1
|
Müller MD, Becker T, Denk T, Hashimoto S, Inada T, Beckmann R. The ribosome as a platform to coordinate mRNA decay. Nucleic Acids Res 2025; 53:gkaf049. [PMID: 39921564 PMCID: PMC11806357 DOI: 10.1093/nar/gkaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025] Open
Abstract
Messenger RNA (mRNA) homeostasis is a critical aspect of cellular function, involving the dynamic interplay between transcription and decay processes. Recent advances have revealed that the ribosome plays a central role in coordinating mRNA decay, challenging the traditional view that free mRNA is the primary substrate for degradation. This review examines the mechanisms whereby ribosomes facilitate both the licensing and execution of mRNA decay. This involves factors such as the Ccr4-Not complex, small MutS-related domain endonucleases, and various quality control pathways. We discuss how translational fidelity, as well as the presence of nonoptimal codons and ribosome collisions, can trigger decay pathways such as nonstop decay and no-go decay. Furthermore, we highlight the direct association of canonical exonucleases, such as Xrn1 and the Ski-exosome system, with the ribosome, underscoring the ribosome's multifaceted role as a platform for regulatory processes governing mRNA stability. By integrating recent findings, this review offers a comprehensive overview of the structural basis of how ribosomes not only facilitate translation but also serve as critical hubs for mRNA decay coordination.
Collapse
Affiliation(s)
- Martin B D Müller
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Timo Denk
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Satoshi Hashimoto
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
2
|
Wales TE, Pajak A, Roeselová A, Shivakumaraswamy S, Howell S, Kjær S, Hartl FU, Engen JR, Balchin D. Resolving chaperone-assisted protein folding on the ribosome at the peptide level. Nat Struct Mol Biol 2024; 31:1888-1897. [PMID: 38987455 PMCID: PMC11638072 DOI: 10.1038/s41594-024-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Protein folding in vivo begins during synthesis on the ribosome and is modulated by molecular chaperones that engage the nascent polypeptide. How these features of protein biogenesis influence the maturation pathway of nascent proteins is incompletely understood. Here, we use hydrogen-deuterium exchange mass spectrometry to define, at peptide resolution, the cotranslational chaperone-assisted folding pathway of Escherichia coli dihydrofolate reductase. The nascent polypeptide folds along an unanticipated pathway through structured intermediates not populated during refolding from denaturant. Association with the ribosome allows these intermediates to form, as otherwise destabilizing carboxy-terminal sequences remain confined in the ribosome exit tunnel. Trigger factor binds partially folded states without disrupting their structure, and the nascent chain is poised to complete folding immediately upon emergence of the C terminus from the exit tunnel. By mapping interactions between the nascent chain and ribosomal proteins, we trace the path of the emerging polypeptide during synthesis. Our work reveals new mechanisms by which cellular factors shape the conformational search for the native state.
Collapse
Affiliation(s)
- Thomas E Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | - Aleksandra Pajak
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | - Alžběta Roeselová
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | | | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA.
| | - David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Kolář MH, McGrath H, Nepomuceno FC, Černeková M. Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1873. [PMID: 39496527 DOI: 10.1002/wrna.1873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
All proteins in living organisms are produced in ribosomes that facilitate the translation of genetic information into a sequence of amino acid residues. During translation, the ribosome undergoes initiation, elongation, termination, and recycling. In fact, peptide bonds are formed only during the elongation phase, which comprises periodic association of transfer RNAs and multiple auxiliary proteins with the ribosome and the addition of an amino acid to the nascent polypeptide one at a time. The protein spends a considerable amount of time attached to the ribosome. Here, we conceptually divide this portion of the protein lifetime into three stages. We define each stage on the basis of the position of the N-terminus of the nascent polypeptide within the ribosome exit tunnel and the context of the catalytic center. We argue that nascent polypeptides experience a variety of forces that determine how they translocate through the tunnel and interact with the tunnel walls. We review current knowledge about nascent polypeptide translocation and identify several white spots in our understanding of the birth of proteins.
Collapse
Affiliation(s)
- Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Hugo McGrath
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Felipe C Nepomuceno
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Černeková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
4
|
Herling TW, Cassaignau AME, Wentink AS, Peter QAE, Kumar PC, Kartanas T, Schneider MM, Cabrita LD, Christodoulou J, Knowles TPJ. Thermodynamic profiles for cotranslational trigger factor substrate recognition. SCIENCE ADVANCES 2024; 10:eadn4824. [PMID: 38985872 PMCID: PMC11235164 DOI: 10.1126/sciadv.adn4824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Molecular chaperones are central to the maintenance of proteostasis in living cells. A key member of this protein family is trigger factor (TF), which acts throughout the protein life cycle and has a ubiquitous role as the first chaperone encountered by proteins during synthesis. However, our understanding of how TF achieves favorable interactions with such a diverse substrate base remains limited. Here, we use microfluidics to reveal the thermodynamic determinants of this process. We find that TF binding to empty 70S ribosomes is enthalpy-driven, with micromolar affinity, while nanomolar affinity is achieved through a favorable entropic contribution for both intrinsically disordered and folding-competent nascent chains. These findings suggest a general mechanism for cotranslational TF function, which relies on occupation of the exposed TF-substrate binding groove rather than specific complementarity between chaperone and nascent chain. These insights add to our wider understanding of how proteins can achieve broad substrate specificity.
Collapse
Affiliation(s)
- Therese W. Herling
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Anaïs M. E. Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - Anne S. Wentink
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - Quentin A. E. Peter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Pavan C. Kumar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tadas Kartanas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Matthias M. Schneider
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Lisa D. Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
5
|
Banerjee S, Chowdhury D, Chakraborty S, Haldar S. Force-regulated chaperone activity of BiP/ERdj3 is opposite to their homologs DnaK/DnaJ. Protein Sci 2024; 33:e5068. [PMID: 38864739 PMCID: PMC11168073 DOI: 10.1002/pro.5068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Debojyoti Chowdhury
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
| | - Soham Chakraborty
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Shubhasis Haldar
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
- Technical Research Centre, S.N. Bose National Centre for Basic SciencesKolkataWest BengalIndia
| |
Collapse
|
6
|
Masse MM, Guzman-Luna V, Varela AE, Mahfuza Shapla U, Hutchinson RB, Srivastava A, Wei W, Fuchs AM, Cavagnero S. Nascent chains derived from a foldable protein sequence interact with specific ribosomal surface sites near the exit tunnel. Sci Rep 2024; 14:12324. [PMID: 38811604 PMCID: PMC11137106 DOI: 10.1038/s41598-024-61274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
In order to become bioactive, proteins must be translated and protected from aggregation during biosynthesis. The ribosome and molecular chaperones play a key role in this process. Ribosome-bound nascent chains (RNCs) of intrinsically disordered proteins and RNCs bearing a signal/arrest sequence are known to interact with ribosomal proteins. However, in the case of RNCs bearing foldable protein sequences, not much information is available on these interactions. Here, via a combination of chemical crosslinking and time-resolved fluorescence-anisotropy, we find that nascent chains of the foldable globin apoHmp1-140 interact with ribosomal protein L23 and have a freely-tumbling non-interacting N-terminal compact region comprising 63-94 residues. Longer RNCs (apoHmp1-189) also interact with an additional yet unidentified ribosomal protein, as well as with chaperones. Surprisingly, the apparent strength of RNC/r-protein interactions does not depend on nascent-chain sequence. Overall, foldable nascent chains establish and expand interactions with selected ribosomal proteins and chaperones, as they get longer. These data are significant because they reveal the interplay between independent conformational sampling and nascent-protein interactions with the ribosomal surface.
