1
|
Fraga OT, Silva LAC, Silva JCF, Bevitori R, Silva FDA, Pereira WA, Reis PAB, Fontes EPB. Expansion and diversification of the Glycine max (Gm) ERD15-like subfamily of the PAM2-like superfamily. PLANTA 2024; 260:108. [PMID: 39333439 DOI: 10.1007/s00425-024-04538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
MAIN CONCLUSION Despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and diverge partially in stress signaling functions. The PAM2 motif represents a binding site for poly (A)-binding proteins (PABPs), often associated with RNA metabolism regulation. The PAM2-containing protein ERD15 stands out as a critical regulator of diverse stress responses in plants. Despite the relevance of the PAM2 motif, a comprehensive analysis of the PAM2 superfamily and ERD15-like subfamily in the plant kingdom is lacking. Here, we provide an extensive in silico analysis of the PAM2 superfamily and the ERD15-like subfamily in soybean, using Arabidopsis and rice sequences as prototypes. The Glycine max ERD15-like subfamily members were clustered in pairs, likely originating from DNA-based gene duplication, as the paralogs display high sequence conservation, similar exon/intron genome organization, and are undergoing purifying selection. Complementation analyses of an aterd15 mutant demonstrated that the plant ERD15-like subfamily members are functionally redundant in response to drought, osmotic stress, and dark-induced senescence. Nevertheless, the soybean members displayed differential expression profiles, biochemical activity, and subcellular localization, consistent with functional diversification. The expression profiles of Glyma04G138600 under salicylic acid (SA) and abscisic acid (ABA) treatments differed oppositely from those of the other GmERD15-like genes. Abiotic stress-induced coexpression analysis with soybean PABPs showed that Glyma04G138600 was clustered separately from other GmERD15s. In contrast to the AtERD15 stress-induced nuclear redistribution, Glyma04G138600 and Glyma02G260800 localized to the cytoplasm, while Glyma03G131900 fractionated between the cytoplasm and nucleus under normal and stress conditions. These data collectively indicate that despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and may diverge partially in stress signaling functions.
Collapse
Affiliation(s)
- Otto T Fraga
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Lucas A C Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - José Cleydson F Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Rosângela Bevitori
- Biotechnology Laboratory, Embrapa Rice and Beans, Rodovia GO-462, Km 12, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | - Fredy D A Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Welison A Pereira
- Department of Biology, Universidade Federal de Lavras, Lavras, 37200-900, Brazil
| | - Pedro A B Reis
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil.
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil.
| |
Collapse
|
2
|
Hodáková Z, Grishkovskaya I, Brunner HL, Bolhuis DL, Belačić K, Schleiffer A, Kotisch H, Brown NG, Haselbach D. Cryo-EM structure of the chain-elongating E3 ubiquitin ligase UBR5. EMBO J 2023; 42:e113348. [PMID: 37409633 PMCID: PMC10425842 DOI: 10.15252/embj.2022113348] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
UBR5 is a nuclear E3 ligase that ubiquitinates a vast range of substrates for proteasomal degradation. This HECT domain-containing ubiquitin ligase has recently been identified as an important regulator of oncogenes, e.g., MYC, but little is known about its structure or mechanisms of substrate engagement and ubiquitination. Here, we present the cryo-EM structure of human UBR5, revealing an α-solenoid scaffold with numerous protein-protein interacting motifs, assembled into an antiparallel dimer that adopts further oligomeric states. Using cryo-EM processing tools, we observe the dynamic nature of the UBR5 catalytic domain, which we postulate is important for its enzymatic activity. We characterise the proteasomal nuclear import factor AKIRIN2 as an interacting protein and propose UBR5 as an efficient ubiquitin chain elongator. This preference for ubiquitinated substrates and several distinct domains for protein-protein interactions may explain how UBR5 is linked to several different signalling pathways and cancers. Together, our data expand on the limited knowledge of the structure and function of HECT E3 ligases.
