1
|
Hong Z, Byrd AK, Gao J, Das P, Tan VQ, Malone EG, Osei B, Marecki JC, Protacio RU, Wahls WP, Raney KD, Song H. Eukaryotic Pif1 helicase unwinds G-quadruplex and dsDNA using a conserved wedge. Nat Commun 2024; 15:6104. [PMID: 39030241 PMCID: PMC11275212 DOI: 10.1038/s41467-024-50575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/16/2024] [Indexed: 07/21/2024] Open
Abstract
G-quadruplexes (G4s) formed by guanine-rich nucleic acids induce genome instability through impeding DNA replication fork progression. G4s are stable DNA structures, the unfolding of which require the functions of DNA helicases. Pif1 helicase binds preferentially to G4 DNA and plays multiple roles in maintaining genome stability, but the mechanism by which Pif1 unfolds G4s is poorly understood. Here we report the co-crystal structure of Saccharomyces cerevisiae Pif1 (ScPif1) bound to a G4 DNA with a 5' single-stranded DNA (ssDNA) segment. Unlike the Thermus oshimai Pif1-G4 structure, in which the 1B and 2B domains confer G4 recognition, ScPif1 recognizes G4 mainly through the wedge region in the 1A domain that contacts the 5' most G-tetrad directly. A conserved Arg residue in the wedge is required for Okazaki fragment processing but not for mitochondrial function or for suppression of gross chromosomal rearrangements. Multiple substitutions at this position have similar effects on resolution of DNA duplexes and G4s, suggesting that ScPif1 may use the same wedge to unwind G4 and dsDNA. Our results reveal the mechanism governing dsDNA unwinding and G4 unfolding by ScPif1 helicase that can potentially be generalized to other eukaryotic Pif1 helicases and beyond.
Collapse
Affiliation(s)
- Zebin Hong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Poulomi Das
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore
| | - Vanessa Qianmin Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore
| | - Emory G Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bertha Osei
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Haiwei Song
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore.
| |
Collapse
|
2
|
Varon M, Dovrat D, Heuzé J, Tsirkas I, Singh SP, Pasero P, Galletto R, Aharoni A. Rrm3 and Pif1 division of labor during replication through leading and lagging strand G-quadruplex. Nucleic Acids Res 2024; 52:1753-1762. [PMID: 38117984 PMCID: PMC10899776 DOI: 10.1093/nar/gkad1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Members of the conserved Pif1 family of 5'-3' DNA helicases can unwind G4s and mitigate their negative impact on genome stability. In Saccharomyces cerevisiae, two Pif1 family members, Pif1 and Rrm3, contribute to the suppression of genomic instability at diverse regions including telomeres, centromeres and tRNA genes. While Pif1 can resolve lagging strand G4s in vivo, little is known regarding Rrm3 function at G4s and its cooperation with Pif1 for G4 replication. Here, we monitored replication through G4 sequences in real time to show that Rrm3 is essential for efficient replisome progression through G4s located on the leading strand template, but not on the lagging strand. We found that Rrm3 importance for replication through G4s is dependent on its catalytic activity and its N-terminal unstructured region. Overall, we show that Rrm3 and Pif1 exhibit a division of labor that enables robust replication fork progression through leading and lagging strand G4s, respectively.
