1
|
Burastero O, Jones NC, Defelipe LA, Zavrtanik U, Hadži S, Hoffmann SV, Garcia-Alai MM. ChiraKit: an online tool for the analysis of circular dichroism spectroscopy data. Nucleic Acids Res 2025:gkaf350. [PMID: 40287821 DOI: 10.1093/nar/gkaf350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025] Open
Abstract
Circular dichroism (CD) spectroscopy is an established biophysical technique to study chiral molecules. CD allows investigating conformational changes under varying experimental conditions and has been used to understand secondary structure, folding, and binding of proteins and nucleic acids. Here, we present ChiraKit, a user-friendly, online, and open-source tool to process raw CD data and perform advanced analysis. ChiraKit features include the calculation of protein secondary structure with the SELCON3 and SESCA algorithms, estimation of peptide helicity using the helix-ensemble model, the fitting of thermal/chemical unfolding or user-defined models, and the decomposition of spectra through singular value decomposition or principal component analysis. ChiraKit can be accessed at https://spc.embl-hamburg.de/.
Collapse
Affiliation(s)
- Osvaldo Burastero
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Lucas A Defelipe
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | - Uroš Zavrtanik
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Maria M Garcia-Alai
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
2
|
Li Y, Hu S, Wang J, Lv L, Zhao X, Li H, Ma W, Hua H, Zhu Z. A streamlined cloning and toxicity evaluation strategy of toxin-antitoxin systems in insect cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106261. [PMID: 40015852 DOI: 10.1016/j.pestbp.2024.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025]
Abstract
Toxin-antitoxin (TA) systems, which are prevalent in bacteria and archaea, have significant potential applications in eukaryotic cells due to their characteristic ability to inhibit cell growth. In particular, type II TA systems, where both the toxin and antitoxin are proteins, can serve as lethal and rescue genes in genetic pest management. However, traditional methods of cloning these systems often encounter difficulties due to cryptic promoter driven expression of toxins during the cloning process. To address this issue, we have developed a novel cloning method that incorporates an additional prokaryotic promoter to express the antitoxin, thus preventing the deleterious effects of toxin expression in bacterial cells. This method allows for efficient and straightforward construction of toxin vectors and the rapid screening of effective TA systems in insect cells. Our study focused on evaluating the toxicity of various type II TA systems in Sf9 insect cells. We cloned and tested toxins and antitoxins from Escherichia coli, Streptococcus pneumoniae, and Rickettsia rickettsii. The toxicity of each system was assessed by the number of red fluorescent cells post-transfection. Our results demonstrated that toxins such as MazF (E. coli-2782), RelE (Spn-1223), and RelE (Spn-1104) exhibited high levels of toxicity in Sf9 cells, while other toxins showed varying degrees of effectiveness. The corresponding antitoxins were able to neutralize the toxins in a dose-dependent manner, although some antitoxins, like MnT (R. felis-0357) and MazE (E. coli-4224), were ineffective in insect cells. This study highlights the potential for applying type II TA systems in genetic pest management and other eukaryotic applications. Our novel cloning approach provides a robust platform for the rapid and efficient evaluation of TA systems, paving the way for future research and application in pest control and beyond.
Collapse
Affiliation(s)
- Yunfei Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shizhe Hu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liping Lv
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueting Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hanbing Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhihui Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Dominguez-Molina L, Kurata T, Cepauskas A, Echemendia-Blanco D, Zedek S, Talavera-Perez A, Atkinson GC, Hauryliuk V, Garcia-Pino A. Mechanisms of neutralization of toxSAS from toxin-antitoxin modules. Nat Chem Biol 2025; 21:182-192. [PMID: 38834893 PMCID: PMC11782079 DOI: 10.1038/s41589-024-01630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
Toxic small alarmone synthetase (toxSAS) enzymes constitute a family of bacterial effectors present in toxin-antitoxin and secretion systems. toxSASs act through either translation inhibition mediated by pyrophosphorylation of transfer RNA (tRNA) CCA ends or synthesis of the toxic alarmone adenosine pentaphosphate ((pp)pApp) and adenosine triphosphate (ATP) depletion, exemplified by FaRel2 and FaRel, respectively. However, structural bases of toxSAS neutralization are missing. Here we show that the pseudo-Zn2+ finger domain (pZFD) of the ATfaRel2 antitoxin precludes access of ATP to the pyrophosphate donor site of the FaRel2 toxin, without affecting recruitment of the tRNA pyrophosphate acceptor. By contrast, (pp)pApp-producing toxSASs are inhibited by Tis1 antitoxin domains though occlusion of the pyrophosphate acceptor-binding site. Consequently, the auxiliary pZFD of AT2faRel is dispensable for FaRel neutralization. Collectively, our study establishes the general principles of toxSAS inhibition by structured antitoxin domains, with the control strategy directly coupled to toxSAS substrate specificity.
