1
|
Anderson DM, Jayanthi LP, Gosavi S, Meiering EM. Engineering the kinetic stability of a β-trefoil protein by tuning its topological complexity. Front Mol Biosci 2023; 10:1021733. [PMID: 36845544 PMCID: PMC9945329 DOI: 10.3389/fmolb.2023.1021733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023] Open
Abstract
Kinetic stability, defined as the rate of protein unfolding, is central to determining the functional lifetime of proteins, both in nature and in wide-ranging medical and biotechnological applications. Further, high kinetic stability is generally correlated with high resistance against chemical and thermal denaturation, as well as proteolytic degradation. Despite its significance, specific mechanisms governing kinetic stability remain largely unknown, and few studies address the rational design of kinetic stability. Here, we describe a method for designing protein kinetic stability that uses protein long-range order, absolute contact order, and simulated free energy barriers of unfolding to quantitatively analyze and predict unfolding kinetics. We analyze two β-trefoil proteins: hisactophilin, a quasi-three-fold symmetric natural protein with moderate stability, and ThreeFoil, a designed three-fold symmetric protein with extremely high kinetic stability. The quantitative analysis identifies marked differences in long-range interactions across the protein hydrophobic cores that partially account for the differences in kinetic stability. Swapping the core interactions of ThreeFoil into hisactophilin increases kinetic stability with close agreement between predicted and experimentally measured unfolding rates. These results demonstrate the predictive power of readily applied measures of protein topology for altering kinetic stability and recommend core engineering as a tractable target for rationally designing kinetic stability that may be widely applicable.
Collapse
Affiliation(s)
| | - Lakshmi P. Jayanthi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Elizabeth M. Meiering
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Elizabeth M. Meiering,
| |
Collapse
|
2
|
Banerjee A, Gosavi S. Potential Self-Peptide Inhibitors of the SARS-CoV-2 Main Protease. J Phys Chem B 2023; 127:855-865. [PMID: 36689738 PMCID: PMC9883841 DOI: 10.1021/acs.jpcb.2c05917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Indexed: 01/24/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) plays an essential role in viral replication, cleaving viral polyproteins into functional proteins. This makes Mpro an important drug target. Mpro consists of an N-terminal catalytic domain and a C-terminal α-helical domain (MproC). Previous studies have shown that peptides derived from a given protein sequence (self-peptides) can affect the folding and, in turn, the function of that protein. Since the SARS-CoV-1 MproC is known to stabilize its Mpro and regulate its function, we hypothesized that SARS-CoV-2 MproC-derived self-peptides may modulate the folding and the function of SARS-CoV-2 Mpro. To test this, we studied the folding of MproC in the presence of various self-peptides using coarse-grained structure-based models and molecular dynamics simulations. In these simulations of MproC and one self-peptide, we found that two self-peptides, the α1-helix and the loop between α4 and α5 (loop4), could replace the equivalent native sequences in the MproC structure. Replacement of either sequence in full-length Mpro should, in principle, be able to perturb Mpro function albeit through different mechanisms. Some general principles for the rational design of self-peptide inhibitors emerge: The simulations show that prefolded self-peptides are more likely to replace native sequences than those which do not possess structure. Additionally, the α1-helix self-peptide is kinetically stable and once inserted rarely exchanges with the native α1-helix, while the loop4 self-peptide is easily replaced by the native loop4, making it less useful for modulating function. In summary, a prefolded α1-derived peptide should be able to inhibit SARS-CoV-2 Mpro function.