Collapse
Affiliation(s)
- Mor Varon
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Jonathan Heuzé
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier, France
| | - Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier, France
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
3
|
Lee RS, Geronimo CL, Liu L, Twarowski JM, Malkova A, Zakian VA. Identification of the nuclear localization signal in the Saccharomyces cerevisiae Pif1 DNA helicase. PLoS Genet 2023; 19:e1010853. [PMID: 37486934 PMCID: PMC10399864 DOI: 10.1371/journal.pgen.1010853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023] Open
Abstract
Saccharomyces cerevisiae Pif1 is a multi-functional DNA helicase that plays diverse roles in the maintenance of the nuclear and mitochondrial genomes. Two isoforms of Pif1 are generated from a single open reading frame by the use of alternative translational start sites. The Mitochondrial Targeting Signal (MTS) of Pif1 is located between the two start sites, but a Nuclear Localization Signal (NLS) has not been identified. Here we used sequence and functional analysis to identify an NLS element. A mutant allele of PIF1 (pif1-NLSΔ) that lacks four basic amino acids (781KKRK784) in the carboxyl-terminal domain of the 859 amino acid Pif1 was expressed at wild type levels and retained wild type mitochondrial function. However, pif1-NLSΔ cells were defective in four tests for nuclear function: telomere length maintenance, Okazaki fragment processing, break-induced replication (BIR), and binding to nuclear target sites. Fusing the NLS from the simian virus 40 (SV40) T-antigen to the Pif1-NLSΔ protein reduced the nuclear defects of pif1-NLSΔ cells. Thus, four basic amino acids near the carboxyl end of Pif1 are required for the vast majority of nuclear Pif1 function. Our study also reveals phenotypic differences between the previously described loss of function pif1-m2 allele and three other pif1 mutant alleles generated in this work, which will be useful to study nuclear Pif1 functions.
Collapse
Affiliation(s)
- Rosemary S. Lee
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Carly L. Geronimo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Liping Liu
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jerzy M. Twarowski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Virginia A. Zakian
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
4
|
Mersch K, Sokoloski J, Nguyen B, Galletto R, Lohman T. "Helicase" Activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. Proc Natl Acad Sci U S A 2023; 120:e2216777120. [PMID: 37011199 PMCID: PMC10104510 DOI: 10.1073/pnas.2216777120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.
Collapse
Affiliation(s)
- Kacey N. Mersch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Joshua E. Sokoloski
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
- Department of Chemistry, Salisbury University, Salisbury, MD21801
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| |
Collapse
|
5
|
Structural Studies of Pif1 Helicases from Thermophilic Bacteria. Microorganisms 2023; 11:microorganisms11020479. [PMID: 36838444 PMCID: PMC9964779 DOI: 10.3390/microorganisms11020479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Pif1 proteins are DNA helicases belonging to Superfamily 1, with 5' to 3' directionality. They are conserved from bacteria to human and have been shown to be particularly important in eukaryotes for replication and nuclear and mitochondrial genome stability. However, Pif1 functions in bacteria are less known. While most Pif1 from mesophilic bacteria consist of the helicase core with limited N-terminal and C-terminal extensions, some Pif1 from thermophilic bacteria exhibit a C-terminal WYL domain. We solved the crystal structures of Pif1 helicase cores from thermophilic bacteria Deferribacter desulfuricans and Sulfurihydrogenibium sp. in apo and nucleotide bound form. We show that the N-terminal part is important for ligand binding. The full-length Pif1 helicase was predicted based on the Alphafold algorithm and the nucleic acid binding on the Pif1 helicase core and the WYL domain was modelled based on known crystallographic structures. The model predicts that amino acids in the domains 1A, WYL, and linker between the Helicase core and WYL are important for nucleic acid binding. Therefore, the N-terminal and C-terminal extensions may be necessary to strengthen the binding of nucleic acid on these Pif1 helicases. This may be an adaptation to thermophilic conditions.
Collapse
|
6
|
Yokota H. Quantitative and kinetic single-molecule analysis of DNA unwinding by <i>Escherichia coli</i> UvrD helicase. Biophys Physicobiol 2022; 19:1-16. [PMID: 35435650 PMCID: PMC8967476 DOI: 10.2142/biophysico.bppb-v19.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 12/01/2022] Open
Abstract
Helicases are nucleic acid-unwinding enzymes involved in the maintenance of genome integrity. Helicases share several “helicase motifs” that are highly conserved amino acid sequences and are classified into six superfamilies (SFs). The helicase SFs are further grouped into two classes based on their functional units. One class that includes SFs 3–6 functions as a hexamer that can form a ring around DNA. Another class that includes SFs 1 and 2 functions in a non-hexameric form. The high homology in the primary and tertiary structures among SF1 helicases suggests that SF1 helicases have a common underlying mechanism. However, two opposing models for the functional unit, monomer and dimer models, have been proposed to explain DNA unwinding by SF1 helicases. This paper briefly describes the classification of helicase SFs and discusses the structural homology and the two opposing non-hexameric helicase models of SF1 helicases by focusing on Escherichia coli SF1 helicase UvrD, which plays a significant role in both nucleotide-excision repair and methyl-directed mismatch repair. This paper reviews past and recent studies on UvrD, including the author's single-molecule direct visualization of wild-type UvrD and a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C), the latter of which was used in genetic and biochemical assays that supported the monomer model. The visualization revealed that multiple UvrDΔ40C molecules jointly unwind DNA, presumably in an oligomeric form, similar to wild-type UvrD. Therefore, single-molecule direct visualization of nucleic acid-binding proteins can provide quantitative and kinetic information to reveal their fundamental mechanisms.
