasma membrane since these prion-induced gene expression changes were not evident in similarly treated Drosophila transgenic for cytosolic pan neuronal PrP expression, or in non-transgenic control flies. Collectively, our data indicate that aberrant cell cycle activity, repression of protein synthesis and altered mitochondrial function are key events involved in prion-induced neurotoxicity, and correlate with those identified in mammalian hosts undergoing prion disease. These studies highlight the use of PrP transgenic Drosophila as a genetically well-defined tractable host to study mammalian prion biology.
Collapse
|
15
|
Abstract
Trauma remains a leading cause of morbidity and mortality among all age groups in the United States. Hemorrhagic shock and traumatic brain injury (TBI) are major causes of preventable death in trauma. Initial treatment involves fluid resuscitation to improve the intravascular volume. Although crystalloids may provide volume expansion, they do not have any pro-survival properties. Furthermore, aggressive fluid resuscitation can provoke a severe inflammatory response and worsen clinical outcomes. Due to logistical constraints, however, definitive resuscitation with blood products is often not feasible in the prehospital setting-highlighting the importance of adjunctive therapies. In recent years, histone deacetylase inhibitors (HDACis) have shown promise as pharmacologic agents for use in both trauma and sepsis. In this review, we discuss the role of histone deacetylases (HDACs) and pharmacologic agents that inhibit them (HDACis). We also highlight the therapeutic effects and mechanisms of action of HDACis in hemorrhagic shock, TBI, polytrauma, and sepsis. With further investigation and translation, HDACis have the potential to be a high-impact adjunctive therapy to traditional resuscitation.
Collapse
|
16
|
Tessari A, Soliman SHA, Orlacchio A, Capece M, Amann JM, Visone R, Carbone DP, Palmieri D, Coppola V. RANBP9 as potential therapeutic target in non-small cell lung cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6. [PMID: 34778565 PMCID: PMC8589326 DOI: 10.20517/2394-4722.2020.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths in the Western world. Despite progress made with targeted therapies and immune checkpoint inhibitors, the vast majority of patients have to undergo chemotherapy with platinum-based drugs. To increase efficacy and reduce potential side effects, a more comprehensive understanding of the mechanisms of the DNA damage response (DDR) is required. We have shown that overexpressby live cell imaging (Incuyion of the scaffold protein RAN binding protein 9 (RANBP9) is pervasive in NSCLC. More importantly, patients with higher levels of RANBP9 exhibit a worse outcome from treatment with platinum-based drugs. Mechanistically, RANBP9 exists as a target and an enabler of the ataxia telangiectasia mutated (ATM) kinase signaling. Indeed, the depletion of RANBP9 in NSCLC cells abates ATM activation and its downstream targets such as pby live cell imaging (Incuy53 signaling. RANBP9 knockout cells are more sensitive than controls to the inhibition of the ataxia and telangiectasia-related (ATR) kinase but not to ATM inhibition. The absence of RANBP9 renders cells more sensitive to drugs inhibiting the Poly(ADP-ribose)-Polymerase (PARP) resulting in a "BRCAness-like" phenotype. In summary, as a result of increased sensitivity to DNA damaging drugs conferred by its ablation in vitro and in vivo, RANBP9 may be considered as a potential target for the treatment of NSCLC. This article aims to report the results from past and ongoing investigations focused on the role of RANBP9 in the response to DNA damage, particularly in the context of NSCLC. This review concludes with future directions and speculative remarks which will need to be addressed in the coming years.
Collapse
Affiliation(s)
- Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti 66100, Italy.,Current address: Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Marina Capece
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Joseph M Amann
- Current address: Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rosa Visone
- Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti 66100, Italy
| | - David P Carbone
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
17
|
House NC, Polleys EJ, Quasem I, De la Rosa Mejia M, Joyce CE, Takacsi-Nagy O, Krebs JE, Fuchs SM, Freudenreich CH. Distinct roles for S. cerevisiae H2A copies in recombination and repeat stability, with a role for H2A.1 threonine 126. eLife 2019; 8:53362. [PMID: 31804179 PMCID: PMC6927750 DOI: 10.7554/elife.53362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
CAG/CTG trinuncleotide repeats are fragile sequences that when expanded form DNA secondary structures and cause human disease. We evaluated CAG/CTG repeat stability and repair outcomes in histone H2 mutants in S. cerevisiae. Although the two copies of H2A are nearly identical in amino acid sequence, CAG repeat stability depends on H2A copy 1 (H2A.1) but not copy 2 (H2A.2). H2A.1 promotes high-fidelity homologous recombination, sister chromatid recombination (SCR), and break-induced replication whereas H2A.2 does not share these functions. Both decreased SCR and the increase in CAG expansions were due to the unique Thr126 residue in H2A.1 and hta1Δ or hta1-T126A mutants were epistatic to deletion of the Polδ subunit Pol32, suggesting a role for H2A.1 in D-loop extension. We conclude that H2A.1 plays a greater repair-specific role compared to H2A.2 and may be a first step towards evolution of a repair-specific function for H2AX compared to H2A in mammalian cells.
Collapse
Affiliation(s)
- Nealia Cm House
- Department of Biology, Tufts University, Medford, United States
| | - Erica J Polleys
- Department of Biology, Tufts University, Medford, United States
| | | | | | - Cailin E Joyce
- Department of Biology, Tufts University, Medford, United States
| | | | - Jocelyn E Krebs
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, United States
| | - Stephen M Fuchs
- Department of Biology, Tufts University, Medford, United States
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, United States.,Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, United States
| |
Collapse
|
18
|
González‐Arzola K, Velázquez‐Cruz A, Guerra‐Castellano A, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MÁ. New moonlighting functions of mitochondrial cytochromecin the cytoplasm and nucleus. FEBS Lett 2019; 593:3101-3119. [DOI: 10.1002/1873-3468.13655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandro Velázquez‐Cruz
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. De la Rosa
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| |
Collapse
|
19
|
Chitale S, Richly H. H4K20me2: Orchestrating the recruitment of DNA repair factors in nucleotide excision repair. Nucleus 2019; 9:212-215. [PMID: 29482435 PMCID: PMC5973261 DOI: 10.1080/19491034.2018.1444327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The integrity of the genome is maintained by specific DNA repair pathways. The main pathway removing DNA lesions induced by exposure to UV light is nucleotide excision repair (NER). The DNA damage response at chromatin is accompanied by the recruitment of DNA repair factors to the lesion site and the deposition of specific histone marks. The function of these histone marks in NER stays for the most part elusive. We have recently reported that the methyltransferase MMSET catalyzes the dimethylation of histone H4 at lysine 20 (H4K20me2) at the lesion site. The deposition of H4K20me2 at DNA damage sites elicits the recruitment of the NER factor XPA providing evidence for an H4K20me2-dependent DNA repair factor recruitment mechanism during lesion recognition in the global-genomic branch of NER. Here we discuss how H4K20me2 might impact on the chromatin conformation and the DNA damage response.