Collapse
Affiliation(s)
- Arkadeep Banerjee
- Simons Centre for the Study
of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study
of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
3
|
Yadahalli S, Jayanthi LP, Gosavi S. A Method for Assessing the Robustness of Protein Structures by Randomizing Packing Interactions. Front Mol Biosci 2022; 9:849272. [PMID: 35832734 PMCID: PMC9271847 DOI: 10.3389/fmolb.2022.849272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Many single-domain proteins are not only stable and water-soluble, but they also populate few to no intermediates during folding. This reduces interactions between partially folded proteins, misfolding, and aggregation, and makes the proteins tractable in biotechnological applications. Natural proteins fold thus, not necessarily only because their structures are well-suited for folding, but because their sequences optimize packing and fit their structures well. In contrast, folding experiments on the de novo designed Top7 suggest that it populates several intermediates. Additionally, in de novo protein design, where sequences are designed for natural and new non-natural structures, tens of sequences still need to be tested before success is achieved. Both these issues may be caused by the specific scaffolds used in design, i.e., some protein scaffolds may be more tolerant to packing perturbations and varied sequences. Here, we report a computational method for assessing the response of protein structures to packing perturbations. We then benchmark this method using designed proteins and find that it can identify scaffolds whose folding gets disrupted upon perturbing packing, leading to the population of intermediates. The method can also isolate regions of both natural and designed scaffolds that are sensitive to such perturbations and identify contacts which when present can rescue folding. Overall, this method can be used to identify protein scaffolds that are more amenable to whole protein design as well as to identify protein regions which are sensitive to perturbations and where further mutations should be avoided during protein engineering.
Collapse
Affiliation(s)
| | | | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
4
|
Structure dictates the mechanism of ligand recognition in the histidine and maltose binding proteins. Curr Res Struct Biol 2020; 2:180-190. [PMID: 34235478 PMCID: PMC8244415 DOI: 10.1016/j.crstbi.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Two mechanisms, induced fit (IF) and conformational selection (CS), have been proposed to explain ligand recognition coupled conformational changes. The histidine binding protein (HisJ) adopts the CS mechanism, in which a pre-equilibrium is established between the open and the closed states with the ligand binding to the closed state. Despite being structurally similar to HisJ, the maltose binding protein (MBP) adopts the IF mechanism, in which the ligand binds the open state and induces a transition to the closed state. To understand the molecular determinants of this difference, we performed molecular dynamics (MD) simulations of coarse-grained dual structure based models. We find that intra-protein contacts unique to the closed state are sufficient to promote the conformational transition in HisJ, indicating a CS-like mechanism. In contrast, additional ligand-mimicking contacts are required to “induce” the conformational transition in MBP suggesting an IF-like mechanism. In agreement with experiments, destabilizing modifications to two structural features, the spine helix (SH) and the balancing interface (BI), present in MBP but absent in HisJ, reduce the need for ligand-mimicking contacts indicating that SH and BI act as structural restraints that keep MBP in the open state. We introduce an SH like element into HisJ and observe that this can impede the conformational transition increasing the importance of ligand-mimicking contacts. Similarly, simultaneous mutations to BI and SH in MBP reduce the barrier to conformational transitions significantly and promote a CS-like mechanism. Together, our results show that structural restraints present in the protein structure can determine the mechanism of conformational transitions and even simple models that correctly capture such structural features can predict their positions. MD simulations of such models can thus be used, in conjunction with mutational experiments, to regulate protein ligand interactions, and modulate ligand binding affinities. MBP operates by induced fit, HisJ by the conformational selection mechanism. Dual structure based models (dSBMs) encode two structures of a protein. MD simulations of dSBMs can identify the mechanism of conformational transitions. Locks, absent in HisJ, hold MBP open with ligand contacts required for closing. Binding mechanisms can be modified by altering such structural locks.