Collapse
Affiliation(s)
- Hiroaki Yokota
- The Graduate School for the Creation of New Photonics Industries
| |
Collapse
|
7
|
Abstract
The gene encoding the Pif1 helicase was first discovered in a Saccharomyces cerevisiae genetic screen as a mutant that reduces recombination between mitochondrial respiratory mutants and was subsequently rediscovered in a screen for genes affecting the telomere length in the nucleus. It is now known that Pif1 is involved in numerous aspects of DNA metabolism. All known functions of Pif1 rely on binding to DNA substrates followed by ATP hydrolysis, coupling the energy released to translocation along DNA to unwind duplex DNA or alternative DNA secondary structures. The interaction of Pif1 with higher-order DNA structures, like G-quadruplex DNA, as well as the length of single-stranded (ss)DNA necessary for Pif1 loading have been widely studied. Here, to test the effects of ssDNA length, sequence, and structure on Pif1's biochemical activities in vitro, we used a suite of oligonucleotide-based substrates to perform a basic characterization of Pif1 ssDNA binding, ATPase activity, and helicase activity. Using recombinant, untagged S. cerevisiae Pif1, we found that Pif1 preferentially binds to structured G-rich ssDNA, but the preferred binding substrates failed to maximally stimulate ATPase activity. In helicase assays, significant DNA unwinding activity was detected at Pif1 concentrations as low as 250 pM. Helicase assays also demonstrated that Pif1 most efficiently unwinds DNA fork substrates with unstructured ssDNA tails. As the chemical step size of Pif1 has been determined to be 1 ATP per translocation or unwinding event, this implies that the highly structured DNA inhibits conformational changes in Pif1 that couple ATP hydrolysis to DNA translocation and unwinding.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Lu KY, Xin BG, Zhang T, Liu NN, Li D, Rety S, Xi XG. Structural study of the function of Candida Albicans Pif1. Biochem Biophys Res Commun 2021; 567:190-194. [PMID: 34166917 DOI: 10.1016/j.bbrc.2021.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Pif1 helicases, conserved in eukaryotes, are involved in maintaining genome stability in both the nucleus and mitochondria. Here, we report the crystal structure of a truncated Candida Albicans Pif1 (CaPif1368-883) in complex with ssDNA and an ATP analog. Our results show that the Q-motif is responsible for identifying adenine bases, and CaPif1 preferentially utilizes ATP/dATP during dsDNA unwinding. Although CaPif1 shares structural similarities with Saccharomyces cerevisiae Pif1, CaPif1 can contact the thymidine bases of DNA by hydrogen bonds, whereas ScPif1 cannot. More importantly, the crosslinking and mutant experiments have demonstrated that the conformational change of domain 2B is necessary for CaPif1 to unwind dsDNA. These findings contribute to further the understanding of the unwinding mechanism of Pif1.