Collapse
Affiliation(s)
- Shalaka Chitale
- a Laboratory of Molecular Epigenetics , Institute of Molecular Biology (IMB) , Mainz , Germany.,b Faculty of Biology , Johannes Gutenberg University , Mainz , Germany
| | - Holger Richly
- a Laboratory of Molecular Epigenetics , Institute of Molecular Biology (IMB) , Mainz , Germany
| |
Collapse
|
20
|
Bourbousse C, Vegesna N, Law JA. SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E12453-E12462. [PMID: 30541889 PMCID: PMC6310815 DOI: 10.1073/pnas.1810582115] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To combat DNA damage, organisms mount a DNA damage response (DDR) that results in cell cycle regulation, DNA repair and, in severe cases, cell death. Underscoring the importance of gene regulation in this response, studies in Arabidopsis have demonstrated that all of the aforementioned processes rely on SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a NAC family transcription factor (TF) that has been functionally equated to the mammalian tumor suppressor, p53. However, the expression networks connecting SOG1 to these processes remain largely unknown and, although the DDR spans from minutes to hours, most transcriptomic data correspond to single time-point snapshots. Here, we generated transcriptional models of the DDR from GAMMA (γ)-irradiated wild-type and sog1 seedlings during a 24-hour time course using DREM, the Dynamic Regulatory Events Miner, revealing 11 coexpressed gene groups with distinct biological functions and cis-regulatory features. Within these networks, additional chromatin immunoprecipitation and transcriptomic experiments revealed that SOG1 is the major activator, directly targeting the most strongly up-regulated genes, including TFs, repair factors, and early cell cycle regulators, while three MYB3R TFs are the major repressors, specifically targeting the most strongly down-regulated genes, which mainly correspond to G2/M cell cycle-regulated genes. Together these models reveal the temporal dynamics of the transcriptional events triggered by γ-irradiation and connects these events to TFs and biological processes over a time scale commensurate with key processes coordinated in response to DNA damage, greatly expanding our understanding of the DDR.
Collapse
Affiliation(s)
- Clara Bourbousse
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Neeraja Vegesna
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
21
|
van Eijk P, Nandi SP, Yu S, Bennett M, Leadbitter M, Teng Y, Reed SH. Nucleosome remodeling at origins of global genome-nucleotide excision repair occurs at the boundaries of higher-order chromatin structure. Genome Res 2018; 29:74-84. [PMID: 30552104 PMCID: PMC6314166 DOI: 10.1101/gr.237198.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/07/2018] [Indexed: 11/24/2022]
Abstract
Repair of UV-induced DNA damage requires chromatin remodeling. How repair is initiated in chromatin remains largely unknown. We recently demonstrated that global genome–nucleotide excision repair (GG-NER) in chromatin is organized into domains in relation to open reading frames. Here, we define these domains, identifying the genomic locations from which repair is initiated. By examining DNA damage–induced changes in the linear structure of nucleosomes at these sites, we demonstrate how chromatin remodeling is initiated during GG-NER. In undamaged cells, we show that the GG-NER complex occupies chromatin, establishing the nucleosome structure at these genomic locations, which we refer to as GG-NER complex binding sites (GCBSs). We demonstrate that these sites are frequently located at genomic boundaries that delineate chromosomally interacting domains (CIDs). These boundaries define domains of higher-order nucleosome–nucleosome interaction. We demonstrate that initiation of GG-NER in chromatin is accompanied by the disruption of dynamic nucleosomes that flank GCBSs by the GG-NER complex.
Collapse
Affiliation(s)
- Patrick van Eijk
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Shuvro Prokash Nandi
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Shirong Yu
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Mark Bennett
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Matthew Leadbitter
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Yumin Teng
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Simon H Reed
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
22
|
Izumi Y, Matsuo K. Sample Volume Reduction Using the Schwarzschild Objective for a Circular Dichroism Spectrophotometer and an Application to the Structural Analysis of Lysine-36 Trimethylated Histone H3 Protein. Molecules 2018; 23:E2865. [PMID: 30400257 PMCID: PMC6278440 DOI: 10.3390/molecules23112865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 11/28/2022] Open
Abstract
With the increasing interest in scarce proteins, reducing the sample volume for circular dichroism (CD) spectroscopy has become desirable. Demagnification of the incident beam size is required to reduce the sample volume for CD spectroscopy detecting transmitted light passed through the sample. In this study, the beam size was demagnified using a focal mirror, and small-capacity sample cells were developed in an attempt to reduce the sample volume. The original beam size was 6 × 6 mm²; we successfully converged it to a size of 25 × 25 μm² using the Schwarzschild objective (SO). The new sample cell and SO allowed the required sample volume to be reduced to 1/10 (15 → 1.5 μL), when using a 15 μm path length cell. By adopting a smaller sample cell, further sample reduction could be achieved. By using the SO system, the secondary structural contents of the lysine-36 trimethylated histone H3 protein were analyzed. The trimethylation induced the increment of helix structures and decrement of unordered structures. These structural alterations may play a role in regulating cellular function(s), such as DNA damage repair processes.