Collapse
Key Words
- BI, Balancing interface
- CS, conformational selection
- CTD, C-terminal domain
- Conformational selection
- Dual structure based models
- FEP, free energy profile
- HisJ, histidine binding protein
- IF, induced fit
- Induced fit
- MBP, maltose binding protein
- MD simulations
- MD, molecular dynamics
- NTD, N-terminal domain
- PBP, periplasmic binding protein
- Periplasmic binding proteins
- SH, spine helix
- Structural restraints
- WT, wild-type
- dSBM, dual structure-based model
- sSBM, single structure-based model
Collapse
|
5
|
Gershenson A, Gosavi S, Faccioli P, Wintrode PL. Successes and challenges in simulating the folding of large proteins. J Biol Chem 2020; 295:15-33. [PMID: 31712314 PMCID: PMC6952611 DOI: 10.1074/jbc.rev119.006794] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Computational simulations of protein folding can be used to interpret experimental folding results, to design new folding experiments, and to test the effects of mutations and small molecules on folding. However, whereas major experimental and computational progress has been made in understanding how small proteins fold, research on larger, multidomain proteins, which comprise the majority of proteins, is less advanced. Specifically, large proteins often fold via long-lived partially folded intermediates, whose structures, potentially toxic oligomerization, and interactions with cellular chaperones remain poorly understood. Molecular dynamics based folding simulations that rely on knowledge of the native structure can provide critical, detailed information on folding free energy landscapes, intermediates, and pathways. Further, increases in computational power and methodological advances have made folding simulations of large proteins practical and valuable. Here, using serpins that inhibit proteases as an example, we review native-centric methods for simulating the folding of large proteins. These synergistic approaches range from Gō and related structure-based models that can predict the effects of the native structure on folding to all-atom-based methods that include side-chain chemistry and can predict how disease-associated mutations may impact folding. The application of these computational approaches to serpins and other large proteins highlights the successes and limitations of current computational methods and underscores how computational results can be used to inform experiments. These powerful simulation approaches in combination with experiments can provide unique insights into how large proteins fold and misfold, expanding our ability to predict and manipulate protein folding.
Collapse
Affiliation(s)
- Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003.
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India.
| | - Pietro Faccioli
- Dipartimento di Fisica, Universitá degli Studi di Trento, 38122 Povo (Trento), Italy; Trento Institute for Fundamental Physics and Applications, 38123 Povo (Trento), Italy.
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201.
| |
Collapse
|
6
|
Xiong J, Gao M, Zhou J, Liu S, Su Z, Liu Z, Huang Y. The influence of intrinsic folding mechanism of an unfolded protein on the coupled folding-binding process during target recognition. Proteins 2018; 87:265-275. [PMID: 30520528 DOI: 10.1002/prot.25646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/28/2018] [Accepted: 11/29/2018] [Indexed: 11/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) are extensively involved in dynamic signaling processes which require a high association rate and a high dissociation rate for rapid binding/unbinding events and at the same time a sufficient high affinity for specific recognition. Although the coupled folding-binding processes of IDPs have been extensively studied, it is still impossible to predict whether an unfolded protein is suitable for molecular signaling via coupled folding-binding. In this work, we studied the interplay between intrinsic folding mechanisms and coupled folding-binding process for unfolded proteins through molecular dynamics simulations. We first studied the folding process of three representative IDPs with different folded structures, that is, c-Myb, AF9, and E3 rRNase. We found the folding free energy landscapes of IDPs are downhill or show low barriers. To further study the influence of intrinsic folding mechanism on the binding process, we modulated the folding mechanism of barnase via circular permutation and simulated the coupled folding-binding process between unfolded barnase permutant and folded barstar. Although folding of barnase was coupled to target binding, the binding kinetics was significantly affected by the intrinsic folding free energy barrier, where reducing the folding free energy barrier enhances binding rate up to two orders of magnitude. This accelerating effect is different from previous results which reflect the effect of structure flexibility on binding kinetics. Our results suggest that coupling the folding of an unfolded protein with no/low folding free energy barrier with its target binding may provide a way to achieve high specificity and rapid binding/unbinding kinetics simultaneously.
Collapse
Affiliation(s)
- Junwen Xiong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Jingjing Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| |
Collapse
|
7
|
Terse VL, Gosavi S. The Sensitivity of Computational Protein Folding to Contact Map Perturbations: The Case of Ubiquitin Folding and Function. J Phys Chem B 2018; 122:11497-11507. [PMID: 30234303 DOI: 10.1021/acs.jpcb.8b07409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitin is a small model protein, commonly used in protein folding experiments and simulations. We simulated ubiquitin using a well-tested structure-based model coarse-grained to a Cα level (Cα-SBM) and found that the simulated folding route did not agree with the experimentally observed one. Simulating the Cα-SBM with a cutoff contact map, instead of a screened contact map, switched the folding route with the new route matching the experimental route. Thus, the simulated folding of ubiquitin is sensitive to contact map definition. The screened contact map, which is used in folding simulations because it captures protein folding cooperativity, removes contacts in which the atoms in contact are occluded by a third atom and is less sensitive to the value of the cutoff distance in well-packed regions of the protein. In sparsely packed regions, the larger cutoff distance creates bridging contacts between atoms which are separated by voids. Such contacts do not seem to affect the folding of most proteins, including those of the ubiquitin fold. However, the surface of ubiquitin has several protruding functional side chains which naturally create bridging contacts. Together, our results show that subtle structural features of a protein that may not be apparent by mere observation can be identified by comparing folding simulations of SBMs in which these features are differently encoded. When such structural features are preserved for functional reasons, differences in computational folding can be leveraged to identify functional features. Notably, such features are accessible to a gradation of SBMs even in commonly studied proteins such as ubiquitin.