Collapse
Affiliation(s)
- Ke-Yu Lu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ben-Ge Xin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Teng Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Dai YX, Chen WF, Liu NN, Teng FY, Guo HL, Hou XM, Dou SX, Rety S, Xi XG. Structural and functional studies of SF1B Pif1 from Thermus oshimai reveal dimerization-induced helicase inhibition. Nucleic Acids Res 2021; 49:4129-4143. [PMID: 33784404 PMCID: PMC8053095 DOI: 10.1093/nar/gkab188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
Pif1 is an SF1B helicase that is evolutionarily conserved from bacteria to humans and plays multiple roles in maintaining genome stability in both nucleus and mitochondria. Though highly conserved, Pif1 family harbors a large mechanistic diversity. Here, we report crystal structures of Thermus oshimai Pif1 (ToPif1) alone and complexed with partial duplex or single-stranded DNA. In the apo state and in complex with a partial duplex DNA, ToPif1 is monomeric with its domain 2B/loop3 adopting a closed and an open conformation, respectively. When complexed with a single-stranded DNA, ToPif1 forms a stable dimer with domain 2B/loop3 shifting to a more open conformation. Single-molecule and biochemical assays show that domain 2B/loop3 switches repetitively between the closed and open conformations when a ToPif1 monomer unwinds DNA and, in contrast with other typical dimeric SF1A helicases, dimerization has an inhibitory effect on its helicase activity. This mechanism is not general for all Pif1 helicases but illustrates the diversity of regulation mechanisms among different helicases. It also raises the possibility that although dimerization results in activation for SF1A helicases, it may lead to inhibition for some of the other uncharacterized SF1B helicases, an interesting subject warranting further studies.
Collapse
Affiliation(s)
- Yang-Xue Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang-Yuan Teng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Lei Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D'Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France
| |
Collapse
|
10
|
Sparks MA, Burgers PM, Galletto R. Pif1, RPA, and FEN1 modulate the ability of DNA polymerase δ to overcome protein barriers during DNA synthesis. J Biol Chem 2020; 295:15883-15891. [PMID: 32913126 DOI: 10.1074/jbc.ra120.015699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Indexed: 01/20/2023] Open
Abstract
Successful DNA replication requires carefully regulated mechanisms to overcome numerous obstacles that naturally occur throughout chromosomal DNA. Scattered across the genome are tightly bound proteins, such as transcription factors and nucleosomes, that are necessary for cell function, but that also have the potential to impede timely DNA replication. Using biochemically reconstituted systems, we show that two transcription factors, yeast Reb1 and Tbf1, and a tightly positioned nucleosome, are strong blocks to the strand displacement DNA synthesis activity of DNA polymerase δ. Although the block imparted by Tbf1 can be overcome by the DNA-binding activity of the single-stranded DNA-binding protein RPA, efficient DNA replication through either a Reb1 or a nucleosome block occurs only in the presence of the 5'-3' DNA helicase Pif1. The Pif1-dependent stimulation of DNA synthesis across strong protein barriers may be beneficial during break-induced replication where barriers are expected to pose a problem to efficient DNA bubble migration. However, in the context of lagging strand DNA synthesis, the efficient disruption of a nucleosome barrier by Pif1 could lead to the futile re-replication of newly synthetized DNA. In the presence of FEN1 endonuclease, the major driver of nick translation during lagging strand replication, Pif1-dependent stimulation of DNA synthesis through a nucleosome or Reb1 barrier is prevented. By cleaving the short 5' tails generated during strand displacement, FEN1 eliminates the entry point for Pif1. We propose that this activity would protect the cell from potential DNA re-replication caused by unwarranted Pif1 interference during lagging strand replication.
Collapse
Affiliation(s)
- Melanie A Sparks
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri USA.
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri USA.