Collapse
Affiliation(s)
- Yudai Izumi
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| |
Collapse
|
23
|
Ding J, Yu C, Sui Y, Wang L, Yang Y, Wang F, Yao H, Xing F, Liu H, Li Y, Shah JA, Cai Y, Jin J. The chromatin remodeling protein INO80 contributes to the removal of H2A.Z at the p53‐binding site of the p21 gene in response to doxorubicin. FEBS J 2018; 285:3270-3285. [DOI: 10.1111/febs.14615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/12/2018] [Accepted: 07/26/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Jian Ding
- School of Life Sciences Jilin University Changchun China
| | - Chao Yu
- School of Life Sciences Jilin University Changchun China
| | - Yi Sui
- School of Life Sciences Jilin University Changchun China
| | - Lingyao Wang
- School of Life Sciences Jilin University Changchun China
| | - Yang Yang
- School of Life Sciences Jilin University Changchun China
| | - Fei Wang
- School of Life Sciences Jilin University Changchun China
| | - Hongjie Yao
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences China
| | - Feiyang Xing
- School of Life Sciences Jilin University Changchun China
| | - Hongshen Liu
- School of Life Sciences Jilin University Changchun China
| | - Yana Li
- School of Life Sciences Jilin University Changchun China
| | | | - Yong Cai
- School of Life Sciences Jilin University Changchun China
- National Engineering Laboratory for AIDS Vaccine Jilin University Changchun China
- Key Laboratory for Molecular Enzymology and Engineering The Ministry of Education Jilin University Changchun China
| | - Jingji Jin
- School of Life Sciences Jilin University Changchun China
- National Engineering Laboratory for AIDS Vaccine Jilin University Changchun China
- Key Laboratory for Molecular Enzymology and Engineering The Ministry of Education Jilin University Changchun China
| |
Collapse
|
24
|
Smith RW, Moccia RD, Seymour CB, Mothersill CE. Irradiation of rainbow trout at early life stages results in a proteomic legacy in adult gills. Part A; proteomic responses in the irradiated fish and in non-irradiated bystander fish. ENVIRONMENTAL RESEARCH 2018; 163:297-306. [PMID: 29463416 DOI: 10.1016/j.envres.2017.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
Exposure to a single 0.5 Gy X-ray dose of eggs at 48 h after fertilisation (48 h egg), eyed eggs, yolk sac larvae (YSL) and first feeders induces a legacy effect in adult rainbow trout. This includes the transmission of a bystander effect to non-irradiated adult trout which had swam with the irradiated fish. The aim of this study was to investigate this legacy by analysing the gill proteome of these irradiated and bystander fish. Irradiation at all of the early life stages resulted in changes to proteins which play a key role in development but are also known to be anti-tumorigenic and anti-oxidant: upregulation of haemoglobin subunit beta (48 h egg), haemoglobin, serum albumin 1 precursor (eyed eggs), clathrin heavy chain 1 isoform X10 (eyed eggs and first feeders), and actin-related protein 2/3 complex subunit 4 (first feeders), downregulation of pyruvate dehydrogenase, histone 1 (48 h egg), triosephosphate isomerase (TPI), collagen alpha-1(1) chain like proteins (YSL), pyruvate kinase PKM-like protein (YSL and first feeders), ubiquitin-40S ribosomal proteins S27 and eukaryotic translation initiation factor 4 A isoform 1B (first feeders). However irradiation of YSL and first feeders (post hatching early life stages) also induced proteomic changes which have a complex relationship with tumorigenesis or cancer progression; downregulation of alpha-1-antiprotease-like protein precursor, vigilin isoform X2 and nucleoside diphosphate kinase (YSL) and upregulation of hyperosmotic glycine rich protein (first feeders). In bystander fish some proteomic changes were similar to those induced by irradiation: upregulation of haemoglobin subunit beta (48 h egg), haemoglobin (eyed eggs), actin-related protein 2/3 complex subunit 4, hyperosmotic glycine rich protein (first feeders), and downregulation of alpha-1-antiprotease-like protein, vigilin isoform X2, nucleoside diphosphate kinase (YSL), pyruvate kinase PKM-like protein and ubiquitin-40S ribosomal protein S27a-like (first feeders). Other proteomic changes were unique to bystander fish; downregulation of TPI, ubiquitin-40S ribosomal protein S2 (eyed egg), cofilin-2, cold-inducible RNA-binding protein B-like isoform X3 (YSL) and superoxide dismutase (first feeder), and upregulation of haemoglobin subunit alpha, collagen 1a1 precursor, apolipoprotein A-1-1 and A-1-2 precursor (first feeders). These bystander effect proteomic changes have been shown to be overwhelmingly anti-tumorigenic or protective of the fish gill.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Animal Biosciences, University of Guelph, Guelph Ontario Canada; Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada.
| | - Richard D Moccia
- Department of Animal Biosciences, University of Guelph, Guelph Ontario Canada
| | - Colin B Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada
| | - Carmel E Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada
| |
Collapse
|
25
|
Lai J, Jiang J, Wu Q, Mao N, Han D, Hu H, Yang C. The Transcriptional Coactivator ADA2b Recruits a Structural Maintenance Protein to Double-Strand Breaks during DNA Repair in Plants. PLANT PHYSIOLOGY 2018; 176:2613-2622. [PMID: 29463775 PMCID: PMC5884601 DOI: 10.1104/pp.18.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 06/01/2023]
Abstract
DNA damage occurs in all cells and can hinder chromosome stability and cell viability. Structural Maintenance of Chromosomes5/6 (SMC5/6) is a protein complex that functions as an evolutionarily conserved chromosomal ATPase critical for repairing DNA double-strand breaks (DSBs). However, the mechanisms regulating this complex in plants are poorly understood. Here, we identified the transcriptional coactivator ALTERATION/DEFICIENCY IN ACTIVATION2B (ADA2b) as an interactor of SMC5 in Arabidopsis (Arabidopsis thaliana). ADA2b is a conserved component of the Spt-Ada-Gcn5 acetyltransferase complex, which functions in transcriptional regulation. Characterization of mutant and knockdown Arabidopsis lines showed that disruption of either SMC5 or ADA2b resulted in enhanced DNA damage. Both SMC5 and ADA2b were associated with γ-H2AX, a marker of DSBs, and the recruitment of SMC5 onto DSBs was dependent on ADA2b. In addition, overexpression of SMC5 in the ada2b mutant background stimulated cell death. Collectively, our results show that the interaction between ADA2b and SMC5 mediates DNA repair in plant cells, suggesting a functional association between these conserved proteins and further elucidating mechanisms of DNA damage repair in plants.
Collapse
Affiliation(s)
- Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ning Mao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Huan Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
26
|
Legrand AJ, Poletto M, Pankova D, Clementi E, Moore J, Castro-Giner F, Ryan AJ, O’Neill E, Markkanen E, Dianov GL. Persistent DNA strand breaks induce a CAF-like phenotype in normal fibroblasts. Oncotarget 2018; 9:13666-13681. [PMID: 29568385 PMCID: PMC5862606 DOI: 10.18632/oncotarget.24446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/30/2018] [Indexed: 02/03/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are an emerging target for cancer therapy as they promote tumour growth and metastatic potential. However, CAF targeting is complicated by the lack of knowledge-based strategies aiming to selectively eliminate these cells. There is a growing body of evidence suggesting that a pro-inflammatory microenvironment (e.g. ROS and cytokines) promotes CAF formation during tumorigenesis, although the exact mechanisms involved remain unclear. In this study, we reveal that a prolonged pro-inflammatory stimulation causes a de facto deficiency in base excision repair, generating unrepaired DNA strand breaks and thereby triggering an ATF4-dependent reprogramming of normal fibroblasts into CAF-like cells. Based on the phenotype of in vitro-generated CAFs, we demonstrate that midostaurin, a clinically relevant compound, selectively eliminates CAF-like cells deficient in base excision repair and prevents their stimulatory role in cancer cell growth and migration.