Collapse
Affiliation(s)
- Zuzana Hodáková
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| | - Hanna L Brunner
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Katarina Belačić
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| | - Harald Kotisch
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), ViennaBioCenter (VBC)ViennaAustria
| |
Collapse
|
3
|
Ali E, Kalita MJ, Kalita S, Talukdar J, Deka AJ, Sultana J, Choudhury BN, Baruah MN, Bhattacharjee S, Medhi S. Upregulation of anaphase promoting complex (APC) 7 as a prognostic marker for esophageal squamous cell carcinoma: A hospital based study. Heliyon 2022; 8:e09722. [PMID: 35761933 PMCID: PMC9233225 DOI: 10.1016/j.heliyon.2022.e09722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/14/2021] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Esophageal cancer is the sixth leading cause of cancer death, and esophageal squamous cell carcinoma (ESCC) is the most prevalent type worldwide, with a poor prognosis due to late diagnosis. The search for new molecular prognostic biomarkers revealed that dysregulation of anaphase promoting complex/cyclosome (APC/C) activation due to altered expression of APC molecules might lead to perturbed mitotic progression leading to malignancy. We analyzed the expression of the four different subunits of the APC/C complex-APC3, APC4, APC5 and APC7-by Real Time Polymerase Chain Reaction (RT-PCR). The findings were then correlated with clinicopathological parameters and different lifestyle factors. Significant upregulation of APC7 (tissue and blood: N = 50; 3.72 ± 1.21 and 4.45 ± 1.18, respectively) and APC3 (tissue and blood: N = 52 and 55 and 4.50 ± 1.41 and 4.58 ± 1.06, respectively) suggests their role in uncontrolled cell proliferation. In addition to their association with increasing age, their significant association with tumor size, node stage (only APC7 (p < 0.05)), and dysphagia grade supports a potential role in tumorigenic transformation in ESCC. Furthermore, several exclusive lifestyle-associated factors play a crucial supporting role in the development of ESCC in the Northeast Indian population. Various lifestyle factors, such as the duration of smoking, tobacco and betel nut consumption, and the duration of alcohol consumption, are significantly associated with the expression of APC. Analysis based on Pearson's correlation coefficient indicated a positive correlation among the gene expression levels ofAPC3 (both blood and tissue), APC5 (tissue) and APC3 (tissue), APC7 (tissue) and APC3 (tissue), and APC7 (tissue) and APC3 (blood). Additionally, a positive correlation was found between APC7 expression in blood and tissue samples. However, no significant correlation was found between APC 7 expression and APC4 and APC5 expression in either blood or tissue samples.
Collapse
Affiliation(s)
- Eyashin Ali
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, Assam, India.,Department of Gastroenterology, Gauhati Medical College Hospital, Guwahati, Assam, India
| | - Manash Jyoti Kalita
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, Assam, India
| | - Simanta Kalita
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, Assam, India
| | - Jayasree Talukdar
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, Assam, India.,Department of Gastroenterology, Gauhati Medical College Hospital, Guwahati, Assam, India
| | - Ankur Jyoti Deka
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, Assam, India
| | - Jasmin Sultana
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, Assam, India
| | | | - Munindra Narayan Baruah
- Department of Head and Neck Oncology, North East Cancer Hospital and Research Institute, Jorabat, Guwahati, India
| | | | - Subhash Medhi
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
4
|
Lee SB, Garofano L, Ko A, D'Angelo F, Frangaj B, Sommer D, Gan Q, Kim K, Cardozo T, Iavarone A, Lasorella A. Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription. Nat Commun 2022; 13:2089. [PMID: 35440621 PMCID: PMC9018835 DOI: 10.1038/s41467-022-29502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/13/2022] [Indexed: 12/05/2022] Open
Abstract
Tissue-specific transcriptional activity is silenced in mitotic cells but it remains unclear whether the mitotic regulatory machinery interacts with tissue-specific transcriptional programs. We show that such cross-talk involves the controlled interaction between core subunits of the anaphase-promoting complex (APC) and the ID2 substrate. The N-terminus of ID2 is independently and structurally compatible with a pocket composed of core APC/C subunits that may optimally orient ID2 onto the APCCDH1 complex. Phosphorylation of serine-5 by CDK1 prevented the association of ID2 with core APC, impaired ubiquitylation and stabilized ID2 protein at the mitosis-G1 transition leading to inhibition of basic Helix-Loop-Helix (bHLH)-mediated transcription. The serine-5 phospho-mimetic mutant of ID2 that inefficiently bound core APC remained stable during mitosis, delayed exit from mitosis and reloading of bHLH transcription factors on chromatin. It also locked cells into a "mitotic stem cell" transcriptional state resembling the pluripotent program of embryonic stem cells. The substrates of APCCDH1 SKP2 and Cyclin B1 share with ID2 the phosphorylation-dependent, D-box-independent interaction with core APC. These results reveal a new layer of control of the mechanism by which substrates are recognized by APC.
Collapse
Affiliation(s)
- Sang Bae Lee
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Division of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Danika Sommer
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Qiwen Gan
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, 10032, USA.
- Department of Neurology, Columbia University Medical Center, New York, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA.
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA.