| |
Collapse
|
11
|
Lu C, Le S, Chen J, Byrd AK, Rhodes D, Raney KD, Yan J. Direct quantification of the translocation activities of Saccharomyces cerevisiae Pif1 helicase. Nucleic Acids Res 2019; 47:7494-7501. [PMID: 31216020 PMCID: PMC6698741 DOI: 10.1093/nar/gkz541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 02/04/2023] Open
Abstract
Saccharomyces cerevisiae Pif1 (ScPif1) is known as an ATP-dependent DNA helicase that plays critical roles in a number of important biological processes such as DNA replication, telomere maintenance and genome stability maintenance. Besides its DNA helicase activity, ScPif1 is also known as a single-stranded DNA (ssDNA) translocase, while how ScPif1 translocates on ssDNA is unclear. Here, by measuring the translocation activity of individual ScPif1 molecules on ssDNA extended by mechanical force, we identified two distinct types of ssDNA translocation. In one type, ScPif1 moves along the ssDNA track with a rate of ∼140 nt/s in 100 μM ATP, whereas in the other type, ScPif1 is immobilized to a fixed location of ssDNA and generates ssDNA loops against force. Between the two, the mobile translocation is the major form at nanomolar ScPif1 concentrations although patrolling becomes more frequent at micromolar concentrations. Together, our results suggest that ScPif1 translocates on extended ssDNA in two distinct modes, primarily in a ‘mobile’ manner.
Collapse
Affiliation(s)
- Chen Lu
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117542
| | - Jin Chen
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Science, Arkansas 72205, USA
| | - Daniela Rhodes
- School of Biological Sciences, Nanyang Technology University, Singapore 637551
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Science, Arkansas 72205, USA
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557.,Department of Physics, National University of Singapore, Singapore 117542
| |
Collapse
|
12
|
Sparks MA, Singh SP, Burgers PM, Galletto R. Complementary roles of Pif1 helicase and single stranded DNA binding proteins in stimulating DNA replication through G-quadruplexes. Nucleic Acids Res 2019; 47:8595-8605. [PMID: 31340040 PMCID: PMC7145523 DOI: 10.1093/nar/gkz608] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
G-quadruplexes (G4s) are stable secondary structures that can lead to the stalling of replication forks and cause genomic instability. Pif1 is a 5′ to 3′ helicase, localized to both the mitochondria and nucleus that can unwind G4s in vitro and prevent fork stalling at G4 forming sequences in vivo. Using in vitro primer extension assays, we show that both G4s and stable hairpins form barriers to nuclear and mitochondrial DNA polymerases δ and γ, respectively. However, while single-stranded DNA binding proteins (SSBs) readily promote replication through hairpins, SSBs are only effective in promoting replication through weak G4s. Using a series of G4s with increasing stabilities, we reveal a threshold above which G4 through-replication is inhibited even with SSBs present, and Pif1 helicase is required. Because Pif1 moves along the template strand with a 5′-3′-directionality, head-on collisions between Pif1 and polymerase δ or γ result in the stimulation of their 3′-exonuclease activity. Both nuclear RPA and mitochondrial SSB play a protective role during DNA replication by preventing excessive DNA degradation caused by the helicase-polymerase conflict.
Collapse
Affiliation(s)
- Melanie A Sparks
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
13
|
Su N, Byrd AK, Bharath SR, Yang O, Jia Y, Tang X, Ha T, Raney KD, Song H. Structural basis for DNA unwinding at forked dsDNA by two coordinating Pif1 helicases. Nat Commun 2019; 10:5375. [PMID: 31772234 PMCID: PMC6879534 DOI: 10.1038/s41467-019-13414-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022] Open
Abstract
Pif1 plays multiple roles in maintaining genome stability and preferentially unwinds forked dsDNA, but the mechanism by which Pif1 unwinds forked dsDNA remains elusive. Here we report the structure of Bacteroides sp Pif1 (BaPif1) in complex with a symmetrical double forked dsDNA. Two interacting BaPif1 molecules are bound to each fork of the partially unwound dsDNA, and interact with the 5′ arm and 3′ ss/dsDNA respectively. Each of the two BaPif1 molecules is an active helicase and their interaction may regulate their helicase activities. The binding of BaPif1 to the 5′ arm causes a sharp bend in the 5′ ss/dsDNA junction, consequently breaking the first base-pair. BaPif1 bound to the 3′ ss/dsDNA junction impacts duplex unwinding by stabilizing the unpaired first base-pair and engaging the second base-pair poised for breaking. Our results provide an unprecedented insight into how two BaPif1 coordinate with each other to unwind the forked dsDNA. Pif1 plays multiple roles in maintaining genome stability and preferentially unwinds forked dsDNA. Here the authors solve the structure of Bacteroides sp Pif1 (BaPif1) in complex with a symmetrical double forked dsDNA and provide unprecedented insights into forked dsDNA unwinding by BaPif1.
