1
|
Cucuzza S, Güntert P, Plückthun A, Zerbe O. An automated iterative approach for protein structure refinement using pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2021; 75:319-334. [PMID: 34338940 PMCID: PMC8473369 DOI: 10.1007/s10858-021-00376-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/19/2021] [Indexed: 05/02/2023]
Abstract
NMR structure calculation using NOE-derived distance restraints requires a considerable number of assignments of both backbone and sidechains resonances, often difficult or impossible to get for large or complex proteins. Pseudocontact shifts (PCSs) also play a well-established role in NMR protein structure calculation, usually to augment existing structural, mostly NOE-derived, information. Existing refinement protocols using PCSs usually either require a sizeable number of sidechain assignments or are complemented by other experimental restraints. Here, we present an automated iterative procedure to perform backbone protein structure refinements requiring only a limited amount of backbone amide PCSs. Already known structural features from a starting homology model, in this case modules of repeat proteins, are framed into a scaffold that is subsequently refined by experimental PCSs. The method produces reliable indicators that can be monitored to judge about the performance. We applied it to a system in which sidechain assignments are hardly possible, designed Armadillo repeat proteins (dArmRPs), and we calculated the solution NMR structure of YM4A, a dArmRP containing four sequence-identical internal modules, obtaining high convergence to a single structure. We suggest that this approach is particularly useful when approximate folds are known from other techniques, such as X-ray crystallography, while avoiding inherent artefacts due to, for instance, crystal packing.
Collapse
Affiliation(s)
- Stefano Cucuzza
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397, Tokyo, Japan
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
2
|
Ernst P, Zosel F, Reichen C, Nettels D, Schuler B, Plückthun A. Structure-Guided Design of a Peptide Lock for Modular Peptide Binders. ACS Chem Biol 2020; 15:457-468. [PMID: 31985201 DOI: 10.1021/acschembio.9b00928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptides play an important role in intermolecular interactions and are frequent analytes in diagnostic assays, also as unstructured, linear epitopes in whole proteins. Yet, due to the many different sequence possibilities even for short peptides, classical selection of binding proteins from a library, one at a time, is not scalable to proteomes. However, moving away from selection to a rational assembly of preselected modules binding to predefined linear epitopes would split the problem into smaller parts. These modules could then be reassembled in any desired order to bind to, in principle, arbitrary sequences, thereby circumventing any new rounds of selection. Designed Armadillo repeat proteins (dArmRPs) are modular, and they do bind elongated peptides in a modular way. Their consensus sequence carries pockets that prefer arginine and lysine. In our quest to select pockets for all amino acid side chains, we had discovered that repetitive sequences can lead to register shifts and peptide flipping during selections from libraries, hindering the selection of new binding specificities. To solve this problem, we now created an orthogonal binding specificity by a combination of grafting from β-catenin, computational design and mutual optimization of the pocket and the bound peptide. We have confirmed the design and the desired interactions by X-ray structure determination. Furthermore, we could confirm the absence of sliding in solution by a single-molecule Förster resonance energy transfer. The new pocket could be moved from the N-terminus of the protein to the middle, retaining its properties, further underlining the modularity of the system.
Collapse
Affiliation(s)
- Patrick Ernst
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Franziska Zosel
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Reichen
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
3
|
Zhao B, Zhuang X, Pi Z, Liu S, Liu Z, Song F. Determining the Effect of Catechins on SOD1 Conformation and Aggregation by Ion Mobility Mass Spectrometry Combined with Optical Spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:734-741. [PMID: 29392684 DOI: 10.1007/s13361-017-1864-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 05/19/2023]
Abstract
The aggregation of Cu,Zn-superoxide dismutase (SOD1) plays an important role in the etiology of amyotrophic lateral sclerosis (ALS). For the disruption of ALS progression, discovering new drugs or compounds that can prevent SOD1 aggregation is important. In this study, ESI-MS was used to investigate the interaction of catechins and SOD1. The noncovalent complex of catechins that interact with SOD1 was found and retained in the gas phase under native ESI-MS condition. The conformation changes of SOD1 after binding with catechins were also explored via traveling wave ion mobility (IM) spectrometry. Epigallocatechin gallate (EGCG) can stabilize SOD1 conformation against unfolding in three catechins. To further evaluate the efficacy of EGCG, we monitored the fluorescence changes of dimer E2,E2,-SOD1(apo-SOD1, E:empty) with and without ligands under denaturation conditions, and found that EGCG can inhibit apo-SOD1 aggregation. In addition, the circular dichroism spectra of the samples showed that EGCG can decrease the β-sheet content of SOD1, which can produce aggregates. These results indicated that orthogonal separation dimension in the gas-phase IM coupled with ESI-MS (ESI-IM-MS) can potentially provide insight into the interaction between SOD1 and small molecules. The advantage is that it dramatically decreases the analysis time. Meantime, optical spectroscopy techniques can be used to confirm ESI-IM-MS results. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Bing Zhao
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230029, China
| | - Xiaoyu Zhuang
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
4
|
Ernst P, Plückthun A. Advances in the design and engineering of peptide-binding repeat proteins. Biol Chem 2017; 398:23-29. [DOI: 10.1515/hsz-2016-0233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/23/2016] [Indexed: 11/15/2022]
Abstract
Abstract
The specific recognition of peptides, which we define to include unstructured regions or denatured forms of proteins, is an intrinsic part of a multitude of biochemical assays and procedures. Many cellular interactions are also based on this principle as well. While it would be highly desirable to have a stockpile of sequence-specific binders for essentially any sequence, a de novo selection of individual binders against every possible target peptide sequence would be rather difficult to reduce to practice. Modular peptide binders could overcome this problem, as preselected and/or predesigned modules could be reused for the generation of new binders and thereby revolutionize the generation of binding proteins. This minireview summarizes advances in the development of peptide binders and possible scaffolds for their design.
Collapse
|
5
|
Reichen C, Hansen S, Forzani C, Honegger A, Fleishman SJ, Zhou T, Parmeggiani F, Ernst P, Madhurantakam C, Ewald C, Mittl PR, Zerbe O, Baker D, Caflisch A, Plückthun A. Computationally Designed Armadillo Repeat Proteins for Modular Peptide Recognition. J Mol Biol 2016; 428:4467-4489. [DOI: 10.1016/j.jmb.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
6
|
Chattopadhyay A, O’Connor CJ, Zhang F, Galvagnion C, Galloway WRJD, Tan YS, Stokes JE, Rahman T, Verma C, Spring DR, Itzhaki LS. Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell. Sci Rep 2016; 6:23732. [PMID: 27046077 PMCID: PMC4820706 DOI: 10.1038/srep23732] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/04/2016] [Indexed: 01/04/2023] Open
Abstract
Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a "druggable" target with small molecules.
Collapse
Affiliation(s)
| | | | - Fengzhi Zhang
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | - Yaw Sing Tan
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jamie E. Stokes
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Taufiq Rahman
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Chandra Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - David R. Spring
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Laura S. Itzhaki
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|