Collapse
Affiliation(s)
- Meranda M Masse
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Angela E Varela
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ummay Mahfuza Shapla
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Aniruddha Srivastava
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McGaw Medical Center, Northwestern University, Chicago, IL, 60611, USA
| | - Wanting Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- AIDS Vaccine Research Laboratory, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Andrew M Fuchs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Gersteuer F, Morici M, Gabrielli S, Fujiwara K, Safdari HA, Paternoga H, Bock LV, Chiba S, Wilson DN. The SecM arrest peptide traps a pre-peptide bond formation state of the ribosome. Nat Commun 2024; 15:2431. [PMID: 38503753 PMCID: PMC10951299 DOI: 10.1038/s41467-024-46762-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.
Collapse
Affiliation(s)
- Felix Gersteuer
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Sara Gabrielli
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| |
Collapse
|
8
|
Panda C, Kumar S, Gupta S, Pandey LM. Structural, kinetic, and thermodynamic aspects of insulin aggregation. Phys Chem Chem Phys 2023; 25:24195-24213. [PMID: 37674360 DOI: 10.1039/d3cp03103a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Given the significance of protein aggregation in proteinopathies and the development of therapeutic protein pharmaceuticals, revamped interest in assessing and modelling the aggregation kinetics has been observed. Quantitative analysis of aggregation includes data of gradual monomeric depletion followed by the formation of subvisible particles. Kinetic and thermodynamic studies are essential to gain key insights into the aggregation process. Despite being the medical marvel in the world of diabetes, insulin suffers from the challenge of aggregation. Physicochemical stresses are experienced by insulin during industrial formulation, storage, delivery, and transport, considerably impacting product quality, efficacy, and effectiveness. The present review briefly describes the pathways, mathematical kinetic models, and thermodynamics of protein misfolding and aggregation. With a specific focus on insulin, further discussions include the structural heterogeneity and modifications of the intermediates incurred during insulin fibrillation. Finally, different model equations to fit the kinetic data of insulin fibrillation are discussed. We believe that this review will shed light on the conditions that induce structural changes in insulin during the lag phase of fibrillation and will motivate scientists to devise strategies to block the initialization of the aggregation cascade. Subsequent abrogation of insulin fibrillation during bioprocessing will ensure stable and globally accessible insulin for efficient management of diabetes.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Sachin Kumar
- Viral Immunology Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sharad Gupta
- Neurodegeneration and Peptide Engineering Research Lab Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
9
|
Chen X, Kaiser CM. AP profiling resolves co-translational folding pathway and chaperone interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555749. [PMID: 37693575 PMCID: PMC10491307 DOI: 10.1101/2023.09.01.555749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural proteins have evolved to fold robustly along specific pathways. Folding begins during synthesis, guided by interactions of the nascent protein with the ribosome and molecular chaperones. However, the timing and progression of co-translational folding remain largely elusive, in part because the process is difficult to measure in the natural environment of the cytosol. We developed a high-throughput method to quantify co-translational folding in live cells that we term Arrest Peptide profiling (AP profiling). We employed AP profiling to delineate co-translational folding for a set of GTPase domains with very similar structures, defining how topology shapes folding pathways. Genetic ablation of major nascent chain-binding chaperones resulted in localized folding changes that suggest how functional redundancies among chaperones are achieved by distinct interactions with the nascent protein. Collectively, our studies provide a window into cellular folding pathways of complex proteins and pave the way for systematic studies on nascent protein folding at unprecedented resolution and throughput.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Present address: Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Moon S, Ham S, Jeong J, Ku H, Kim H, Lee C. Temperature Matters: Bacterial Response to Temperature Change. J Microbiol 2023; 61:343-357. [PMID: 37010795 DOI: 10.1007/s12275-023-00031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 04/04/2023]
Abstract
Temperature is one of the most important factors in all living organisms for survival. Being a unicellular organism, bacterium requires sensitive sensing and defense mechanisms to tolerate changes in temperature. During a temperature shift, the structure and composition of various cellular molecules including nucleic acids, proteins, and membranes are affected. In addition, numerous genes are induced during heat or cold shocks to overcome the cellular stresses, which are known as heat- and cold-shock proteins. In this review, we describe the cellular phenomena that occur with temperature change and bacterial responses from a molecular perspective, mainly in Escherichia coli.
Collapse
Affiliation(s)
- Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Soojeong Ham
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Juwon Jeong
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Heechan Ku
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
11
|
Mermans D, Nicolaus F, Baygin A, von Heijne G. Cotranslational folding of human growth hormone in vitro and in Escherichia coli. FEBS Lett 2022; 597:1355-1362. [PMID: 36520514 DOI: 10.1002/1873-3468.14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Human growth hormone (hGH) is a four-helix bundle protein of considerable pharmacological interest. Recombinant hGH is produced in bacteria, yet little is known about its folding during expression in Escherichia coli. We have studied the cotranslational folding of hGH using force profile analysis (FPA), both during in vitro translation in the absence and presence of the chaperone trigger factor (TF), and when expressed in E. coli. We find that the main folding transition starts before hGH is completely released from the ribosome, and that it can interact with TF and possibly other chaperones.
Collapse
Affiliation(s)
- Daphne Mermans
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Felix Nicolaus
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Aysel Baygin
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Science for Life Laboratory Stockholm University, Solna, Sweden
| |
Collapse
|
12
|
A Short Tale of the Origin of Proteins and Ribosome Evolution. Microorganisms 2022; 10:microorganisms10112115. [DOI: 10.3390/microorganisms10112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins are the workhorses of the cell and have been key players throughout the evolution of all organisms, from the origin of life to the present era. How might life have originated from the prebiotic chemistry of early Earth? This is one of the most intriguing unsolved questions in biology. Currently, however, it is generally accepted that amino acids, the building blocks of proteins, were abiotically available on primitive Earth, which would have made the formation of early peptides in a similar fashion possible. Peptides are likely to have coevolved with ancestral forms of RNA. The ribosome is the most evident product of this coevolution process, a sophisticated nanomachine that performs the synthesis of proteins codified in genomes. In this general review, we explore the evolution of proteins from their peptide origins to their folding and regulation based on the example of superoxide dismutase (SOD1), a key enzyme in oxygen metabolism on modern Earth.
Collapse
|
13
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
14
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
15
|
Chaudhuri D, Banerjee S, Chakraborty S, Chowdhury D, Haldar S. Direct Observation of the Mechanical Role of Bacterial Chaperones in Protein Folding. Biomacromolecules 2022; 23:2951-2967. [PMID: 35678300 DOI: 10.1021/acs.biomac.2c00451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein folding under force is an integral source of generating mechanical energy in various cellular processes, ranging from protein translation to degradation. Although chaperones are well known to interact with proteins under mechanical force, how they respond to force and control cellular energetics remains unknown. To address this question, we introduce a real-time magnetic tweezer technology herein to mimic the physiological force environment on client proteins, keeping the chaperones unperturbed. We studied two structurally distinct client proteins--protein L and talin with seven different chaperones─independently and in combination and proposed a novel mechanical activity of chaperones. We found that chaperones behave differently, while these client proteins are under force, than their previously known functions. For instance, tunnel-associated chaperones (DsbA and trigger factor), otherwise working as holdase without force, assist folding under force. This process generates an additional mechanical energy up to ∼147 zJ to facilitate translation or translocation. However, well-known cytoplasmic foldase chaperones (PDI, thioredoxin, or DnaKJE) do not possess the mechanical folding ability under force. Notably, the transferring chaperones (DnaK, DnaJ, and SecB) act as holdase and slow down the folding process, both in the presence and absence of force, to prevent misfolding of the client proteins. This provides an emerging insight of mechanical roles of chaperones: they can generate or consume energy by shifting the energy landscape of the client proteins toward a folded or an unfolded state, suggesting an evolutionary mechanism to minimize energy consumption in various biological processes.