Collapse
Affiliation(s)
- Arnaud J. Legrand
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Mattia Poletto
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Daniela Pankova
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Elena Clementi
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich 8057, Switzerland
| | - John Moore
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | | | - Anderson J. Ryan
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Eric O’Neill
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Enni Markkanen
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich 8057, Switzerland
| | - Grigory L. Dianov
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| |
Collapse
|
27
|
Izumi Y, Matsuo K, Fujii K, Yokoya A, Taniguchi M, Namatame H. Circular dichroism spectroscopic study on structural alterations of histones induced by post-translational modifications in DNA damage responses: lysine-9 methylation of H3. JOURNAL OF RADIATION RESEARCH 2018; 59:108-115. [PMID: 29244169 PMCID: PMC5951009 DOI: 10.1093/jrr/rrx068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/13/2017] [Indexed: 06/07/2023]
Abstract
We report the global structural alterations in histone H3 proteins induced by lysine-9 mono-, di- and trimethylation, which are part of the critical post-translational modifications for DNA damage responses, identified using synchrotron radiation circular dichroism (CD) spectroscopy. Compared with unmodified H3, mono- and dimethylation increases the number of α-helices and decreases the numbers of β-strands, while trimethylation decreases the α-helix content and increases the β-strand content. Comparison of the secondary-structure contents of these histone H3 proteins suggests that the methylation-induced structural alterations occur at residues not only close to but also distant from the methylated sites. Such global structural alterations may regulate the interactions of methylated histones with other molecules, such as histone-binding proteins in DNA damage repair processes.
Collapse
Affiliation(s)
- Yudai Izumi
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Kentaro Fujii
- Quantum Beam Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 2-4 Ooaza-Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
- QST Advanced Study Laboratory, National Institutes for Quantum and Radiological Science and Technology (QST), 2-4 Ooaza-Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Akinari Yokoya
- Quantum Beam Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 2-4 Ooaza-Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
- QST Advanced Study Laboratory, National Institutes for Quantum and Radiological Science and Technology (QST), 2-4 Ooaza-Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Masaki Taniguchi
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Hirofumi Namatame
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| |
Collapse
|
28
|
Rachdaoui N, Li L, Willard B, Kasumov T, Previs S, Sarkar D. Turnover of histones and histone variants in postnatal rat brain: effects of alcohol exposure. Clin Epigenetics 2017; 9:117. [PMID: 29075360 PMCID: PMC5654083 DOI: 10.1186/s13148-017-0416-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alcohol consumption during pregnancy is a significant public health problem and can result in a continuum of adverse outcomes to the fetus known as fetal alcohol spectrum disorders (FASD). Subjects with FASD show significant neurological deficits, ranging from microencephaly, neurobehavioral, and mental health problems to poor social adjustment and stress tolerance. Neurons are particularly sensitive to alcohol exposure. The neurotoxic action of alcohol, i.e., through ROS production, induces DNA damage and neuronal cell death by apoptosis. In addition, epigenetics, including DNA methylation, histone posttranslational modifications (PTMs), and non-coding RNA, play an important role in the neuropathology of FASD. However, little is known about the temporal dynamics and kinetics of histones and their PTMs in FASD. RESULTS We examined the effects of postnatal alcohol exposure (PAE), an animal model of human third-trimester equivalent, on the kinetics of various histone proteins in two distinct brain regions, the frontal cortex, and the hypothalamus, using in vivo 2H2O-labeling combined with mass spectrometry-based proteomics. We show that histones have long half-lives that are in the order of days. We also show that H3.3 and H2Az histone variants have faster turnovers than canonical histones and that acetylated histones, in general, have a faster turnover than unmodified and methylated histones. Our work is the first to show that PAE induces a differential reduction in turnover rates of histones in both brain regions studied. These alterations in histone turnover were associated with increased DNA damage and decreased cell proliferation in postnatal rat brain. CONCLUSION Alterations in histone turnover might interfere with histone deposition and chromatin stability, resulting in deregulated cell-specific gene expression and therefore contribute to the development of the neurological disorders associated with FASD. Using in vivo 2H2O-labeling and mass spectrometry-based proteomics might help in the understanding of histone turnover following alcohol exposure and could be of great importance in enabling researchers to identify novel targets and/or biomarkers for the prevention and management of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Department of Animal Sciences, Rutgers Endocrine Research Program, Rutgers, the State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ 08901 USA
| | - Ling Li
- Department of Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106 USA
| | - Belinda Willard
- Department of Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106 USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Stephen Previs
- Cardiometabolic Disease, Merck & Co., Inc, Kenilworth, NJ USA
| | - Dipak Sarkar
- Department of Animal Sciences, Rutgers Endocrine Research Program, Rutgers, the State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ 08901 USA
| |
Collapse
|
29
|
González-Arzola K, Díaz-Quintana A, Rivero-Rodríguez F, Velázquez-Campoy A, De la Rosa MA, Díaz-Moreno I. Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c. Nucleic Acids Res 2017; 45:2150-2165. [PMID: 27924001 PMCID: PMC5389710 DOI: 10.1093/nar/gkw1215] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Higher-order plants and mammals use similar mechanisms to repair and tolerate oxidative DNA damage. Most studies on the DNA repair process have focused on yeast and mammals, in which histone chaperone-mediated nucleosome disassembly/reassembly is essential for DNA to be accessible to repair machinery. However, little is known about the specific role and modulation of histone chaperones in the context of DNA damage in plants. Here, the histone chaperone NRP1, which is closely related to human SET/TAF-Iβ, was found to exhibit nucleosome assembly activity in vitro and to accumulate in the chromatin of Arabidopsis thaliana after DNA breaks. In addition, this work establishes that NRP1 binds to cytochrome c, thereby preventing the former from binding to histones. Since NRP1 interacts with cytochrome c at its earmuff domain, that is, its histone-binding domain, cytochrome c thus competes with core histones and hampers the activity of NRP1 as a histone chaperone. Altogether, the results obtained indicate that the underlying molecular mechanisms in nucleosome disassembly/reassembly are highly conserved throughout evolution, as inferred from the similar inhibition of plant NRP1 and human SET/TAF-Iβ by cytochrome c during DNA damage response.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit Institute of Physical Chemistry Rocasolano (IQFR)-BIFI-Spanish National Research Council (CSIC), University of Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain.,Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); and Aragon Agency for Research and Development (ARAID), Regional Government of Aragon, Maria de Luna 11, 50018 Zaragoza, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
30
|
Fatakia SN, Kulashreshtha M, Mehta IS, Rao BJ. Chromosome territory relocation paradigm during DNA damage response: Some insights from molecular biology to physics. Nucleus 2017. [PMID: 28640660 DOI: 10.1080/19491034.2017.1313938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Among the many facets of DNA damage response (DDR), relocation of chromosome territories (CTs) is most intriguing. We have previously reported that cisplatin induced DDR in human dermal fibroblasts led to relocation of CTs 12, 15 from the nuclear periphery to its interior while CTs 19, 17 repositioned from the interior to its periphery. Studies of CT relocation remain nascent as we begin unraveling the role of key players in DDR to demonstrate its mechanistic basis. Consolidating our recent reports, we argue that γH2AX-signaling leads to enhanced recruitment of nuclear myosin 1 (NM1) to chromatin, which via its motor function, results in CT repositioning. Next, we invoke a novel systems-level theory that subsumed CTs as pairs, not solo entities, to present the physical basis for plasticity in interphase CT arrangement. Subsequently, we posited that our systems-level theory describes a unified physical basis for non-random positioning of CTs in interphase nuclei across disparate eukaryotes.