Collapse
Affiliation(s)
- Nannan Su
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sakshibeedu R Bharath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, 725N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Yu Jia
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xuhua Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, 725N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Haiwei Song
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China. .,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
14
|
Branched unwinding mechanism of the Pif1 family of DNA helicases. Proc Natl Acad Sci U S A 2019; 116:24533-24541. [PMID: 31744872 DOI: 10.1073/pnas.1915654116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Members of the Pif1 family of helicases function in multiple pathways that involve DNA synthesis: DNA replication across G-quadruplexes; break-induced replication; and processing of long flaps during Okazaki fragment maturation. Furthermore, Pif1 increases strand-displacement DNA synthesis by DNA polymerase δ and allows DNA replication across arrays of proteins tightly bound to DNA. This is a surprising feat since DNA rewinding or annealing activities limit the amount of single-stranded DNA product that Pif1 can generate, leading to an apparently poorly processive helicase. In this work, using single-molecule Förster resonance energy transfer approaches, we show that 2 members of the Pif1 family of helicases, Pif1 from Saccharomyces cerevisiae and Pfh1 from Schizosaccharomyces pombe, unwind double-stranded DNA by a branched mechanism with 2 modes of activity. In the dominant mode, only short stretches of DNA can be processively and repetitively opened, with reclosure of the DNA occurring by mechanisms other than strand-switching. In the other less frequent mode, longer stretches of DNA are unwound via a path that is separate from the one leading to repetitive unwinding. Analysis of the kinetic partitioning between the 2 different modes suggests that the branching point in the mechanism is established by conformational selection, controlled by the interaction of the helicase with the 3' nontranslocating strand. The data suggest that the dominant and repetitive mode of DNA opening of the helicase can be used to allow efficient DNA replication, with DNA synthesis on the nontranslocating strand rectifying the DNA unwinding activity.
Collapse
|
15
|
Dahan D, Tsirkas I, Dovrat D, Sparks MA, Singh SP, Galletto R, Aharoni A. Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures. Nucleic Acids Res 2019; 46:11847-11857. [PMID: 30395308 PMCID: PMC6294490 DOI: 10.1093/nar/gky1065] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Pif1 DNA helicase is a potent unwinder of G-quadruplex (G4) structures in vitro and functions to maintain genome stability at G4 sequences in Saccharomyces cerevisiae. Here, we developed and utilized a live-cell imaging approach to quantitatively measure the progression rates of single replication forks through different G4 containing sequences in individual yeast cells. We show that in the absence of Pif1, replication rates through specific lagging strand G4 sequences in vivo is significantly decreased. In contrast, we found that in the absence of Pif1, replication rates through the same G4s on the leading strand are not decreased relative to the respective WT strains, showing that Pif1 is essential only for efficient replication through lagging strand G4s. Additionally, we show that a canonical PIP sequence in Pif1 interacts with PCNA and that replication through G4 structures is significantly slower in the absence of this interaction in vitro and in vivo. Thus, Pif1–PCNA interaction is essential for optimal replisome progression through G4 sequences, highlighting the importance of coupling between Pif1 activity and replisome progression during yeast genome replication.