Collapse
Affiliation(s)
- Deep Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| |
Collapse
|
16
|
Leininger SE, Rodriguez J, Vu QV, Jiang Y, Li MS, Deutsch C, O'Brien EP. Ribosome Elongation Kinetics of Consecutively Charged Residues Are Coupled to Electrostatic Force. Biochemistry 2021; 60:3223-3235. [PMID: 34652913 PMCID: PMC8916236 DOI: 10.1021/acs.biochem.1c00507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The speed of protein synthesis can dramatically change when consecutively charged residues are incorporated into an elongating nascent protein by the ribosome. The molecular origins of this class of allosteric coupling remain unknown. We demonstrate, using multiscale simulations, that positively charged residues generate large forces that move the P-site amino acid away from the A-site amino acid. Negatively charged residues generate forces of similar magnitude but move the A- and P-sites closer together. These conformational changes, respectively, increase and decrease the transition state barrier height to peptide bond formation, explaining how charged residues mechanochemically alter translation speed. This mechanochemical mechanism is consistent with in vivo ribosome profiling data exhibiting proportionality between translation speed and the number of charged residues, experimental data characterizing nascent chain conformations, and a previously published cryo-EM structure of a ribosome-nascent chain complex containing consecutive lysines. These results expand the role of mechanochemistry in translation and provide a framework for interpreting experimental results on translation speed.
Collapse
Affiliation(s)
- Sarah E Leininger
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Judith Rodriguez
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Yang Jiang
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
- Institute for Computational Sciences and Technology, Ho Chi Minh City 700000, Vietnam
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Edward P O'Brien
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Institute for Computational and Data Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Eckels EC, Chaudhuri D, Chakraborty S, Echelman DJ, Haldar S. DsbA is a redox-switchable mechanical chaperone. Chem Sci 2021; 12:11109-11120. [PMID: 34522308 PMCID: PMC8386657 DOI: 10.1039/d1sc03048e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
DsbA is a ubiquitous bacterial oxidoreductase that associates with substrates during and after translocation, yet its involvement in protein folding and translocation remains an open question. Here we demonstrate a redox-controlled chaperone activity of DsbA, on both cysteine-containing and cysteine-free substrates, using magnetic tweezers-based single molecule force spectroscopy that enables independent measurements of oxidoreductase activity and chaperone behavior. Interestingly we found that this chaperone activity is tuned by the oxidation state of DsbA; oxidized DsbA is a strong promoter of folding, but the effect is weakened by the reduction of the catalytic CXXC motif. We further localize the chaperone binding site of DsbA using a seven-residue peptide which effectively blocks the chaperone activity. We found that the DsbA assisted folding of proteins in the periplasm generates enough mechanical work to decrease the ATP consumption needed for periplasmic translocation by up to 33%.
Collapse
Affiliation(s)
- Edward C Eckels
- Department of Biological Sciences, Columbia University New York NY 10027 USA
- Department of Internal Medicine, Columbia University Medical Center New York NY 10032 USA
| | - Deep Chaudhuri
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| | - Daniel J Echelman
- Department of Biological Sciences, Columbia University New York NY 10027 USA
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| |
Collapse
|
18
|
Jiang Y, O'Brien EP. Mechanical Forces Have a Range of Effects on the Rate of Ribosome Catalyzed Peptidyl Transfer Depending on Direction. J Phys Chem B 2021; 125:7128-7136. [PMID: 34166592 PMCID: PMC8291131 DOI: 10.1021/acs.jpcb.1c02263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanical forces acting on the nascent chain residue located at the P-site of the ribosome can influence codon translation rates. Most observations to date involve force vectors aligned collinear with the long axis of the ribosome exit tunnel. What is poorly understood is how force applied in other directions will impact the rate of peptide bond formation catalyzed by the ribosome. Here, we utilize quantum mechanical/molecular mechanics simulations to estimate the changes in the activation free energy as a consequence of applying a constant force in various directions on the C-terminal residue at the P-site. Qualitatively consistent with the Bell model, we find this force can either accelerate, decelerate, or not alter the reaction rate depending on the force direction. A force in the average direction between the P-site 3' O-C ester bond that breaks and the peptide bond that forms accelerates the reaction. A force in the opposite direction slows down the reaction as it opposes these bonds breaking and forming, but surprisingly it does not do so to the maximum extent possible. In this case, there is a counterbalancing trend; the force in this direction brings the A-site amino nitrogen and the P-site tRNA A76 3' oxygen groups closer together, which promotes one of the proton shuttling steps of the reaction. We find the maximum force-induced slowdown occurs 37° off this axis. If force is applied in orthogonal directions to the reaction coordinates, there is no significant change in the reaction speed. These results indicate that there is a richer set of scenarios of force effects on translation speed that have yet to be experimentally explored and raise the possibility that cells could use these mechanochemical effects to modulate and regulate protein synthesis.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Edward P O'Brien
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Institute for Computational and Data Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Cotranslational Translocation and Folding of a Periplasmic Protein Domain in Escherichia coli. J Mol Biol 2021; 433:167047. [PMID: 33989648 DOI: 10.1016/j.jmb.2021.167047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 01/26/2023]
Abstract
In Gram-negative bacteria, periplasmic domains in inner membrane proteins are cotranslationally translocated across the inner membrane through the SecYEG translocon. To what degree such domains also start to fold cotranslationally is generally difficult to determine using currently available methods. Here, we apply Force Profile Analysis (FPA) - a method where a translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide - to follow the cotranslational translocation and folding of the large periplasmic domain of the E. coli inner membrane protease LepB in vivo. Membrane insertion of LepB's two N-terminal transmembrane helices is initiated when their respective N-terminal ends reach 45-50 residues away from the peptidyl transferase center (PTC) in the ribosome. The main folding transition in the periplasmic domain involves all but the ~15 most C-terminal residues of the protein and happens when the C-terminal end of the folded part is ~70 residues away from the PTC; a smaller putative folding intermediate is also detected. This implies that wildtype LepB folds post-translationally in vivo, and shows that FPA can be used to study both co- and post-translational protein folding in the periplasm.
Collapse
|
20
|
Jiang C, Wynne M, Huber D. How Quality Control Systems AID Sec-Dependent Protein Translocation. Front Mol Biosci 2021; 8:669376. [PMID: 33928127 PMCID: PMC8076867 DOI: 10.3389/fmolb.2021.669376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The evolutionarily conserved Sec machinery is responsible for transporting proteins across the cytoplasmic membrane. Protein substrates of the Sec machinery must be in an unfolded conformation in order to be translocated across (or inserted into) the cytoplasmic membrane. In bacteria, the requirement for unfolded proteins is strict: substrate proteins that fold (or misfold) prematurely in the cytoplasm prior to translocation become irreversibly trapped in the cytoplasm. Partially folded Sec substrate proteins and stalled ribosomes containing nascent Sec substrates can also inhibit translocation by blocking (i.e., “jamming”) the membrane-embedded Sec machinery. To avoid these issues, bacteria have evolved a complex network of quality control systems to ensure that Sec substrate proteins do not fold in the cytoplasm. This quality control network can be broken into three branches, for which we have defined the acronym “AID”: (i) avoidance of cytoplasmic intermediates through cotranslationally channeling newly synthesized Sec substrates to the Sec machinery; (ii) inhibition of folding Sec substrate proteins that transiently reside in the cytoplasm by molecular chaperones and the requirement for posttranslational modifications; (iii) destruction of products that could potentially inhibit translocation. In addition, several stress response pathways help to restore protein-folding homeostasis when environmental conditions that inhibit translocation overcome the AID quality control systems.