Collapse
Affiliation(s)
- Sarosh N Fatakia
- a Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai , Maharashtra , India
| | - Mugdha Kulashreshtha
- a Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai , Maharashtra , India
| | - Ishita S Mehta
- a Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai , Maharashtra , India.,b UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E) , Mumbai , Maharashtra , India
| | - Basuthkar J Rao
- a Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai , Maharashtra , India
| |
Collapse
|
31
|
Residues in the Nucleosome Acidic Patch Regulate Histone Occupancy and Are Important for FACT Binding in Saccharomyces cerevisiae. Genetics 2017; 206:1339-1348. [PMID: 28468903 DOI: 10.1534/genetics.117.201939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/22/2017] [Indexed: 01/02/2023] Open
Abstract
The essential histone chaperone FACT plays a critical role in DNA replication, repair, and transcription, primarily by binding to histone H2A-H2B dimers and regulating their assembly into nucleosomes. While FACT histone chaperone activity has been extensively studied, the exact nature of the H2A and H2B residues important for FACT binding remains controversial. In this study, we characterized the functions of residues in the histone H2A and H2B acidic patch, which is important for binding many chromatin-associated factors. We found that mutations in essential acidic patch residues cause a defect in histone occupancy in yeast, even though most of these histone mutants are expressed normally in yeast and form stable nucleosomes in vitro Instead, we show that two acidic patch residues, H2B L109 and H2A E57, are important for histone binding to FACT in vivo We systematically screened mutants in other H2A and H2B residues previously suspected to be important for FACT binding and confirmed the importance of H2B M62 using an in-vivo FACT-binding assay. Furthermore, we show that, like deletion mutants in FACT subunits, an H2A E57 and H2B M62 double mutant is lethal in yeast. In summary, we show that residues in the nucleosome acidic patch promote histone occupancy and are important for FACT binding to H2A-H2B dimers in yeast.
Collapse
|
32
|
Lorković ZJ, Park C, Goiser M, Jiang D, Kurzbauer MT, Schlögelhofer P, Berger F. Compartmentalization of DNA Damage Response between Heterochromatin and Euchromatin Is Mediated by Distinct H2A Histone Variants. Curr Biol 2017; 27:1192-1199. [PMID: 28392109 DOI: 10.1016/j.cub.2017.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/31/2022]
Abstract
DNA double-strand break (DSB) repair depends on the ataxia telangiectasia mutated (ATM) kinase that phosphorylates the conserved C-terminal SQ motif present in the histone variant H2A.X [1-7]. In constitutive heterochromatin of mammals, DSB repair is delayed and relies on phosphorylation of the proteins HP1 and KAP1 by ATM [2, 8-14]. However, KAP1 is not conserved in plants and the HP1-related protein Like-HP1 (LHP1) is not localized at constitutive heterochromatin [15], suggesting that in plants, alternative mechanisms could be responsible for repair of DSBs in heterochromatin. In Arabidopsis, constitutive heterochromatin is marked by H3K9 methylation and the plant-specific histone variants H2A.W, which are distinguished by their C-terminal motif KSPKK and required for heterochromatin compaction [16-18]. We report that the Arabidopsis histone variant H2A.W.7 is confined to heterochromatin and carries a SQ motif that is phosphorylated by ATM. In response to DNA damage, phosphorylation of H2A.W.7 takes place in heterochromatin, while H2A.X phosphorylation takes place primarily in euchromatin. We propose that H2A.W.7 evolved in addition to H2A.X to facilitate DNA damage response in highly condensed heterochromatin, thus playing a role similar to KAP1 and HP1 phosphorylation in mammals. These data support the idea of the functional diversification of histone variants and their role in spatial compartmentalization of chromatin-related functions in eukaryotes.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Chulmin Park
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Malgorzata Goiser
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Danhua Jiang
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Marie-Therese Kurzbauer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
33
|
Izumi Y, Fujii K, Yamamoto S, Matsuo K, Namatame H, Taniguchi M, Yokoya A. DNA damage response induces structural alterations in histone H3-H4. JOURNAL OF RADIATION RESEARCH 2017; 58:59-65. [PMID: 27672100 PMCID: PMC5321191 DOI: 10.1093/jrr/rrw086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 05/31/2023]
Abstract
Synchrotron-radiation circular-dichroism spectroscopy was used to reveal that the DNA damage response induces a decrement of α-helix and an increment of β-strand contents of histone H3-H4 extracted from X-ray-irradiated human HeLa cells. The trend of the structural alteration was qualitatively opposite to that of our previously reported results for histone H2A-H2B. These results strongly suggest that histones share roles in DNA damage responses, particularly in DNA repair processes and chromatin remodeling, via a specific structural alteration of each histone.
Collapse
Affiliation(s)
- Yudai Izumi
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Kentaro Fujii
- National Institutes for Quantum and Radiological Science and Technology (QST) 2-4, Ooaza-Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Satoshi Yamamoto
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-0056, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Hirofumi Namatame
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Masaki Taniguchi
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Akinari Yokoya
- National Institutes for Quantum and Radiological Science and Technology (QST) 2-4, Ooaza-Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-0056, Japan
| |
Collapse
|
34
|
Canonical and Variant Forms of Histone H3 Are Deposited onto the Human Cytomegalovirus Genome during Lytic and Latent Infections. J Virol 2016; 90:10309-10320. [PMID: 27605676 DOI: 10.1128/jvi.01220-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/30/2016] [Indexed: 01/16/2023] Open
Abstract
Chromatin is the nucleoprotein complex that protects and compacts eukaryotic genomes. It is responsible for a large part of the epigenetic control of transcription. The genomes of DNA viruses such as human cytomegalovirus (HCMV) are devoid of histones within virions but are chromatinized and epigenetically regulated following delivery to the host cell nucleus. How chromatin is initially assembled on viral genomes and which variant forms of the core histone proteins are deposited are incompletely understood. We monitored the deposition of both ectopically expressed and endogenous histones H3.1 and H3.2 (collectively, H3.1/2) and H3.3 during lytic and latent HCMV infections. Here, we show that they are deposited on HCMV genomes during lytic and latent infections, suggesting similar mechanisms of viral chromatin assembly during the different infection types and indicating that both canonical and variant core histones may be important modulators of infecting viral genomes. We further show that association of both H3.1/2 and H3.3 occurs independent of viral DNA synthesis or de novo viral gene expression, implicating cellular factors and/or virion components in the formation of chromatin on virion-delivered genomes during both lytic and latent infections. IMPORTANCE It is well established that infecting herpesvirus genomes are chromatinized upon entry into the host cell nucleus. Why or how this occurs is a mystery. It is important to know why they are chromatinized in order to better understand cellular pathogen recognition (DNA sensing) pathways and viral fate determinations (lytic or latent) and to anticipate how artificially modulating chromatinization may impact viral infections. It is important to know how the genomes are chromatinized in order to potentially modulate the process for therapeutic effect. Our work showing that HCMV genomes are loaded with canonical and variant H3 histones during both lytic and latent infections strengthens the hypothesis that chromatinization pathways are similar between the two infection types, implicates virion or cellular factors in this process, and exposes the possibility that histone variants, in addition to posttranslational modification, may impact viral gene expression. These revelations are important to understanding and intelligently intervening in herpesvirus infections.