- Department of Pediatrics, Columbia University Medical Center, New York, 10032, USA.
| |
Collapse
|
5
|
Bodrug T, Welsh KA, Hinkle M, Emanuele MJ, Brown NG. Intricate Regulatory Mechanisms of the Anaphase-Promoting Complex/Cyclosome and Its Role in Chromatin Regulation. Front Cell Dev Biol 2021; 9:687515. [PMID: 34109183 PMCID: PMC8182066 DOI: 10.3389/fcell.2021.687515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.
Collapse
Affiliation(s)
- Tatyana Bodrug
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kaeli A Welsh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Megan Hinkle
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Michael J Emanuele
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Nicholas G Brown
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Kamenz J, Qiao R, Yang Q, Ferrell JE. Real-Time Monitoring of APC /C-Mediated Substrate Degradation Using Xenopus laevis Egg Extracts. Methods Mol Biol 2021; 2329:29-38. [PMID: 34085213 PMCID: PMC8750558 DOI: 10.1007/978-1-0716-1538-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C), a large E3 ubiquitin ligase, is a key regulator of mitotic progression. Upon activation in mitosis, the APC/C targets its two essential substrates, securin and cyclin B, for proteasomal destruction. Cyclin B is the activator of cyclin-dependent kinase 1 (Cdk1), the major mitotic kinase, and both cyclin B and securin are safeguards of sister chromatid cohesion. Conversely, the degradation of securin and cyclin B promotes sister chromatid separation and mitotic exit. The negative feedback loop between Cdk1 and APC/C-Cdk1 activating the APC/C and the APC/C inactivating Cdk1-constitutes the core of the biochemical cell cycle oscillator.Since its discovery three decades ago, the mechanisms of APC /C regulation have been intensively studied, and several in vitro assays exist to measure the activity of the APC /C in different activation states. However, most of these assays require the purification of numerous recombinant enzymes involved in the ubiquitylation process (e.g., ubiquitin, the E1 and E2 ubiquitin ligases, and the APC /C) and/or the use of radioactive isotopes. In this chapter, we describe an easy-to-implement method to continuously measure APC /C activity in Xenopus laevis egg extracts using APC /C substrates fused to fluorescent proteins and a fluorescence plate reader. Because the egg extract provides all important enzymes and proteins for the reaction, this method can be used largely without the need for recombinant protein purification. It can also easily be adapted to test the activity of APC /C mutants or investigate other mechanisms of APC /C regulation.
Collapse
Affiliation(s)
- Julia Kamenz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | - Renping Qiao
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Kamenz J, Gelens L, Ferrell JE. Bistable, Biphasic Regulation of PP2A-B55 Accounts for the Dynamics of Mitotic Substrate Phosphorylation. Curr Biol 2020; 31:794-808.e6. [PMID: 33357450 PMCID: PMC7904671 DOI: 10.1016/j.cub.2020.11.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
The phosphorylation of mitotic proteins is bistable, which contributes to the decisiveness of the transitions into and out of M phase. The bistability in substrate phosphorylation has been attributed to bistability in the activation of the cyclin-dependent kinase Cdk1. However, more recently it has been suggested that bistability also arises from positive feedback in the regulation of the Cdk1-counteracting phosphatase PP2A-B55. Here, we demonstrate biochemically using Xenopus laevis egg extracts that the Cdk1-counter-acting phosphatase PP2A-B55 functions as a bistable switch, even when the bistability of Cdk1 activation is suppressed. In addition, Cdk1 regulates PP2A-B55 in a biphasic manner; low concentrations of Cdk1 activate PP2A-B55 and high concentrations inactivate it. As a consequence of this incoherent feedforward regulation, PP2A-B55 activity rises concurrently with Cdk1 activity during interphase and suppresses substrate phosphorylation. PP2A-B55 activity is then sharply downregulated at the onset of mitosis. During mitotic exit, Cdk1 activity initially falls with no obvious change in substrate phosphorylation; dephosphorylation then commences once PP2A-B55 spikes in activity. These findings suggest that changes in Cdk1 activity are permissive for mitotic entry and exit but that the changes in PP2A-B55 activity are the ultimate trigger. Mitotic transitions are accompanied by drastic changes in the phosphorylation state of proteins. Kamenz et al. demonstrate biochemically that the major mitotic phosphatase PP2A-B55 is regulated by incoherent feedforward and double-negative feedback loops to promote rapid and switch-like mitotic entry and exit.