Collapse
Affiliation(s)
- Chen Jiang
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Max Wynne
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Damon Huber
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Elfageih R, Karyolaimos A, Kemp G, de Gier J, von Heijne G, Kudva R. Cotranslational folding of alkaline phosphatase in the periplasm of Escherichia coli. Protein Sci 2020; 29:2028-2037. [PMID: 32790204 PMCID: PMC7513700 DOI: 10.1002/pro.3927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023]
Abstract
Cotranslational protein folding studies using Force Profile Analysis, a method where the SecM translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide, have so far been limited mainly to small domains of cytosolic proteins that fold in close proximity to the translating ribosome. In this study, we investigate the cotranslational folding of the periplasmic, disulfide bond-containing Escherichia coli protein alkaline phosphatase (PhoA) in a wild-type strain background and a strain background devoid of the periplasmic thiol: disulfide interchange protein DsbA. We find that folding-induced forces can be transmitted via the nascent chain from the periplasm to the polypeptide transferase center in the ribosome, a distance of ~160 Å, and that PhoA appears to fold cotranslationally via at least two disulfide-stabilized folding intermediates. Thus, Force Profile Analysis can be used to study cotranslational folding of proteins in an extra-cytosolic compartment, like the periplasm.
Collapse
Affiliation(s)
- Rageia Elfageih
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | | | - Grant Kemp
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Jan‐Willem de Gier
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Gunnar von Heijne
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Science for Life Laboratory Stockholm UniversitySolnaSweden
| | - Renuka Kudva
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| |
Collapse
|
22
|
Gnuchikh EY, Manukhov IV, Zavilgelsky GB. DnaK Chaperone Takes Part in Folding but Not in Refolding of Thermal Inactivated Proteins in Bacillus subtilis. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Effect of Protein Structure on Evolution of Cotranslational Folding. Biophys J 2020; 119:1123-1134. [PMID: 32857962 DOI: 10.1016/j.bpj.2020.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
Cotranslational folding depends on the folding speed and stability of the nascent protein. It remains difficult, however, to predict which proteins cotranslationally fold. Here, we simulate evolution of model proteins to investigate how native structure influences evolution of cotranslational folding. We developed a model that connects protein folding during and after translation to cellular fitness. Model proteins evolved improved folding speed and stability, with proteins adopting one of two strategies for folding quickly. Low contact order proteins evolve to fold cotranslationally. Such proteins adopt native conformations early on during the translation process, with each subsequently translated residue establishing additional native contacts. On the other hand, high contact order proteins tend not to be stable in their native conformations until the full chain is nearly extruded. We also simulated evolution of slowly translating codons, finding that slower translation speeds at certain positions enhances cotranslational folding. Finally, we investigated real protein structures using a previously published data set that identified evolutionarily conserved rare codons in Escherichia coli genes and associated such codons with cotranslational folding intermediates. We found that protein substructures preceding conserved rare codons tend to have lower contact orders, in line with our finding that lower contact order proteins are more likely to fold cotranslationally. Our work shows how evolutionary selection pressure can cause proteins with local contact topologies to evolve cotranslational folding.
Collapse
|
24
|
Jensen MK, Samelson AJ, Steward A, Clarke J, Marqusee S. The folding and unfolding behavior of ribonuclease H on the ribosome. J Biol Chem 2020; 295:11410-11417. [PMID: 32527724 PMCID: PMC7450101 DOI: 10.1074/jbc.ra120.013909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/04/2020] [Indexed: 11/24/2022] Open
Abstract
The health of a cell depends on accurate translation and proper protein folding, whereas misfolding can lead to aggregation and disease. The first opportunity for a protein to fold occurs during translation, when the ribosome and surrounding environment can affect the nascent chain energy landscape. However, quantifying these environmental effects is challenging because ribosomal proteins and rRNA preclude most spectroscopic measurements of protein energetics. Here, we have applied two gel-based approaches, pulse proteolysis and force-profile analysis, to probe the folding and unfolding pathways of RNase H (RNH) nascent chains stalled on the prokaryotic ribosome in vitro. We found that ribosome-stalled RNH has an increased unfolding rate compared with free RNH. Because protein stability is related to the ratio of the unfolding and folding rates, this increase completely accounts for the observed change in protein stability and indicates that the folding rate is unchanged. Using arrest peptide–based force-profile analysis, we assayed the force generated during the folding of RNH on the ribosome. Surprisingly, we found that population of the RNH folding intermediate is required to generate sufficient force to release a stall induced by the SecM stalling sequence and that readthrough of SecM directly correlates with the stability of the RNH folding intermediate. Together, these results imply that the folding pathway of RNH is unchanged on the ribosome. Furthermore, our findings indicate that the ribosome promotes RNH unfolding while the nascent chain is proximal to the ribosome, which may limit the deleterious effects of RNH misfolding and assist in folding fidelity.
Collapse
Affiliation(s)
- Madeleine K Jensen
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Avi J Samelson
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Annette Steward
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA .,Institute for Quantitative Biosciences (QB3)-Berkeley, University of California, Berkeley, California, USA.,Department of Chemistry, University of California, Berkeley, California, USA
| |
Collapse
|
25
|
Cotranslational folding cooperativity of contiguous domains of α-spectrin. Proc Natl Acad Sci U S A 2020; 117:14119-14126. [PMID: 32513720 DOI: 10.1073/pnas.1909683117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using force profile analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other's folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in piconewtons. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.
Collapse
|
26
|
Simpson LJ, Tzima E, Reader JS. Mechanical Forces and Their Effect on the Ribosome and Protein Translation Machinery. Cells 2020; 9:cells9030650. [PMID: 32156009 PMCID: PMC7140433 DOI: 10.3390/cells9030650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces acting on biological systems, at both the macroscopic and microscopic levels, play an important part in shaping cellular phenotypes. There is a growing realization that biomolecules that respond to force directly applied to them, or via mechano-sensitive signalling pathways, can produce profound changes to not only transcriptional pathways, but also in protein translation. Forces naturally occurring at the molecular level can impact the rate at which the bacterial ribosome translates messenger RNA (mRNA) transcripts and influence processes such as co-translational folding of a nascent protein as it exits the ribosome. In eukaryotes, force can also be transduced at the cellular level by the cytoskeleton, the cell’s internal filamentous network. The cytoskeleton closely associates with components of the translational machinery such as ribosomes and elongation factors and, as such, is a crucial determinant of localized protein translation. In this review we will give (1) a brief overview of protein translation in bacteria and eukaryotes and then discuss (2) how mechanical forces are directly involved with ribosomes during active protein synthesis and (3) how eukaryotic ribosomes and other protein translation machinery intimately associates with the mechanosensitive cytoskeleton network.
Collapse
|
27
|
Co-Translational Protein Folding and Sorting in Chloroplasts. PLANTS 2020; 9:plants9020214. [PMID: 32045984 PMCID: PMC7076657 DOI: 10.3390/plants9020214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/22/2023]
Abstract
Cells depend on the continuous renewal of their proteome composition during the cell cycle and in order to replace aberrant proteins or to react to changing environmental conditions. In higher eukaryotes, protein synthesis is achieved by up to five million ribosomes per cell. With the fast kinetics of translation, the large number of newly made proteins generates a substantial burden for protein homeostasis and requires a highly orchestrated cascade of factors promoting folding, sorting and final maturation. Several of the involved factors directly bind to translating ribosomes for the early processing of emerging nascent polypeptides and the translocation of ribosome nascent chain complexes to target membranes. In plant cells, protein synthesis also occurs in chloroplasts serving the expression of a relatively small set of 60–100 protein-coding genes. However, most of these proteins, together with nucleus-derived subunits, form central complexes majorly involved in the essential processes of photosynthetic light reaction, carbon fixation, metabolism and gene expression. Biogenesis of these heterogenic complexes adds an additional level of complexity for protein biogenesis. In this review, we summarize the current knowledge about co-translationally binding factors in chloroplasts and discuss their role in protein folding and ribosome translocation to thylakoid membranes.