Collapse
Affiliation(s)
- Vishram L Terse
- Simons Centre for the Study of Living Machines , National Centre for Biological Sciences , Tata Institute of Fundamental Research, Bangalore 560065 , India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines , National Centre for Biological Sciences , Tata Institute of Fundamental Research, Bangalore 560065 , India
| |
Collapse
|
8
|
Mascarenhas NM, Terse VL, Gosavi S. Intrinsic Disorder in a Well-Folded Globular Protein. J Phys Chem B 2018; 122:1876-1884. [PMID: 29304275 DOI: 10.1021/acs.jpcb.7b12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The folded structure of the heterodimeric sweet protein monellin mimics single-chain proteins with topology β1-α1-β2-β3-β4-β5 (chain A: β3-β4-β5; chain B: β1-α1-β2). Furthermore, like naturally occurring single-chain proteins of a similar size, monellin folds cooperatively with no detectable intermediates. However, the two monellin chains, A and B, are marginally structured in isolation and fold only upon binding to each other. Thus, monellin presents a unique opportunity to understand the design of intrinsically disordered proteins that fold upon binding. Here, we study the folding of a single-chain variant of monellin (scMn) using simulations of an all heavy-atom structure-based model. These simulations can explain mechanistic details derived from scMn experiments performed using several different structural probes. scMn folds cooperatively in our structure-based simulations, as is also seen in experiments. We find that structure formation near the transition-state ensemble of scMn is not uniformly distributed but is localized to a hairpin-like structure which contains one strand from each chain (β2, β3). Thus, the sequence and the underlying energetics of heterodimeric monellin promote the early formation of the interchain interface (β2-β3). By studying computational scMn mutants whose "interchain" interactions are deleted, we infer that this energy distribution allows the two protein chains to remain largely disordered when this interface is not folded. From these results, we suggest that cutting the protein backbone of a globular protein between residues which lie within its folding nucleus may be one way to construct two disordered fragments which fold upon binding.
Collapse
Affiliation(s)
| | - Vishram L Terse
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| |
Collapse
|
9
|
Yadahalli S, Gosavi S. Packing energetics determine the folding routes of the RNase-H proteins. Phys Chem Chem Phys 2017; 19:9164-9173. [DOI: 10.1039/c6cp08940b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The RNase-H proteins show a diverse range of folding routes with structurally distinct folding nuclei.
Collapse
Affiliation(s)
- Shilpa Yadahalli
- National Centre for Biological Sciences
- Tata Institute of Fundamental Research
- Bangalore-560065
- India
- Manipal University
| | - Shachi Gosavi
- National Centre for Biological Sciences
- Tata Institute of Fundamental Research
- Bangalore-560065
- India
| |
Collapse
|
10
|
Mascarenhas NM, Gosavi S. Understanding protein domain-swapping using structure-based models of protein folding. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 128:113-120. [PMID: 27867057 PMCID: PMC7127520 DOI: 10.1016/j.pbiomolbio.2016.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023]
Abstract
In domain-swapping, two or more identical protein monomers exchange structural elements and fold into dimers or multimers whose units are structurally similar to the original monomer. Domain-swapping is of biotechnological interest because inhibiting domain-swapping can reduce disease-causing fibrillar protein aggregation. To achieve such inhibition, it is important to understand both the energetics that stabilize the domain-swapped structure and the protein dynamics that enable the swapping. Structure-based models (SBMs) encode the folded structure of the protein in their potential energy functions. SBMs have been successfully used to understand diverse aspects of monomer folding. Symmetrized SBMs model interactions between two identical protein chains using only intra-monomer interactions. Molecular dynamics simulations of such symmetrized SBMs have been used to correctly predict the domain-swapped structure and to understand the mechanism of domain-swapping. Here, we review such models and illustrate that monomer topology determines key aspects of domain-swapping. However, in some proteins, specifics of local energetic interactions modulate domain-swapping and these need to be added to the symmetrized SBMs. We then summarize some general principles of the mechanism of domain-swapping that emerge from the symmetrized SBM simulations. Finally, using our own results, we explore how symmetrized SBMs could be used to design domain-swapping in proteins.