Collapse
Affiliation(s)
- Julia Kamenz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA.
| | - Lendert Gelens
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA; Laboratory of Dynamics in Biological Systems, KU Leuven, Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.
| |
Collapse
|
8
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
9
|
Ubiquitin chain-elongating enzyme UBE2S activates the RING E3 ligase APC/C for substrate priming. Nat Struct Mol Biol 2020; 27:550-560. [PMID: 32393902 PMCID: PMC7293561 DOI: 10.1038/s41594-020-0424-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/25/2020] [Indexed: 01/19/2023]
Abstract
The interplay between E2 and E3 enzymes regulates the polyubiquitination of substrates in eukaryotes. Among the several RING-domain E3 ligases in humans, many utilize two distinct E2s for polyubiquitination. For example, the cell cycle regulatory E3, human Anaphase-Promoting Complex/Cyclosome (APC/C), relies on UBE2C to prime substrates with ubiquitin (Ub) and UBE2S to extend polyubiquitin chains. However, the potential coordination between these steps in ubiquitin chain formation remains undefined. While numerous studies have unveiled how RING E3s stimulate individual E2s for Ub transfer, here we change perspective to describe a case where the chain-elongating E2 UBE2S feeds back and directly stimulates the E3 APC/C to promote substrate priming and subsequent multiubiquitination by UBE2C. Our work reveals an unexpected paradigm for the mechanisms of RING E3-dependent ubiquitination and for the diverse and complex interrelationship between components of the ubiquitination cascade.
Collapse
|
10
|
APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin Cancer Biol 2020; 67:80-91. [PMID: 32165320 DOI: 10.1016/j.semcancer.2020.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.
Collapse
|
11
|
Marashiyan M, Kalhor H, Ganji M, Rahimi H. Effects of tosyl-l-arginine methyl ester (TAME) on the APC/c subunits: An in silico investigation for inhibiting cell cycle. J Mol Graph Model 2020; 97:107563. [PMID: 32066079 DOI: 10.1016/j.jmgm.2020.107563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/11/2020] [Accepted: 02/01/2020] [Indexed: 11/28/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/c) is requisite for controlling mitosis, which is activated by Cdh1 and Cdc20 activators. Dysregulation of APC/c is observed in many cancers and is known as a targeted drug particularly in cancer drug resistance. It was shown that tosyl-l-arginine methyl ester (TAME), via mimicking isoleucine-arginine (IR) tail of co-activators, inhibits APC/c functions. However, structure details and interaction of TAME with APC/c are poorly defined. In the current study, a well-established set of computational methods was used to identify the best binding pocket in order to inhibit APC activity. Therefore, the interaction of IR tail and Cbox of co-activators, as well as TAME as an inhibitor, as an inhibitor, with APC3 and APC8 subunits of APC/c were analyzed, regarding structure, molecular docking, molecular dynamics, and free binding energy. The results indicated that TAME bound to APC3 with a higher binding affinity (∼-7.3 kcal/mol) than APC8 (∼-5.7 kcal/mol). Also, the binding free energy value obtained for the APC3-TAME was -22.25 ± 1.12 kcal/mol. According to binding free energies, van der Waals energy was the major favorable contributor to the ligand binding. These results offer that TAME had more affinity to interact with the APC3 subunit, at the IR binding pocket than the APC8 subunit at the Cbox binding pocket. In conclusion, IR binding pocket can serve as an appropriate potential target for TAME as an inhibitor of APC/c.
Collapse
Affiliation(s)
- Mahya Marashiyan
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hourieh Kalhor
- Cellular and Molecular Research Center,Qom University of Medical Sciences, Qom, Iran
| | - Maziar Ganji
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
Bansal S, Tiwari S. Mechanisms for the temporal regulation of substrate ubiquitination by the anaphase-promoting complex/cyclosome. Cell Div 2019; 14:14. [PMID: 31889987 PMCID: PMC6927175 DOI: 10.1186/s13008-019-0057-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit, multifunctional ubiquitin ligase that controls the temporal degradation of numerous cell cycle regulatory proteins to direct the unidirectional cell cycle phases. Several different mechanisms contribute to ensure the correct order of substrate modification by the APC/C complex. Recent advances in biochemical, biophysical and structural studies of APC/C have provided a deep mechanistic insight into the working of this complex ubiquitin ligase. This complex displays remarkable conformational flexibility in response to various binding partners and post-translational modifications, which together regulate substrate selection and catalysis of APC/C. Apart from this, various features and modifications of the substrates also influence their recognition and affinity to APC/C complex. Ultimately, temporal degradation of substrates depends on the kind of ubiquitin modification received, the processivity of APC/C, and other extrinsic mechanisms. This review discusses our current understanding of various intrinsic and extrinsic mechanisms responsible for 'substrate ordering' by the APC/C complex.