Collapse
|
28
|
Abstract
As the influence of translation rates on protein folding and function has come to light, the mechanisms by which translation speed is modulated have become an important issue. One mechanism entails the generation of force by the nascent protein. Cotranslational processes, such as nascent protein folding, the emergence of unfolded nascent chain segments from the ribosome's exit tunnel, and insertion of the nascent chain into or translocation of the nascent chain through membranes, can generate forces that are transmitted back to the peptidyl transferase center and affect translation rates. In this Perspective, we examine the processes that generate these forces, the mechanisms of transmission along the ribosomal exit tunnel to the peptidyl transferase center, and the effects of force on the ribosome's catalytic cycle. We also discuss the physical models that have been developed to predict and explain force generation for individual processes and speculate about other processes that may generate forces that have yet to be tested.
Collapse
Affiliation(s)
- Sarah Leininger
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Karthik Narayan
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Edward P. O’Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute for CyberScience, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
29
|
Soluble FMDV VP1 proteins fused with calreticulin expressed in Escherichia coli under the assist of trigger factor16 (Tf16) formed into high immunogenic polymers. Int J Biol Macromol 2019; 155:1532-1540. [PMID: 31739054 DOI: 10.1016/j.ijbiomac.2019.11.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
Foot and mouth disease virus (FMDV) is a highly contagious pathogen propagating among cloven-hoofed animals. As a major immunogenic protein, VP1 plays a pivotal role in the induction of neutralizing antibodies, which therefore is an ideal target for developing subunit vaccines. In current study, four prokaryotic expression clones (rV4C, rC4V, rV5F and rF5V) were constructed by fusing truncated calreticulin (CRT) (120-250 aa or 120-308 aa) at the N/C terminal of vp1 gene, and co-expressed with chaperone trigger factor 16 (Tf16) in E.coli, respectively. The soluble recombinant CRT-fused VP1 proteins could form into homogeneous reactive polymers with average hydrodynamic diameters around 100 nm according to the dynamic light scattering (DLS) data. Immunization of guinea pigs with 10 μg purified CRT-fused VP1 proteins induced high levels of antibodies against naked-VP1 through indirect ELISA. Sandwich ELISA showed that only rC4V could elicit the same level of antibody against FMD virus as commercial inactivated vaccine after booster. The lymphocyte cytokines secretion of immunized rC4V was higher than the other CRT-fused VP1 proteins in guinea pigs. These results showed that the soluble CRT-fused VP1 proteins, especially rC4V, expressed with Tf16 in E. coli might have potential to be used as subunit vaccine candidate against FMDV.
Collapse
|
30
|
Ito K, Mori H, Chiba S. Monitoring substrate enables real-time regulation of a protein localization pathway. FEMS Microbiol Lett 2019; 365:4983124. [PMID: 29790986 DOI: 10.1093/femsle/fny109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Protein localization machinery supports cell survival and physiology, suggesting the potential importance of its expression regulation. Here, we summarize a remarkable scheme of regulation, which allows real-time feedback regulation of the machinery expression. A class of regulatory nascent polypeptides, called monitoring substrates, undergoes force-sensitive translation arrest. The resulting ribosome stalling on the mRNA then affects mRNA folding to expose the ribosome-binding site of the downstream target gene and upregulate its translation. The target gene encodes a component of the localization machinery, whose physical action against the monitoring substrate leads to arrest cancellation. Thus, this scheme of feedback loop allows the cell to adjust the amount of the machinery to correlate inversely with the effectiveness of the process at a given moment. The system appears to have emerged late in evolution, in which a narrow range of organisms selected a distinct monitoring substrate-machinery combination. Currently, regulatory systems of SecM-SecA, VemP-SecDF2 and MifM-YidC2 are known to occur in different bacterial species.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Hiroyuki Mori
- Japan and Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| |
Collapse
|
31
|
Waudby CA, Dobson CM, Christodoulou J. Nature and Regulation of Protein Folding on the Ribosome. Trends Biochem Sci 2019; 44:914-926. [PMID: 31301980 PMCID: PMC7471843 DOI: 10.1016/j.tibs.2019.06.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022]
Abstract
Co-translational protein folding is an essential process by which cells ensure the safe and efficient production and assembly of new proteins in their functional native states following biosynthesis on the ribosome. In this review, we describe recent progress in probing the changes during protein synthesis of the free energy landscapes that underlie co-translational folding and discuss the critical coupling between these landscapes and the rate of translation that ultimately determines the success or otherwise of the folding process. Recent developments have revealed a variety of mechanisms by which both folding and translation can be modulated or regulated, and we discuss how these effects are utilised by the cell to optimise the outcome of protein biosynthesis.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| |
Collapse
|
32
|
Kramer G, Shiber A, Bukau B. Mechanisms of Cotranslational Maturation of Newly Synthesized Proteins. Annu Rev Biochem 2019; 88:337-364. [DOI: 10.1146/annurev-biochem-013118-111717] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The timely production of functional proteins is of critical importance for the biological activity of cells. To reach the functional state, newly synthesized polypeptides have to become enzymatically processed, folded, and assembled into oligomeric complexes and, for noncytosolic proteins, translocated across membranes. Key activities of these processes occur cotranslationally, assisted by a network of machineries that transiently engage nascent polypeptides at distinct phases of translation. The sequence of events is tuned by intrinsic features of the nascent polypeptides and timely association of factors with the translating ribosome. Considering the dynamics of translation, the heterogeneity of cellular proteins, and the diversity of interaction partners, it is a major cellular achievement that these processes are temporally and spatially so precisely coordinated, minimizing the generation of damaged proteins. This review summarizes the current progress we have made toward a comprehensive understanding of the cotranslational interactions of nascent chains, which pave the way to their functional state.
Collapse
Affiliation(s)
- Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Ayala Shiber
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| |
Collapse
|
33
|
Smathers CM, Robart AR. The mechanism of splicing as told by group II introns: Ancestors of the spliceosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194390. [PMID: 31202783 DOI: 10.1016/j.bbagrm.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022]
Abstract
Spliceosomal introns and self-splicing group II introns share a common mechanism of intron splicing where two sequential transesterification reactions remove intron lariats and ligate exons. The recent revolution in cryo-electron microscopy (cryo-EM) has allowed visualization of the spliceosome's ribozyme core. Comparison of these cryo-EM structures to recent group II intron crystal structures presents an opportunity to draw parallels between the RNA active site, substrate positioning, and product formation in these two model systems of intron splicing. In addition to shared RNA architectural features, structural similarity between group II intron encoded proteins (IEPs) and the integral spliceosomal protein Prp8 further support a shared catalytic core. These mechanistic and structural similarities support the long-held assertion that group II introns and the eukaryotic spliceosome have a common evolutionary origin. In this review, we discuss how recent structural insights into group II introns and the spliceosome facilitate the chemistry of splicing, highlight similarities between the two systems, and discuss their likely evolutionary connections. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Claire M Smathers
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America
| | - Aaron R Robart
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America.
| |
Collapse
|
34
|
Leininger SE, Trovato F, Nissley DA, O'Brien EP. Domain topology, stability, and translation speed determine mechanical force generation on the ribosome. Proc Natl Acad Sci U S A 2019; 116:5523-5532. [PMID: 30824598 PMCID: PMC6431206 DOI: 10.1073/pnas.1813003116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concomitant folding of a nascent protein domain with its synthesis can generate mechanical forces that act on the ribosome and alter translation speed. Such changes in speed can affect the structure and function of the newly synthesized protein as well as cellular phenotype. The domain properties that govern force generation have yet to be identified and understood, and the influence of translation speed is unknown because all reported measurements have been carried out on arrested ribosomes. Here, using coarse-grained molecular simulations and statistical mechanical modeling of protein synthesis, we demonstrate that force generation is determined by a domain's stability and topology, as well as translation speed. The statistical mechanical models we create predict how force profiles depend on these properties. These results indicate that force measurements on arrested ribosomes will not always accurately reflect what happens in a cell, especially for slow-folding domains, and suggest the possibility that certain domain properties may be enriched or depleted across the structural proteome of organisms through evolutionary selection pressures to modulate protein synthesis speed and posttranslational protein behavior.