Collapse
|
35
|
Sellou H, Lebeaupin T, Chapuis C, Smith R, Hegele A, Singh HR, Kozlowski M, Bultmann S, Ladurner AG, Timinszky G, Huet S. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage. Mol Biol Cell 2016; 27:3791-3799. [PMID: 27733626 PMCID: PMC5170603 DOI: 10.1091/mbc.e16-05-0269] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/15/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
PARP1 and its effector, the ATP-dependent chromatin remodeler Alc1/Chd1L, are identified as key players during the rapid chromatin relaxation at DNA damage sites. Chromatin relaxation is one of the earliest cellular responses to DNA damage. However, what determines these structural changes, including their ATP requirement, is not well understood. Using live-cell imaging and laser microirradiation to induce DNA lesions, we show that the local chromatin relaxation at DNA damage sites is regulated by PARP1 enzymatic activity. We also report that H1 is mobilized at DNA damage sites, but, since this mobilization is largely independent of poly(ADP-ribosyl)ation, it cannot solely explain the chromatin relaxation. Finally, we demonstrate the involvement of Alc1, a poly(ADP-ribose)- and ATP-dependent remodeler, in the chromatin-relaxation process. Deletion of Alc1 impairs chromatin relaxation after DNA damage, while its overexpression strongly enhances relaxation. Altogether our results identify Alc1 as an important player in the fast kinetics of the NAD+- and ATP-dependent chromatin relaxation upon DNA damage in vivo.
Collapse
Affiliation(s)
- Hafida Sellou
- CNRS, UMR 6290, Institut Génétique et Développement de Rennes, 35043 Rennes, France.,Université de Rennes 1, Structure fédérative de recherche Biosit, 35043 Rennes, France.,Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Théo Lebeaupin
- CNRS, UMR 6290, Institut Génétique et Développement de Rennes, 35043 Rennes, France.,Université de Rennes 1, Structure fédérative de recherche Biosit, 35043 Rennes, France.,Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Catherine Chapuis
- CNRS, UMR 6290, Institut Génétique et Développement de Rennes, 35043 Rennes, France.,Université de Rennes 1, Structure fédérative de recherche Biosit, 35043 Rennes, France
| | - Rebecca Smith
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anna Hegele
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Hari R Singh
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Marek Kozlowski
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Sebastian Bultmann
- Department of Biology II, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Andreas G Ladurner
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Biomedical Center Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gyula Timinszky
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Sébastien Huet
- CNRS, UMR 6290, Institut Génétique et Développement de Rennes, 35043 Rennes, France .,Université de Rennes 1, Structure fédérative de recherche Biosit, 35043 Rennes, France
| |
Collapse
|
36
|
Yu S, Evans K, van Eijk P, Bennett M, Webster RM, Leadbitter M, Teng Y, Waters R, Jackson SP, Reed SH. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin. Genome Res 2016; 26:1376-1387. [PMID: 27470111 PMCID: PMC5052058 DOI: 10.1101/gr.209106.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023]
Abstract
The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome-NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome.
Collapse
Affiliation(s)
- Shirong Yu
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Katie Evans
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Patrick van Eijk
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Mark Bennett
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Richard M Webster
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Matthew Leadbitter
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Yumin Teng
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Raymond Waters
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Stephen P Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom
| | - Simon H Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| |
Collapse
|
37
|
Structure Change from β-Strand and Turn to α-Helix in Histone H2A-H2B Induced by DNA Damage Response. Biophys J 2016; 111:69-78. [PMID: 27410735 DOI: 10.1016/j.bpj.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 11/23/2022] Open
Abstract
Using synchrotron radiation-based circular dichroism spectroscopy, we found that the DNA damage response induces an increase of α-helix structure and a decrease of β-strand and turn structures in histone H2A-H2B extracted from x-irradiated human HeLa cells. The structural alterations correspond to the assumption that an average of eight amino acid residues form new α-helix structures at 310 K. We propose the structural transition from β-strand and turn structures to an α-helix structure in H2A-H2B as a novel, to our knowledge, process involved in the DNA damage response.
Collapse
|
38
|
Yard BD, Reilly NM, Bedenbaugh MK, Pittman DL. RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair and maintaining chromosome integrity. DNA Repair (Amst) 2016; 42:82-93. [PMID: 27161866 PMCID: PMC4884500 DOI: 10.1016/j.dnarep.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 11/26/2022]
Abstract
The RAD51 family is integral for homologous recombination (HR) mediated DNA repair and maintaining chromosome integrity. RAD51D, the fourth member of the family, is a known ovarian cancer susceptibility gene and required for the repair of interstrand crosslink DNA damage and preserving chromosomal stability. In this report, we describe the RNF138 E3 ubiquitin ligase that interacts with and ubiquitinates the RAD51D HR protein. RNF138 is a member of an E3 ligase family that contains an amino-terminal RING finger domain and a putative carboxyl-terminal ubiquitin interaction motif. In mammalian cells, depletion of RNF138 increased the stability of the RAD51D protein, suggesting that RNF138 governs ubiquitin-proteasome-mediated degradation of RAD51D. However, RNF138 depletion conferred sensitivity to DNA damaging agents, reduced RAD51 focus formation, and increased chromosomal instability. Site-specific mutagenesis of the RNF138 RING finger domain demonstrated that it was necessary for RAD51D ubiquitination. Presence of RNF138 also enhanced the interaction between RAD51D and a known interacting RAD51 family member XRCC2 in a yeast three-hybrid assay. Therefore, RNF138 is a newly identified regulatory component of the HR mediated DNA repair pathway that has implications toward understanding how ubiquitination modifies the functions of the RAD51 paralog protein complex.