Collapse
Affiliation(s)
- Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
13
|
Wild T, Budzowska M, Hellmuth S, Eibes S, Karemore G, Barisic M, Stemmann O, Choudhary C. Deletion of APC7 or APC16 Allows Proliferation of Human Cells without the Spindle Assembly Checkpoint. Cell Rep 2019; 25:2317-2328.e5. [PMID: 30485802 PMCID: PMC6289045 DOI: 10.1016/j.celrep.2018.10.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/07/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
The multisubunit ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) is essential for mitosis by promoting timely degradation of cyclin B1. APC/C is tightly regulated by the spindle assembly checkpoint (SAC), which involves MPS1 and MAD2-dependent temporal inhibition of APC/C. We analyzed the contribution of the APC/C subunits APC7 and APC16 to APC/C composition and function in human cells. APC16 is required for APC7 assembly into APC/C, whereas APC16 assembles independently of APC7. APC7 and APC16 knockout cells display no major defects in mitotic progression, cyclin B1 degradation, or SAC response, but APC/C lacking these two subunits shows reduced ubiquitylation activity in vitro. Strikingly, deletion of APC7 or APC16 is sufficient to provide synthetic viability to MAD2 deletion. ΔAPC7ΔMAD2 cells display accelerated mitosis and require SAC-independent MPS1 function for genome stability. These findings reveal that the composition of APC/C critically influences the importance of the SAC in humans. APC16 is required for in vivo assembly of APC7 into APC/C APC7 or APC16 deletion has no major effect on mitosis Deletion of APC7 or APC16 provides synthetic viability to MAD2 deletion
Collapse
Affiliation(s)
- Thomas Wild
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Magda Budzowska
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Chromosome Stability (CCS), Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Susanne Hellmuth
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Susana Eibes
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Gopal Karemore
- Protein Imaging Platform, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Marin Barisic
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Chunaram Choudhary
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
14
|
Melloy PG. The anaphase-promoting complex: A key mitotic regulator associated with somatic mutations occurring in cancer. Genes Chromosomes Cancer 2019; 59:189-202. [PMID: 31652364 DOI: 10.1002/gcc.22820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that helps control chromosome separation and exit from mitosis in many different kinds of organisms, including yeast, flies, worms, and humans. This review represents a new perspective on the connection between APC/C subunit mutations and cancer. The complex nature of APC/C and limited mutation analysis of its subunits has made it difficult to determine the relationship of each subunit to cancer. In this work, cancer genomic data were examined to identify APC/C subunits with a greater than 5% alteration frequency in 11 representative cancers using the cBioPortal database. Using the Genetic Determinants of Cancer Patient Survival database, APC/C subunits were also studied and found to be significantly associated with poor patient prognosis in several cases. In comparing these two kinds of cancer genomics data to published large-scale genomic analyses looking for cancer driver genes, ANAPC1 and ANAPC3/CDC27 stood out as being represented in all three types of analyses. Seven other subunits were found to be associated both with >5% alteration frequency in certain cancers and being associated with an effect on cancer patient prognosis. The aim of this review is to provide new approaches for investigators conducting in vivo studies of APC/C subunits and cancer progression. In turn, a better understanding of these APC/C subunits and their role in different cancers will help scientists design drugs that are more precisely targeted to certain cancers, using APC/C mutation status as a biomarker.
Collapse
Affiliation(s)
- Patricia G Melloy
- Department of Biological and Allied Health Sciences, Fairleigh Dickinson University, Madison, New Jersey
| |
Collapse
|
15
|
Watson ER, Brown NG, Peters JM, Stark H, Schulman BA. Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division. Trends Cell Biol 2018; 29:117-134. [PMID: 30482618 DOI: 10.1016/j.tcb.2018.09.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) E3 ligase controls mitosis and nonmitotic pathways through interactions with proteins that coordinate ubiquitylation. Since the discovery that the catalytic subunits of APC/C are conformationally dynamic cullin and RING proteins, many unexpected and intricate regulatory mechanisms have emerged. Here, we review structural knowledge of this regulation, focusing on: (i) coactivators, E2 ubiquitin (Ub)-conjugating enzymes, and inhibitors engage or influence multiple sites on APC/C including the cullin-RING catalytic core; and (ii) the outcomes of these interactions rely on mobility of coactivators and cullin-RING domains, which permits distinct conformations specifying different functions. Thus, APC/C is not simply an interaction hub, but is instead a dynamic, multifunctional molecular machine whose structure is remodeled by binding partners to achieve temporal ubiquitylation regulating cell division.