Collapse
Affiliation(s)
- Sarah E Leininger
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Fabio Trovato
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Daniel A Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802;
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
- Institute for CyberScience, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
35
|
Kemp G, Kudva R, de la Rosa A, von Heijne G. Force-Profile Analysis of the Cotranslational Folding of HemK and Filamin Domains: Comparison of Biochemical and Biophysical Folding Assays. J Mol Biol 2019; 431:1308-1314. [DOI: 10.1016/j.jmb.2019.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
|
36
|
Abstract
Most proteins need to fold into a specific 3D structure to function. The mechanism by which isolated proteins fold has been thoroughly studied by experiment and theory. However, in the cell proteins do not fold in isolation but are synthesized as linear chains by the ribosome during translation. It is therefore natural to ask at which point during synthesis proteins fold, and whether this differs from the folding of isolated protein molecules. By studying folding of a well-characterized protein domain, titin I27, stalled at different points during translation, we show that it already folds in the mouth of the ribosome exit tunnel and that the mechanism is almost identical to that of the isolated protein. Proteins that fold cotranslationally may do so in a restricted configurational space, due to the volume occupied by the ribosome. How does this environment, coupled with the close proximity of the ribosome, affect the folding pathway of a protein? Previous studies have shown that the cotranslational folding process for many proteins, including small, single domains, is directly affected by the ribosome. Here, we investigate the cotranslational folding of an all-β Ig domain, titin I27. Using an arrest peptide-based assay and structural studies by cryo-EM, we show that I27 folds in the mouth of the ribosome exit tunnel. Simulations that use a kinetic model for the force dependence of escape from arrest accurately predict the fraction of folded protein as a function of length. We used these simulations to probe the folding pathway on and off the ribosome. Our simulations—which also reproduce experiments on mutant forms of I27—show that I27 folds, while still sequestered in the mouth of the ribosome exit tunnel, by essentially the same pathway as free I27, with only subtle shifts of critical contacts from the C to the N terminus.
Collapse
|
37
|
Notari L, Martínez-Carranza M, Farías-Rico JA, Stenmark P, von Heijne G. Cotranslational Folding of a Pentarepeat β-Helix Protein. J Mol Biol 2018; 430:5196-5206. [PMID: 30539762 DOI: 10.1016/j.jmb.2018.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
It is becoming increasingly clear that many proteins start to fold cotranslationally before the entire polypeptide chain has been synthesized on the ribosome. One class of proteins that a priori would seem particularly prone to cotranslational folding is repeat proteins, that is, proteins that are built from an array of nearly identical sequence repeats. However, while the folding of repeat proteins has been studied extensively in vitro with purified proteins, only a handful of studies have addressed the issue of cotranslational folding of repeat proteins. Here, we have determined the structure and studied the cotranslational folding of a β-helix pentarepeat protein from the human pathogen Clostridium botulinum-a homolog of the fluoroquinolone resistance protein MfpA-using an assay in which the SecM translational arrest peptide serves as a force sensor to detect folding events. We find that cotranslational folding of a segment corresponding to the first four of the eight β-helix coils in the protein produces enough force to release ribosome stalling and that folding starts when this unit is ~35 residues away from the P-site, near the distal end of the ribosome exit tunnel. An additional folding transition is seen when the whole PENT moiety emerges from the exit tunnel. The early cotranslational formation of a folded unit may be important to avoid misfolding events in vivo and may reflect the minimal size of a stable β-helix since it is structurally homologous to the smallest known β-helix protein, a four-coil protein that is stable in solution.
Collapse
Affiliation(s)
- Luigi Notari
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden.
| |
Collapse
|
38
|
Kaiser CM, Liu K. Folding up and Moving on-Nascent Protein Folding on the Ribosome. J Mol Biol 2018; 430:4580-4591. [PMID: 29981746 PMCID: PMC6384192 DOI: 10.1016/j.jmb.2018.06.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
Abstract
All cellular proteins are synthesized by the ribosome, an intricate molecular machine that translates the information of protein coding genes into the amino acid alphabet. The linear polypeptides synthesized by the ribosome must generally fold into specific three-dimensional structures to become biologically active. Folding has long been recognized to begin before synthesis is complete. Recently, biochemical and biophysical studies have shed light onto how the ribosome shapes the folding pathways of nascent proteins. Here, we discuss recent progress that is beginning to define the role of the ribosome in the folding of newly synthesized polypeptides.
Collapse
Affiliation(s)
- Christian M Kaiser
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA; Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kaixian Liu
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA; CMDB Graduate Program, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
39
|
Farías-Rico JA, Ruud Selin F, Myronidi I, Frühauf M, von Heijne G. Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. Proc Natl Acad Sci U S A 2018; 115:E9280-E9287. [PMID: 30224455 PMCID: PMC6176590 DOI: 10.1073/pnas.1812756115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
During the last five decades, studies of protein folding in dilute buffer solutions have produced a rich picture of this complex process. In the cell, however, proteins can start to fold while still attached to the ribosome (cotranslational folding) and it is not yet clear how the ribosome affects the folding of protein domains of different sizes, thermodynamic stabilities, and net charges. Here, by using arrest peptides as force sensors and on-ribosome pulse proteolysis, we provide a comprehensive picture of how the distance from the peptidyl transferase center in the ribosome at which proteins fold correlates with protein size. Moreover, an analysis of a large collection of mutants of the Escherichia coli ribosomal protein S6 shows that the force exerted on the nascent chain by protein folding varies linearly with the thermodynamic stability of the folded state, and that the ribosome environment disfavors folding of domains of high net-negative charge.
Collapse
Affiliation(s)
| | - Frida Ruud Selin
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ioanna Myronidi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marie Frühauf
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden
| |
Collapse
|
40
|
Marino J, Buholzer KJ, Zosel F, Nettels D, Schuler B. Charge Interactions Can Dominate Coupled Folding and Binding on the Ribosome. Biophys J 2018; 115:996-1006. [PMID: 30173887 DOI: 10.1016/j.bpj.2018.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022] Open
Abstract
Interactions between emerging nascent polypeptide chains and the ribosome can modulate cotranslational protein folding. However, it has remained unclear how such interactions can affect the binding of nascent chains to their cellular targets. We thus investigated on the ribosome the interaction between two intrinsically disordered proteins of opposite charge, ACTR and NCBD, which form a high-affinity complex in a coupled folding-and-binding reaction. Using fluorescence correlation spectroscopy and arrest-peptide-mediated force measurements in vitro and in vivo, we find that the ACTR-NCBD complex can form cotranslationally but only with ACTR as the nascent chain and NCBD free in solution, not vice versa. We show that this surprising asymmetry in behavior is caused by pronounced charge interactions: attraction of the positively charged nascent chain of NCBD to the negatively charged ribosomal surface competes with complex formation and prevents ACTR binding. In contrast, the negatively charged nascent ACTR is repelled by the ribosomal surface and thus remains available for productively binding its partner. Electrostatic interactions may thus be more important for cotranslational folding and binding than previously thought.