Collapse
Affiliation(s)
- Brian D Yard
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA
| | - Nicole M Reilly
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael K Bedenbaugh
- Department of Pharmacy Services, Greenville Health System, Greenville, SC 29615, USA
| | - Douglas L Pittman
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
39
|
Halaweish I, Nikolian V, Georgoff P, Li Y, Alam HB. Creating a "Prosurvival Phenotype" Through Histone Deacetylase Inhibition: Past, Present, and Future. Shock 2016; 44 Suppl 1:6-16. [PMID: 25565645 DOI: 10.1097/shk.0000000000000319] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic injuries and their sequelae represent a major source of mortality in the United States and globally. Initial treatment for shock, traumatic brain injury, and polytrauma is limited to resuscitation fluids to replace lost volume. To date, there are no treatments with inherent prosurvival properties. Our laboratory has investigated the use of histone deacetylase inhibitors (HDACIs) as pharmacological agents to improve survival. This class of drugs acts through posttranslational protein modifications and is a direct regulator of chromatin structure and function, as well as the function of numerous cytoplasmic proteins. In models of hemorrhagic shock and polytrauma, administration of HDACIs offers a significant survival advantage, even in the absence of fluid resuscitation. Positive results have also been shown in two-hit models of hemorrhage and sepsis and in hemorrhagic shock combined with traumatic brain injury. Accumulating data generated by our group and others continue to support the use of HDACIs for the creation of a prosurvival phenotype. With further research and clinical trials, HDACIs have the potential to be an integral tool in the treatment of trauma, especially in the prehospital phase.
Collapse
Affiliation(s)
- Ihab Halaweish
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | |
Collapse
|
40
|
Recruitment of Saccharomyces cerevisiae Cmr1/Ydl156w to Coding Regions Promotes Transcription Genome Wide. PLoS One 2016; 11:e0148897. [PMID: 26848854 PMCID: PMC4744024 DOI: 10.1371/journal.pone.0148897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/25/2016] [Indexed: 12/03/2022] Open
Abstract
Cmr1 (changed mutation rate 1) is a largely uncharacterized nuclear protein that has recently emerged in several global genetic interaction and protein localization studies. It clusters with proteins involved in DNA damage and replication stress response, suggesting a role in maintaining genome integrity. Under conditions of proteasome inhibition or replication stress, this protein localizes to distinct sub-nuclear foci termed as intranuclear quality control (INQ) compartments, which sequester proteins for their subsequent degradation. Interestingly, it also interacts with histones, chromatin remodelers and modifiers, as well as with proteins involved in transcription including subunits of RNA Pol I and Pol III, but not with those of Pol II. It is not known whether Cmr1 plays a role in regulating transcription of Pol II target genes. Here, we show that Cmr1 is recruited to the coding regions of transcribed genes of S. cerevisiae. Cmr1 occupancy correlates with the Pol II occupancy genome-wide, indicating that it is recruited to coding sequences in a transcription-dependent manner. Cmr1-enriched genes include Gcn4 targets and ribosomal protein genes. Furthermore, our results show that Cmr1 recruitment to coding sequences is stimulated by Pol II CTD kinase, Kin28, and the histone deacetylases, Rpd3 and Hos2. Finally, our genome-wide analyses implicate Cmr1 in regulating Pol II occupancy at transcribed coding sequences. However, it is dispensable for maintaining co-transcriptional histone occupancy and histone modification (acetylation and methylation). Collectively, our results show that Cmr1 facilitates transcription by directly engaging with transcribed coding regions.
Collapse
|
41
|
Vermeij WP, Hoeijmakers JHJ, Pothof J. Genome Integrity in Aging: Human Syndromes, Mouse Models, and Therapeutic Options. Annu Rev Pharmacol Toxicol 2015; 56:427-45. [PMID: 26514200 DOI: 10.1146/annurev-pharmtox-010814-124316] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human syndromes and mouse mutants that exhibit accelerated but bona fide aging in multiple organs and tissues have been invaluable for the identification of nine denominators of aging: telomere attrition, genome instability, epigenetic alterations, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular communication, loss of proteostasis, cellular senescence and adult stem cell exhaustion. However, whether and how these instigators of aging interrelate or whether they have one root cause is currently largely unknown. Rare human progeroid syndromes and corresponding mouse mutants with resolved genetic defects highlight the dominant importance of genome maintenance for aging. A second class of aging-related disorders reveals a cross connection with metabolism. As genome maintenance and metabolism are closely interconnected, they may constitute the main underlying biology of aging. This review focuses on the role of genome stability in aging, its crosstalk with metabolism, and options for nutritional and/or pharmaceutical interventions that delay age-related pathology.
Collapse
Affiliation(s)
- Wilbert P Vermeij
- Department of Genetics, Erasmus University Medical Center, Postbus 2040, 3000 CA, Rotterdam, The Netherlands; , ,
| | - Jan H J Hoeijmakers
- Department of Genetics, Erasmus University Medical Center, Postbus 2040, 3000 CA, Rotterdam, The Netherlands; , ,
| | - Joris Pothof
- Department of Genetics, Erasmus University Medical Center, Postbus 2040, 3000 CA, Rotterdam, The Netherlands; , ,
| |
Collapse
|
42
|
Izumi Y, Yamamoto S, Fujii K, Yokoya A. Secondary Structure Alterations of Histones H2A and H2B in X-Irradiated Human Cancer Cells: Altered Histones Persist in Cells for at Least 24 Hours. Radiat Res 2015; 184:554-8. [PMID: 26488755 DOI: 10.1667/rr14071.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We measured and compared the circular dichroism (CD) spectra and secondary structures of histone proteins H2A, H2B and their variants extracted from X-irradiated and unirradiated human HeLa cells. Compared to unirradiated cells, a relative increase in α-helix structure and decrease in other secondary structures was observed in X-irradiated cells. These structural alterations persisted for at least 24 h, which is substantially longer than the 2 h generally known to be required for DNA double-strand break repair.
Collapse
Affiliation(s)
- Yudai Izumi
- a Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Japan
| | | | - Kentaro Fujii
- a Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Japan
| | - Akinari Yokoya
- a Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Japan.,c Graduate School of Science and Engineering, Ibaraki University, Japan
| |
Collapse
|
43
|
Schick S, Fournier D, Thakurela S, Sahu SK, Garding A, Tiwari VK. Dynamics of chromatin accessibility and epigenetic state in response to UV damage. J Cell Sci 2015; 128:4380-94. [PMID: 26446258 DOI: 10.1242/jcs.173633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/29/2015] [Indexed: 12/27/2022] Open
Abstract
Epigenetic mechanisms determine the access of regulatory factors to DNA during events such as transcription and the DNA damage response. However, the global response of histone modifications and chromatin accessibility to UV exposure remains poorly understood. Here, we report that UV exposure results in a genome-wide reduction in chromatin accessibility, while the distribution of the active regulatory mark H3K27ac undergoes massive reorganization. Genomic loci subjected to epigenetic reprogramming upon UV exposure represent target sites for sequence-specific transcription factors. Most of these are distal regulatory regions, highlighting their importance in the cellular response to UV exposure. Furthermore, UV exposure results in an extensive reorganization of super-enhancers, accompanied by expression changes of associated genes, which may in part contribute to the stress response. Taken together, our study provides the first comprehensive resource for genome-wide chromatin changes upon UV irradiation in relation to gene expression and elucidates new aspects of this relationship.