Collapse
Affiliation(s)
- Edmond R Watson
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Campus Vienna Biocenter (VBC) 1, 1030 Vienna, Austria
| | - Holger Stark
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
16
|
Zeng L, Ding W, Hao Q. Using cryo-electron microscopy maps for X-ray structure determination. IUCRJ 2018; 5:382-389. [PMID: 30002839 PMCID: PMC6038958 DOI: 10.1107/s2052252518005857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
X-ray crystallography and cryo-electron microscopy (cryo-EM) are complementary techniques for structure determination. Crystallography usually reveals more detailed information, while cryo-EM is an extremely useful technique for studying large-sized macromolecules. As the gap between the resolution of crystallography and cryo-EM data narrows, the cryo-EM map of a macromolecule could serve as an initial model to solve the phase problem of crystal diffraction for high-resolution structure determination. FSEARCH is a procedure to utilize the low-resolution molecular shape for crystallographic phasing. The IPCAS (Iterative Protein Crystal structure Automatic Solution) pipeline is an automatic direct-methods-aided dual-space iterative phasing and model-building procedure. When only an electron-density map is available as the starting point, IPCAS is capable of generating a completed model from the phases of the input map automatically, without the requirement of an initial model. In this study, a hybrid method integrating X-ray crystallography with cryo-EM to help with structure determination is presented. With a cryo-EM map as the starting point, the workflow of the method involves three steps. (1) Cryo-EM map replacement: FSEARCH is utilized to find the correct translation and orientation of the cryo-EM map in the crystallographic unit cell and generates the initial low-resolution map. (2) Phase extension: the phases calculated from the correctly placed cryo-EM map are extended to high-resolution X-ray data by non-crystallographic symmetry averaging with phenix.resolve. (3) Model building: IPCAS is used to generate an initial model using the phase-extended map and perform model completion by iteration. Four cases (the lowest cryo-EM map resolution being 6.9 Å) have been tested for the general applicability of the hybrid method, and almost complete models have been generated for all test cases with reasonable Rwork/Rfree. The hybrid method therefore provides an automated tool for X-ray structure determination using a cryo-EM map as the starting point.
Collapse
Affiliation(s)
- Lingxiao Zeng
- School of Biomedical Sciences, University of Hong Kong, 21 Sassoon Road, Hong Kong
| | - Wei Ding
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, 21 Sassoon Road, Hong Kong
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
17
|
Plasmodium APC3 mediates chromosome condensation and cytokinesis during atypical mitosis in male gametogenesis. Sci Rep 2018; 8:5610. [PMID: 29618731 PMCID: PMC5884774 DOI: 10.1038/s41598-018-23871-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C) is a highly conserved multi-subunit E3 ubiquitin ligase that controls mitotic division in eukaryotic cells by tagging cell cycle regulators for proteolysis. APC3 is a key component that contributes to APC/C function. Plasmodium, the causative agent of malaria, undergoes atypical mitotic division during its life cycle. Only a small subset of APC/C components has been identified in Plasmodium and their involvement in atypical cell division is not well understood. Here, using reverse genetics we examined the localisation and function of APC3 in Plasmodium berghei. APC3 was observed as a single focus that co-localised with the centriolar plaque during asexual cell division in schizonts, whereas it appeared as multiple foci in male gametocytes. Functional studies using gene disruption and conditional knockdown revealed essential roles of APC3 during these mitotic stages with loss resulting in a lack of chromosome condensation, abnormal cytokinesis and absence of microgamete formation. Overall, our data suggest that Plasmodium utilises unique cell cycle machinery to coordinate various processes during endomitosis, and this warrants further investigation in future studies.
Collapse
|
18
|
SUMO targets the APC/C to regulate transition from metaphase to anaphase. Nat Commun 2018; 9:1119. [PMID: 29549242 PMCID: PMC5856775 DOI: 10.1038/s41467-018-03486-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/15/2018] [Indexed: 01/25/2023] Open
Abstract
Signal transduction by small ubiquitin-like modifier (SUMO) regulates a myriad of nuclear processes. Here we report on the role of SUMO in mitosis in human cell lines. Knocking down the SUMO conjugation machinery results in a delay in mitosis and defects in mitotic chromosome separation. Searching for relevant SUMOylated proteins in mitosis, we identify the anaphase-promoting complex/cyclosome (APC/C), a master regulator of metaphase to anaphase transition. The APC4 subunit is the major SUMO target in the complex, containing SUMO acceptor lysines at positions 772 and 798. SUMOylation is crucial for accurate progression of cells through mitosis and increases APC/C ubiquitylation activity toward a subset of its targets, including the newly identified target KIF18B. Combined, our findings demonstrate the importance of SUMO signal transduction for genome integrity during mitotic progression and reveal how SUMO and ubiquitin cooperate to drive mitosis.