Collapse
Affiliation(s)
- Danielle Dahan
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Melanie A Sparks
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
16
|
Byrd AK, Bell MR, Raney KD. Pif1 helicase unfolding of G-quadruplex DNA is highly dependent on sequence and reaction conditions. J Biol Chem 2018; 293:17792-17802. [PMID: 30257865 DOI: 10.1074/jbc.ra118.004499] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
In addition to unwinding double-stranded nucleic acids, helicase activity can also unfold noncanonical structures such as G-quadruplexes. We previously characterized Pif1 helicase catalyzed unfolding of parallel G-quadruplex DNA. Here we characterized unfolding of the telomeric G-quadruplex, which can fold into antiparallel and mixed hybrid structures and found significant differences. Telomeric DNA sequences are unfolded more readily than the parallel quadruplex formed by the c-MYC promoter in K+ Furthermore, we found that under conditions in which the telomeric quadruplex is less stable, such as in Na+, Pif1 traps thermally melted quadruplexes in the absence of ATP, leading to the appearance of increased product formation under conditions in which the enzyme is preincubated with the substrate. Stable telomeric G-quadruplex structures were unfolded in a stepwise manner at a rate slower than that of duplex DNA unwinding; however, the slower dissociation from G-quadruplexes compared with duplexes allowed the helicase to traverse more nucleotides than on duplexes. Consistent with this, the rate of ATP hydrolysis on the telomeric quadruplex DNA was reduced relative to that on single-stranded DNA (ssDNA), but less quadruplex DNA was needed to saturate ATPase activity. Under single-cycle conditions, telomeric quadruplex was unfolded by Pif1, but for the c-MYC quadruplex, unfolding required multiple helicase molecules loaded onto the adjacent ssDNA. Our findings illustrate that Pif1-catalyzed unfolding of G-quadruplex DNA is highly dependent on the specific sequence and the conditions of the reaction, including both the monovalent cation and the order of addition.
Collapse
Affiliation(s)
- Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Matthew R Bell
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
17
|
Geronimo CL, Singh SP, Galletto R, Zakian VA. The signature motif of the Saccharomyces cerevisiae Pif1 DNA helicase is essential in vivo for mitochondrial and nuclear functions and in vitro for ATPase activity. Nucleic Acids Res 2018; 46:8357-8370. [PMID: 30239884 PMCID: PMC6144861 DOI: 10.1093/nar/gky655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Pif1 family DNA helicases are conserved from bacteria to humans and have critical and diverse functions in vivo that promote genome integrity. Pif1 family helicases share a 23 amino acid region, called the Pif1 signature motif (SM) that is unique to this family. To determine the importance of the SM, we did mutational and functional analysis of the SM from the Saccharomyces cerevisiae Pif1 (ScPif1). The mutations deleted portions of the SM, made one or multiple single amino acid changes in the SM, replaced the SM with its counterpart from a bacterial Pif1 family helicase and substituted an α-helical domain from another helicase for the part of the SM that forms an α helix. Mutants were tested for maintenance of mitochondrial DNA, inhibition of telomerase at telomeres and double strand breaks, and promotion of Okazaki fragment maturation. Although certain single amino acid changes in the SM can be tolerated, the presence and sequence of the ScPif1 SM were essential for all tested in vivo functions. Consistent with the in vivo analyses, in vitro studies showed that the presence and sequence of the ScPif1 SM were critical for ATPase activity but not substrate binding.
Collapse
Affiliation(s)
- Carly L Geronimo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| |
Collapse
|
18
|
Buzovetsky O, Kwon Y, Pham NT, Kim C, Ira G, Sung P, Xiong Y. Role of the Pif1-PCNA Complex in Pol δ-Dependent Strand Displacement DNA Synthesis and Break-Induced Replication. Cell Rep 2018; 21:1707-1714. [PMID: 29141206 DOI: 10.1016/j.celrep.2017.10.079] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022] Open
Abstract
The S. cerevisiae Pif1 helicase functions with DNA polymerase (Pol) δ in DNA synthesis during break-induced replication (BIR), a conserved pathway responsible for replication fork repair and telomere recombination. Pif1 interacts with the DNA polymerase processivity clamp PCNA, but the functional significance of the Pif1-PCNA complex remains to be elucidated. Here, we solve the crystal structure of PCNA in complex with a non-canonical PCNA-interacting motif in Pif1. The structure guides the construction of a Pif1 mutant that is deficient in PCNA interaction. This mutation impairs the ability of Pif1 to enhance DNA strand displacement synthesis by Pol δ in vitro and also the efficiency of BIR in cells. These results provide insights into the role of the Pif1-PCNA-Pol δ ensemble during DNA break repair by homologous recombination.