Collapse
Affiliation(s)
- Nahren Manuel Mascarenhas
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| |
Collapse
|
11
|
Iyer BR, Mahalakshmi R. Distinct Structural Elements Govern the Folding, Stability, and Catalysis in the Outer Membrane Enzyme PagP. Biochemistry 2016; 55:4960-70. [PMID: 27525547 DOI: 10.1021/acs.biochem.6b00678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The outer membrane enzyme PagP is indispensable for lipid A palmitoylation in Gram-negative bacteria and has been implicated in resistance to host immune defenses. PagP possesses an unusual structure for an integral membrane protein, with a highly dynamic barrel domain that is tilted with respect to the membrane normal. In addition, it contains an N-terminal amphipathic helix. Recent functional and structural studies have shown that these molecular factors are critical for PagP to carry out its function in the challenging environment of the bacterial outer membrane. However, the precise contributions of the N-helix to folding and stability and residues that can influence catalytic rates remain to be addressed. Here, we identify a sequence-dependent stabilizing role for the N-terminal helix of PagP in the measured thermodynamic stability of the barrel. Using chimeric barrel sequences, we show that the Escherichia coli PagP N-terminal helix confers 2-fold greater stability to the Salmonella typhimurium barrel. Further, we find that the W78F substitution in S. typhimurium causes a nearly 20-fold increase in the specific activity in vitro for the phospholipase reaction, compared to that of E. coli PagP. Here, phenylalanine serves as a key regulator of catalysis, possibly by increasing the reaction rate. Through coevolution analysis, we detect an interaction network between seemingly unrelated segments of this membrane protein. Exchanging the structural and functional features between homologous PagP enzymes from E. coli and S. typhimurium has provided us with an understanding of the molecular factors governing PagP stability and function.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| |
Collapse
|
12
|
Mascarenhas NM, Gosavi S. Protein Domain-Swapping Can Be a Consequence of Functional Residues. J Phys Chem B 2016; 120:6929-38. [PMID: 27331242 DOI: 10.1021/acs.jpcb.6b03968] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monomer topology has been implicated in domain-swapping, a potential first step on the route to disease-causing protein aggregation. Despite having the same topology (β1-α1-β2-β3-β4-β5), the cysteine protease inhibitor stefin-B domain swaps more readily than a single-chain variant of the heterodimeric sweet protein monellin (scMn). Here, we computationally study the folding of stefin-B and scMn in order to understand the molecular basis for the difference in their domain-swapping propensities. In agreement with experiments, our structure-based simulations show that scMn folds cooperatively without the population of an intermediate while stefin-B populates an equilibrium intermediate state. Since the simulation intermediate has only one domain structured (β3-β4-β5), it can directly lead to domain-swapping. Using computational variants of stefin-B, we show that the population of this intermediate is caused by regions of stefin-B that have been implicated in protease inhibition. We also find that the protease-binding regions are located on two structural elements and localized in space. In contrast, the residues that contribute to the sweetness of monellin are not localized to a few structural elements but are distributed over the protein fold. We conclude that the distributed functional residues of monellin do not induce large local perturbations in the protein structure, eliminating the formation of folding intermediates and in turn domain-swapping. On the other hand, the localized protease-binding regions of stefin-B promote the formation of a folding intermediate which can lead to domain-swapping. Thus, domain-swapping can be a direct consequence of the constraints that function imposes on the protein structure.
Collapse
Affiliation(s)
- Nahren Manuel Mascarenhas
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| |
Collapse
|