Collapse
|
19
|
Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017; 7:170204. [PMID: 29167309 PMCID: PMC5717348 DOI: 10.1098/rsob.170204] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
20
|
Robust gene expression changes in the ganglia following subclinical reactivation in rhesus macaques infected with simian varicella virus. J Neurovirol 2017; 23:520-538. [PMID: 28321697 DOI: 10.1007/s13365-017-0522-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/03/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022]
Abstract
Varicella zoster virus (VZV) causes varicella during acute infection and establishes latency in the sensory ganglia. Reactivation of VZV results in herpes zoster, a debilitating and painful disease. It is believed that VZV reactivates due to a decline in cell-mediated immunity; however, the roles that CD4 versus CD8 T cells play in the prevention of herpes zoster remain poorly understood. To address this question, we used a well-characterized model of VZV infection where rhesus macaques are intrabronchially infected with the homologous simian varicella virus (SVV). Latently infected rhesus macaques were thymectomized and depleted of either CD4 or CD8 T cells to induce selective senescence of each T cell subset. After T cell depletion, the animals were transferred to a new housing room to induce stress. SVV reactivation (viremia in the absence of rash) was detected in three out of six CD8-depleted and two out of six CD4-depleted animals suggesting that both CD4 and CD8 T cells play a critical role in preventing SVV reactivation. Viral loads in multiple ganglia were higher in reactivated animals compared to non-reactivated animals. In addition, reactivation results in sustained transcriptional changes in the ganglia that enriched to gene ontology and diseases terms associated with neuronal function and inflammation indicative of potential damage as a result of viral reactivation. These studies support the critical role of cellular immunity in preventing varicella virus reactivation and indicate that reactivation results in long-lasting remodeling of the ganglia transcriptome.
Collapse
|
21
|
Abstract
In this review, Huang and Bonni discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis; glial differentiation and migration; neuronal survival, metabolism, and morphogenesis; synapse formation and plasticity; and learning and memory. Control of protein abundance by the ubiquitin–proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identified additional novel roles for the anaphase-promoting complex in diverse aspects of neuronal connectivity and plasticity in the developing and mature nervous system. In this review, we discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis, glial differentiation and migration, neuronal survival and metabolism, neuronal morphogenesis, synapse formation and plasticity, and learning and memory. We also provide a perspective on future investigations of the anaphase-promoting complex in neurobiology.
Collapse
Affiliation(s)
- Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
22
|
Zhou Z, He M, Shah AA, Wan Y. Insights into APC/C: from cellular function to diseases and therapeutics. Cell Div 2016; 11:9. [PMID: 27418942 PMCID: PMC4944252 DOI: 10.1186/s13008-016-0021-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. Activity of APC/C is principally governed by two WD-40 domain proteins, Cdc20 and Cdh1, in and beyond cell cycle. In the past decade, the results based on numerous biochemical, 3D structural, mouse genetic and small molecule inhibitor studies have largely attracted our attention into the emerging role of APC/C and its regulation in biological function, human diseases and potential therapeutics. This review will aim to summarize some recently reported insights into APC/C in regulating cellular function, connection of its dysfunction with human diseases and its implication of therapeutics.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
23
|
Zhang S, Chang L, Alfieri C, Zhang Z, Yang J, Maslen S, Skehel M, Barford D. Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature 2016; 533:260-264. [PMID: 27120157 PMCID: PMC4878669 DOI: 10.1038/nature17973] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state.
Collapse
Affiliation(s)
- Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
24
|
Wang J, Jennings AK, Kowalski JR. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans. PeerJ 2016; 4:e2013. [PMID: 27190716 PMCID: PMC4867703 DOI: 10.7717/peerj.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/14/2016] [Indexed: 01/09/2023] Open
Abstract
The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease.
Collapse
Affiliation(s)
- Julia Wang
- Department of Biological Sciences, Butler University , Indianapolis, IN , United States
| | - Alexandra K Jennings
- Department of Biological Sciences, Butler University , Indianapolis, IN , United States
| | - Jennifer R Kowalski
- Department of Biological Sciences, Butler University , Indianapolis, IN , United States
| |
Collapse
|
25
|
Abstract
Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.