Collapse
Affiliation(s)
- Olga Buzovetsky
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nhung Tuyet Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claire Kim
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Structure and function of Pif1 helicase. Biochem Soc Trans 2017; 45:1159-1171. [PMID: 28900015 DOI: 10.1042/bst20170096] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
Pif1 family helicases have multiple roles in the maintenance of nuclear and mitochondrial DNA in eukaryotes. Saccharomyces cerevisiae Pif1 is involved in replication through barriers to replication, such as G-quadruplexes and protein blocks, and reduces genetic instability at these sites. Another Pif1 family helicase in S. cerevisiae, Rrm3, assists in fork progression through replication fork barriers at the rDNA locus and tRNA genes. ScPif1 (Saccharomyces cerevisiae Pif1) also negatively regulates telomerase, facilitates Okazaki fragment processing, and acts with polymerase δ in break-induced repair. Recent crystal structures of bacterial Pif1 helicases and the helicase domain of human PIF1 combined with several biochemical and biological studies on the activities of Pif1 helicases have increased our understanding of the function of these proteins. This review article focuses on these structures and the mechanism(s) proposed for Pif1's various activities on DNA.
Collapse
|
20
|
Chemo-mechanical pushing of proteins along single-stranded DNA. Proc Natl Acad Sci U S A 2016; 113:6194-9. [PMID: 27185951 DOI: 10.1073/pnas.1602878113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-stranded (ss)DNA binding (SSB) proteins bind with high affinity to ssDNA generated during DNA replication, recombination, and repair; however, these SSBs must eventually be displaced from or reorganized along the ssDNA. One potential mechanism for reorganization is for an ssDNA translocase (ATP-dependent motor) to push the SSB along ssDNA. Here we use single molecule total internal reflection fluorescence microscopy to detect such pushing events. When Cy5-labeled Escherichia coli (Ec) SSB is bound to surface-immobilized 3'-Cy3-labeled ssDNA, a fluctuating FRET signal is observed, consistent with random diffusion of SSB along the ssDNA. Addition of Saccharomyces cerevisiae Pif1, a 5' to 3' ssDNA translocase, results in the appearance of isolated, irregularly spaced saw-tooth FRET spikes only in the presence of ATP. These FRET spikes result from translocase-induced directional (5' to 3') pushing of the SSB toward the 3' ssDNA end, followed by displacement of the SSB from the DNA end. Similar ATP-dependent pushing events, but in the opposite (3' to 5') direction, are observed with EcRep and EcUvrD (both 3' to 5' ssDNA translocases). Simulations indicate that these events reflect active pushing by the translocase. The ability of translocases to chemo-mechanically push heterologous SSB proteins along ssDNA provides a potential mechanism for reorganization and clearance of tightly bound SSBs from ssDNA.
Collapse
|
21
|
Koc KN, Singh SP, Stodola JL, Burgers PM, Galletto R. Pif1 removes a Rap1-dependent barrier to the strand displacement activity of DNA polymerase δ. Nucleic Acids Res 2016; 44:3811-9. [PMID: 27001517 PMCID: PMC4856994 DOI: 10.1093/nar/gkw181] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
Using an in vitro reconstituted system in this work we provide direct evidence that the yeast repressor/activator protein 1 (Rap1), tightly bound to its consensus site, forms a strong non-polar barrier for the strand displacement activity of DNA polymerase δ. We propose that relief of inhibition may be mediated by the activity of an accessory helicase. To this end, we show that Pif1, a 5'-3' helicase, not only stimulates the strand displacement activity of Pol δ but it also allows efficient replication through the block, by removing bound Rap1 in front of the polymerase. This stimulatory activity of Pif1 is not limited to the displacement of a single Rap1 molecule; Pif1 also allows Pol δ to carry out DNA synthesis across an array of bound Rap1 molecules that mimics a telomeric DNA-protein assembly. This activity of Pif1 represents a novel function of this helicase during DNA replication.
Collapse
Affiliation(s)
- Katrina N Koc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|