Collapse
Affiliation(s)
- Jacopo Marino
- Department of Biochemistry, University of Zurich, Zurich, Switzerland; Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland.
| | - Karin J Buholzer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Franziska Zosel
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland; Department of Physics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Fujiwara K, Ito K, Chiba S. MifM-instructed translation arrest involves nascent chain interactions with the exterior as well as the interior of the ribosome. Sci Rep 2018; 8:10311. [PMID: 29985442 PMCID: PMC6037786 DOI: 10.1038/s41598-018-28628-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 11/09/2022] Open
Abstract
Bacillus subtilis MifM is a monitoring substrate of the YidC pathways of protein integration into the membrane and controls the expression of the YidC2 (YqjG) homolog by undergoing regulated translational elongation arrest. The elongation arrest requires interactions between the MifM nascent polypeptide and the ribosomal components near the peptidyl transferase center (PTC) as well as at the constriction site of the ribosomal exit tunnel. Here, we addressed the roles played by more N-terminal regions of MifM and found that, in addition to the previously-identified arrest-provoking elements, the MifM residues 41-60 likely located at the tunnel exit and outside the ribosome contribute to the full induction of elongation arrest. Mutational effects of the cytosolically exposed part of the ribosomal protein uL23 suggested its involvement in the elongation arrest, presumably by interacting with the extra-ribosomal portion of MifM. In vitro translation with reconstituted translation components recapitulated the effects of the mutations at the 41-60 segment, reinforcing the importance of direct molecular interactions between the nascent chain and the ribosome. These results indicate that the nascent MifM polypeptide interacts extensively with the ribosome both from within and without to direct the elongation halt and consequent up-regulation of YidC2.
Collapse
Affiliation(s)
- Keigo Fujiwara
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto, 603-8555, Japan
| | - Koreaki Ito
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto, 603-8555, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
42
|
Fan D, Cao S, Zhou Q, Zhang Y, Yue L, Han C, Yang B, Wang Y, Ma Z, Zhu L, Liu C. Exploring the roles of substrate-binding surface of the chaperone site in the chaperone activity of trigger factor. FASEB J 2018; 32:fj201701576. [PMID: 29906241 DOI: 10.1096/fj.201701576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Trigger factor (TF) is a key component of the prokaryotic chaperone network, which is involved in many basic cellular processes, such as protein folding, protein trafficking, and ribosome assembly. The major chaperone site of TF has a cradle-like structure in which protein substrate may fold without interference from other proteins. Here, we investigated in vivo and in vitro the roles of hydrophobic and charged patches on the edge and interior of cradle during TF-assisted protein folding. Our results showed that most of the surface of the cradle was involved in TF-assisted protein folding, which was larger than found in early studies. Although the inner surface of cradle was mostly hydrophobic, both hydrophobic and electrostatic patches were indispensable for TF to facilitate correct protein folding. However, hydrophobic patches were more important for the antiaggregation activity of TF. Furthermore, it was found that the patches on the surface of cradle were involved in TF-assisted protein folding in a spatial and temporal order. These results suggest that the folding-favorable interface between the cradle and substrate was dynamic during TF-assisted protein folding, which enabled TF to be involved in the folding of substrate in an aggressive manner rather than acting as a classic holdase.-Fan, D., Cao, S., Zhou, Q., Zhang, Y., Yue, L., Han, C., Yang, B., Wang, Y., Ma, Z., Zhu, L., Liu, C. Exploring the roles of substrate-binding surface of chaperone site in the chaperone activity of trigger factor.
Collapse
Affiliation(s)
- Dongjie Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shunan Cao
- Key Laboratory for Polar Science, State Ocean Administration, Polar Research Institute of China, Shanghai, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- ChosenMed Technology Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, China
| | - You Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Bo Yang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lingxiang Zhu
- National Research Institute for Family Planning (NRIFP), Beijing, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
43
|
Fritch B, Kosolapov A, Hudson P, Nissley DA, Woodcock HL, Deutsch C, O'Brien EP. Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis. J Am Chem Soc 2018; 140:5077-5087. [PMID: 29577725 DOI: 10.1021/jacs.7b11044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mechanical forces acting on the ribosome can alter the speed of protein synthesis, indicating that mechanochemistry can contribute to translation control of gene expression. The naturally occurring sources of these mechanical forces, the mechanism by which they are transmitted 10 nm to the ribosome's catalytic core, and how they influence peptide bond formation rates are largely unknown. Here, we identify a new source of mechanical force acting on the ribosome by using in situ experimental measurements of changes in nascent-chain extension in the exit tunnel in conjunction with all-atom and coarse-grained computer simulations. We demonstrate that when the number of residues composing a nascent chain increases, its unstructured segments outside the ribosome exit tunnel generate piconewtons of force that are fully transmitted to the ribosome's P-site. The route of force transmission is shown to be through the nascent polypetide's backbone, not through the wall of the ribosome's exit tunnel. Utilizing quantum mechanical calculations we find that a consequence of such a pulling force is to decrease the transition state free energy barrier to peptide bond formation, indicating that the elongation of a nascent chain can accelerate translation. Since nascent protein segments can start out as largely unfolded structural ensembles, these results suggest a pulling force is present during protein synthesis that can modulate translation speed. The mechanism of force transmission we have identified and its consequences for peptide bond formation should be relevant regardless of the source of the pulling force.
Collapse
Affiliation(s)
- Benjamin Fritch
- Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Andrey Kosolapov
- Department of Physiology , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Phillip Hudson
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,Laboratory of Computational Biology , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Daniel A Nissley
- Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - H Lee Woodcock
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Carol Deutsch
- Department of Physiology , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Edward P O'Brien
- Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
44
|
Perales-Calvo J, Giganti D, Stirnemann G, Garcia-Manyes S. The force-dependent mechanism of DnaK-mediated mechanical folding. SCIENCE ADVANCES 2018; 4:eaaq0243. [PMID: 29487911 PMCID: PMC5817926 DOI: 10.1126/sciadv.aaq0243] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/09/2018] [Indexed: 05/27/2023]
Abstract
It is well established that chaperones modulate the protein folding free-energy landscape. However, the molecular determinants underlying chaperone-mediated mechanical folding remain largely elusive, primarily because the force-extended unfolded conformation fundamentally differs from that characterized in biochemistry experiments. We use single-molecule force-clamp spectroscopy, combined with molecular dynamics simulations, to study the effect that the Hsp70 system has on the mechanical folding of three mechanically stiff model proteins. Our results demonstrate that, when working independently, DnaJ (Hsp40) and DnaK (Hsp70) work as holdases, blocking refolding by binding to distinct substrate conformations. Whereas DnaK binds to molten globule-like forms, DnaJ recognizes a cryptic sequence in the extended state in an unanticipated force-dependent manner. By contrast, the synergetic coupling of the Hsp70 system exhibits a marked foldase behavior. Our results offer unprecedented molecular and kinetic insights into the mechanisms by which mechanical force finely regulates chaperone binding, directly affecting protein elasticity.