Collapse
|
26
|
biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc Natl Acad Sci U S A 2016; 113:E2564-9. [PMID: 27114506 DOI: 10.1073/pnas.1604935113] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Analyses of protein complexes are facilitated by methods that enable the generation of recombinant complexes via coexpression of their subunits from multigene DNA constructs. However, low experimental throughput limits the generation of such constructs in parallel. Here we describe a method that allows up to 25 cDNAs to be assembled into a single baculoviral expression vector in only two steps. This method, called biGBac, uses computationally optimized DNA linker sequences that enable the efficient assembly of linear DNA fragments, using reactions developed by Gibson for the generation of synthetic genomes. The biGBac method uses a flexible and modular "mix and match" approach and enables the generation of baculoviruses from DNA constructs at any assembly stage. Importantly, it is simple, efficient, and fast enough to allow the manual generation of many multigene expression constructs in parallel. We have used this method to generate and characterize recombinant forms of the anaphase-promoting complex/cyclosome, cohesin, and kinetochore complexes.
Collapse
|
27
|
Cronin NB, Yang J, Zhang Z, Kulkarni K, Chang L, Yamano H, Barford D. Atomic-Resolution Structures of the APC/C Subunits Apc4 and the Apc5 N-Terminal Domain. J Mol Biol 2015; 427:3300-3315. [PMID: 26343760 PMCID: PMC4590430 DOI: 10.1016/j.jmb.2015.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/19/2015] [Accepted: 08/26/2015] [Indexed: 10/25/2022]
Abstract
Many essential biological processes are mediated by complex molecular machines comprising multiple subunits. Knowledge on the architecture of individual subunits and their positions within the overall multimeric complex is key to understanding the molecular mechanisms of macromolecular assemblies. The anaphase-promoting complex/cyclosome (APC/C) is a large multisubunit complex that regulates cell cycle progression by ubiquitinating cell cycle proteins for proteolysis by the proteasome. The holo-complex is composed of 15 different proteins that assemble to generate a complex of 20 subunits. Here, we describe the crystal structures of Apc4 and the N-terminal domain of Apc5 (Apc5(N)). Apc4 comprises a WD40 domain split by a long α-helical domain, whereas Apc5(N) has an α-helical fold. In a separate study, we had fitted these atomic models to a 3.6-Å-resolution cryo-electron microscopy map of the APC/C. We describe how, in the context of the APC/C, regions of Apc4 disordered in the crystal assume order through contacts to Apc5, whereas Apc5(N) shows small conformational changes relative to its crystal structure. We discuss the complementary approaches of high-resolution electron microscopy and protein crystallography to the structure determination of subunits of multimeric complexes.
Collapse
Affiliation(s)
- Nora B Cronin
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Jing Yang
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Ziguo Zhang
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Kiran Kulkarni
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom; Division of Biochemical Sciences, Council of Scientific and Industrial Research National Chemical Laboratory, Pune 411008, India
| | - Leifu Chang
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Hiroyuki Yamano
- Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, United Kingdom
| | - David Barford
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
28
|
RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex. Proc Natl Acad Sci U S A 2015; 112:5272-9. [PMID: 25825779 DOI: 10.1073/pnas.1504161112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For many E3 ligases, a mobile RING (Really Interesting New Gene) domain stimulates ubiquitin (Ub) transfer from a thioester-linked E2∼Ub intermediate to a lysine on a remotely bound disordered substrate. One such E3 is the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), which controls cell division by ubiquitinating cell cycle regulators to drive their timely degradation. Intrinsically disordered substrates are typically recruited via their KEN-box, D-box, and/or other motifs binding to APC and a coactivator such as CDH1. On the opposite side of the APC, the dynamic catalytic core contains the cullin-like subunit APC2 and its RING partner APC11, which collaborates with the E2 UBCH10 (UBE2C) to ubiquitinate substrates. However, how dynamic RING-E2∼Ub catalytic modules such as APC11-UBCH10∼Ub collide with distally tethered disordered substrates remains poorly understood. We report structural mechanisms of UBCH10 recruitment to APC(CDH1) and substrate ubiquitination. Unexpectedly, in addition to binding APC11's RING, UBCH10 is corecruited via interactions with APC2, which we visualized in a trapped complex representing an APC(CDH1)-UBCH10∼Ub-substrate intermediate by cryo-electron microscopy, and in isolation by X-ray crystallography. To our knowledge, this is the first structural view of APC, or any cullin-RING E3, with E2 and substrate juxtaposed, and it reveals how tripartite cullin-RING-E2 interactions establish APC's specificity for UBCH10 and harness a flexible catalytic module to drive ubiquitination of lysines within an accessible zone. We propose that multisite interactions reduce the degrees of freedom available to dynamic RING E3-E2∼Ub catalytic modules, condense the search radius for target lysines, increase the chance of active-site collision with conformationally fluctuating substrates, and enable regulation.
Collapse
|