Collapse
Affiliation(s)
- Sandra Schick
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst) 2015; 36:122-136. [PMID: 26411874 DOI: 10.1016/j.dnarep.2015.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat 'individualistic' impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
45
|
Abstract
Eukaryotic genomes are packaged into chromatin, which is the physiological substrate for all DNA transactions, including DNA damage and repair. Chromatin organization imposes major constraints on DNA damage repair and thus undergoes critical rearrangements during the repair process. These rearrangements have been integrated into the "access-repair-restore" (ARR) model, which provides a molecular framework for chromatin dynamics in response to DNA damage. Here, we take a historical perspective on the elaboration of this model and describe the molecular players involved in damaged chromatin reorganization in human cells. In particular, we present our current knowledge of chromatin assembly coupled to DNA damage repair, focusing on the role of histone variants and their dedicated chaperones. Finally, we discuss the impact of chromatin rearrangements after DNA damage on chromatin function and epigenome maintenance.
Collapse
|
46
|
Bujdoso R, Landgraf M, Jackson WS, Thackray AM. Prion-induced neurotoxicity: Possible role for cell cycle activity and DNA damage response. World J Virol 2015; 4:188-197. [PMID: 26279981 PMCID: PMC4534811 DOI: 10.5501/wjv.v4.i3.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/19/2015] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
Protein misfolding neurodegenerative diseases arise through neurotoxicity induced by aggregation of host proteins. These conditions include Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, motor neuron disease, tauopathies and prion diseases. Collectively, these conditions are a challenge to society because of the increasing aged population and through the real threat to human food security by animal prion diseases. It is therefore important to understand the cellular and molecular mechanisms that underlie protein misfolding-induced neurotoxicity as this will form the basis for designing strategies to alleviate their burden. Prion diseases are an important paradigm for neurodegenerative conditions in general since several of these maladies have now been shown to display prion-like phenomena. Increasingly, cell cycle activity and the DNA damage response are recognised as cellular events that participate in the neurotoxic process of various neurodegenerative diseases, and their associated animal models, which suggests they are truly involved in the pathogenic process and are not merely epiphenomena. Here we review the role of cell cycle activity and the DNA damage response in neurodegeneration associated with protein misfolding diseases, and suggest that these events contribute towards prion-induced neurotoxicity. In doing so, we highlight PrP transgenic Drosophila as a tractable model for the genetic analysis of transmissible mammalian prion disease.
Collapse
|
47
|
Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2015; 2015:587983. [PMID: 26339624 PMCID: PMC4538403 DOI: 10.1155/2015/587983] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Epigenetics provides the key to transform the genetic information into phenotype and because of its reversibility it is considered an ideal target for therapeutic interventions. This paper reviews the basic mechanisms of epigenetic control: DNA methylation, histone modifications, chromatin remodeling, and ncRNA expression and their role in disease development. We describe also the influence of the environment, lifestyle, nutritional habits, and the psychological influence on epigenetic marks and how these factors are related to cancer and other diseases development. Finally we discuss the potential use of natural epigenetic modifiers in the chemoprevention of cancer to link together public health, environment, and lifestyle.
Collapse
|
48
|
Donà M, Mittelsten Scheid O. DNA Damage Repair in the Context of Plant Chromatin. PLANT PHYSIOLOGY 2015; 168:1206-18. [PMID: 26089404 PMCID: PMC4528755 DOI: 10.1104/pp.15.00538] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/17/2015] [Indexed: 05/03/2023]
Abstract
The integrity of DNA molecules is constantly challenged. All organisms have developed mechanisms to detect and repair multiple types of DNA lesions. The basic principles of DNA damage repair (DDR) in prokaryotes and unicellular and multicellular eukaryotes are similar, but the association of DNA with nucleosomes in eukaryotic chromatin requires mechanisms that allow access of repair enzymes to the lesions. This is achieved by chromatin-remodeling factors, and their necessity for efficient DDR has recently been demonstrated for several organisms and repair pathways. Plants share many features of chromatin organization and DNA repair with fungi and animals, but they differ in other, important details, which are both interesting and relevant for our understanding of genome stability and genetic diversity. In this Update, we compare the knowledge of the role of chromatin and chromatin-modifying factors during DDR in plants with equivalent systems in yeast and humans. We emphasize plant-specific elements and discuss possible implications.
Collapse
Affiliation(s)
- Mattia Donà
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
49
|
Abstract
DNA damage poses a major threat to cell function and viability by compromising both genome and epigenome integrity. The DNA damage response indeed operates in the context of chromatin and relies on dynamic changes in chromatin organization. Here, we review the molecular bases of chromatin alterations in response to DNA damage, focusing on core histone mobilization in mammalian cells. Building on our current view of nucleosome dynamics in response to DNA damage, we highlight open challenges and avenues for future development. In particular, we discuss the different levels of regulation of chromatin plasticity during the DNA damage response and their potential impact on cell function and epigenome maintenance.
Collapse
|
50
|
The danger model approach to the pathogenesis of the rheumatic diseases. J Immunol Res 2015; 2015:506089. [PMID: 25973436 PMCID: PMC4417989 DOI: 10.1155/2015/506089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022] Open
Abstract
The danger model was proposed by Polly Matzinger as complement to the traditional self-non-self- (SNS-) model to explain the immunoreactivity. The danger model proposes a central role of the tissular cells' discomfort as an element to prime the immune response processes in opposition to the traditional SNS-model where foreignness is a prerequisite. However recent insights in the proteomics of diverse tissular cells have revealed that under stressful conditions they have a significant potential to initiate, coordinate, and perpetuate autoimmune processes, in many cases, ruling over the adaptive immune response cells; this ruling potential can also be confirmed by observations in several genetically manipulated animal models. Here, we review the pathogenesis of rheumatic diseases such as systemic lupus erythematous, rheumatoid arthritis, spondyloarthritis including ankylosing spondylitis, psoriasis, and Crohn's disease and provide realistic approaches based on the logic of the danger model. We assume that tissular dysfunction is a prerequisite for chronic autoimmunity and propose two genetically conferred hypothetical roles for the tissular cells causing the disease: (A) the Impaired cell and (B) the paranoid cell. Both roles are not mutually exclusive. Some examples in human disease and in animal models are provided based on current evidence.
Collapse
|