Collapse
Affiliation(s)
- Judit Perales-Calvo
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King’s College London, WC2R 2LS London, UK
| | - David Giganti
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King’s College London, WC2R 2LS London, UK
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Univ. Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sergi Garcia-Manyes
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King’s College London, WC2R 2LS London, UK
| |
Collapse
|
45
|
Betancor-Fernández I, Timson DJ, Salido E, Pey AL. Natural (and Unnatural) Small Molecules as Pharmacological Chaperones and Inhibitors in Cancer. Handb Exp Pharmacol 2018; 245:155-190. [PMID: 28993836 DOI: 10.1007/164_2017_55] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mutations causing single amino acid exchanges can dramatically affect protein stability and function, leading to disease. In this chapter, we will focus on several representative cases in which such mutations affect protein stability and function leading to cancer. Mutations in BRAF and p53 have been extensively characterized as paradigms of loss-of-function/gain-of-function mechanisms found in a remarkably large fraction of tumours. Loss of RB1 is strongly associated with cancer progression, although the molecular mechanisms by which missense mutations affect protein function and stability are not well known. Polymorphisms in NQO1 represent a remarkable example of the relationships between intracellular destabilization and inactivation due to dynamic alterations in protein ensembles leading to loss of function. We will review the function of these proteins and their dysfunction in cancer and then describe in some detail the effects of the most relevant cancer-associated single amino exchanges using a translational perspective, from the viewpoints of molecular genetics and pathology, protein biochemistry and biophysics, structural, and cell biology. This will allow us to introduce several representative examples of natural and synthetic small molecules applied and developed to overcome functional, stability, and regulatory alterations due to cancer-associated amino acid exchanges, which hold the promise for using them as potential pharmacological cancer therapies.
Collapse
Affiliation(s)
- Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, Tenerife, 38320, Spain
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, Tenerife, 38320, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, 18071, Spain.
| |
Collapse
|
46
|
Komar AA. Unraveling co-translational protein folding: Concepts and methods. Methods 2017; 137:71-81. [PMID: 29221924 DOI: 10.1016/j.ymeth.2017.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Advances in techniques such as nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and single-molecule and time-resolved fluorescent approaches are transforming our ability to study co-translational protein folding both in vivo in living cells and in vitro in reconstituted cell-free translation systems. These approaches provide comprehensive information on the spatial organization and dynamics of nascent polypeptide chains and the kinetics of co-translational protein folding. This information has led to an improved understanding of the process of protein folding in living cells and should allow remaining key questions in the field, such as what structures are formed within nascent chains during protein synthesis and when, to be answered. Ultimately, studies using these techniques will facilitate development of a unified concept of protein folding, a process that is essential for proper cell function and organism viability. This review describes current methods for analysis of co-translational protein folding with an emphasis on some of the recently developed techniques that allow monitoring of co-translational protein folding in real-time.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA; Department of Biochemistry and the Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
47
|
Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol 2017; 217:51-63. [PMID: 29127110 PMCID: PMC5748993 DOI: 10.1083/jcb.201709072] [Citation(s) in RCA: 534] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ensuring cellular protein homeostasis, or proteostasis, requires precise control of protein synthesis, folding, conformational maintenance, and degradation. A complex and adaptive proteostasis network coordinates these processes with molecular chaperones of different classes and their regulators functioning as major players. This network serves to ensure that cells have the proteins they need while minimizing misfolding or aggregation events that are hallmarks of age-associated proteinopathies, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It is now clear that the capacity of cells to maintain proteostasis undergoes a decline during aging, rendering the organism susceptible to these pathologies. Here we discuss the major proteostasis pathways in light of recent research suggesting that their age-dependent failure can both contribute to and result from disease. We consider different strategies to modulate proteostasis capacity, which may help develop urgently needed therapies for neurodegeneration and other age-dependent pathologies.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
48
|
Abstract
Proteins fold under mechanical forces in a number of biological processes, ranging from muscle contraction to co-translational folding. As force hinders the folding transition, chaperones must play a role in this scenario, although their influence on protein folding under force has not been directly monitored yet. Here, we introduce single-molecule magnetic tweezers to study the folding dynamics of protein L in presence of the prototypical molecular chaperone trigger factor over the range of physiological forces (4–10 pN). Our results show that trigger factor increases prominently the probability of folding against force and accelerates the refolding kinetics. Moreover, we find that trigger factor catalyzes the folding reaction in a force-dependent manner; as the force increases, higher concentrations of trigger factor are needed to rescue folding. We propose that chaperones such as trigger factor can work as foldases under force, a mechanism which could be of relevance for several physiological processes. Proteins fold under mechanical force during co-translational folding at the ribosome. Here, the authors use single molecule magnetic tweezers to study the influence of chaperones on protein folding and show that the ribosomal chaperone trigger factor acts as a mechanical foldase by promoting protein folding under force.
Collapse
|
49
|
Wruck F, Avellaneda MJ, Koers EJ, Minde DP, Mayer MP, Kramer G, Mashaghi A, Tans SJ. Protein Folding Mediated by Trigger Factor and Hsp70: New Insights from Single-Molecule Approaches. J Mol Biol 2017; 430:438-449. [PMID: 28911846 DOI: 10.1016/j.jmb.2017.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/26/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023]
Abstract
Chaperones assist in protein folding, but what this common phrase means in concrete terms has remained surprisingly poorly understood. We can readily measure chaperone binding to unfolded proteins, but how they bind and affect proteins along folding trajectories has remained obscure. Here we review recent efforts by our labs and others that are beginning to pry into this issue, with a focus on the chaperones trigger factor and Hsp70. Single-molecule methods are central, as they allow the stepwise process of folding to be followed directly. First results have already revealed contrasts with long-standing paradigms: rather than acting only "early" by stabilizing unfolded chain segments, these chaperones can bind and stabilize partially folded structures as they grow to their native state. The findings suggest a fundamental redefinition of the protein folding problem and a more extensive functional repertoire of chaperones than previously assumed.
Collapse
Affiliation(s)
- Florian Wruck
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | | | - Eline J Koers
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - David P Minde
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Sander J Tans
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands.
| |
Collapse
|
50
|
Sorokina I, Mushegian A. Rotational restriction of nascent peptides as an essential element of co-translational protein folding: possible molecular players and structural consequences. Biol Direct 2017; 12:14. [PMID: 28569180 PMCID: PMC5452302 DOI: 10.1186/s13062-017-0186-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background A basic tenet of protein science is that all information about the spatial structure of proteins is present in their sequences. Nonetheless, many proteins fail to attain native structure upon experimental denaturation and refolding in vitro, raising the question of the specific role of cellular machinery in protein folding in vivo. Recently, we hypothesized that energy-dependent twisting of the protein backbone is an unappreciated essential factor guiding the protein folding process in vivo. Torque force may be applied by the ribosome co-translationally, and when accompanied by simultaneous restriction of the rotational mobility of the distal part of the growing chain, the resulting tension in the protein backbone would facilitate the formation of local secondary structure and direct the folding process. Results Our model of the early stages of protein folding in vivo postulates that the free motion of both terminal regions of the protein during its synthesis and maturation is restricted. The long-known but unexplained phenomenon of statistical overrepresentation of protein termini on the surfaces of the protein structures may be an indication of the backbone twist-based folding mechanism; sustained maintenance of a twist requires that both ends of the protein chain are anchored in space, and if the ends are released only after the majority of folding is complete, they are much more likely to remain on the surface of the molecule. We identified the molecular components that are likely to play a role in the twisting of the nascent protein chain and in the anchoring of its N-terminus. The twist may be induced at the C-terminus of the nascent polypeptide by the peptidyltransferase center of the ribosome. Several ribosome-associated proteins, including the trigger factor in bacteria and the nascent polypeptide-associated complex in archaea and eukaryotes, may restrict the rotational mobility of the N-proximal regions of the peptides. Conclusions Many experimental observations are consistent with the hypothesis of co-translational twisting of the protein backbone. Several molecular players in this hypothetical mechanism of protein folding can be suggested. In addition, the new view of protein folding in vivo opens the possibility of novel potential drug targets to combat human protein folding diseases. Reviewers This article was reviewed by Lakshminarayan Iyer and István Simon. Electronic supplementary material The online version of this article (doi:10.1186/s13062-017-0186-1) contains supplementary material, which is available to authorized users.
Collapse
|