Collapse
Affiliation(s)
- Lucia Dominguez-Molina
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Albinas Cepauskas
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Dannele Echemendia-Blanco
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Safia Zedek
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Ariel Talavera-Perez
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Faculty of Science and Technology, University of Tartu Institute of Technology, Tartu, Estonia.
- Science for Life Laboratory, Lund, Sweden.
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
4
|
Girardin Y, Galle M, Vanden Abeele Y, De Greve H, Loris R. Evaluation of different strategies to produce Vibrio cholerae ParE2 toxin. Protein Expr Purif 2024; 215:106403. [PMID: 37977515 DOI: 10.1016/j.pep.2023.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Toxin-antitoxin (TA) systems are small operons that are omnipresent in bacteria and archaea with suggested roles in stabilization of mobile genetic elements, bacteriophage protection, stress response and possibly persister formation. A major bottleneck in the study of TA toxins is the production of sufficient amounts of well-folded, functional protein. Here we examine alternative approaches for obtaining the VcParE2 toxin from Vibrio cholerae. VcParE2 can be successfully produced via bacterial expression in presence of its cognate antitoxin VcParD2, followed by on-column unfolding and refolding. Alternatively, the toxin can be expressed in Spodoptera frugiperda (Sf9) insect cells. The latter requires disruption of the VcparE2 gene via introduction of an insect cell intron. Both methods provide protein with similar structural and functional characteristics.
Collapse
Affiliation(s)
- Yana Girardin
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050, Brussels, Belgium
| | - Margot Galle
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050, Brussels, Belgium
| | - Yaël Vanden Abeele
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Henri De Greve
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Remy Loris
- Molecular Recognition Unit, Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
5
|
Beck IN, Arrowsmith TJ, Grobbelaar MJ, Bromley EC, Marles-Wright J, Blower TR. Toxin release by conditional remodelling of ParDE1 from Mycobacterium tuberculosis leads to gyrase inhibition. Nucleic Acids Res 2024; 52:1909-1929. [PMID: 38113275 PMCID: PMC10899793 DOI: 10.1093/nar/gkad1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a growing threat to global health, with recent efforts towards its eradication being reversed in the wake of the COVID-19 pandemic. Increasing resistance to gyrase-targeting second-line fluoroquinolone antibiotics indicates the necessity to develop both novel therapeutics and our understanding of M. tuberculosis growth during infection. ParDE toxin-antitoxin systems also target gyrase and are regulated in response to both host-associated and drug-induced stress during infection. Here, we present microbiological, biochemical, structural, and biophysical analyses exploring the ParDE1 and ParDE2 systems of M. tuberculosis H37Rv. The structures reveal conserved modes of toxin-antitoxin recognition, with complex-specific interactions. ParDE1 forms a novel heterohexameric ParDE complex, supported by antitoxin chains taking on two distinct folds. Curiously, ParDE1 exists in solution as a dynamic equilibrium between heterotetrameric and heterohexameric complexes. Conditional remodelling into higher order complexes can be thermally driven in vitro. Remodelling induces toxin release, tracked through concomitant inhibition and poisoning of gyrase activity. Our work aids our understanding of gyrase inhibition, allowing wider exploration of toxin-antitoxin systems as inspiration for potential therapeutic agents.
Collapse
Affiliation(s)
- Izaak N Beck
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | | | | | - Jon Marles-Wright
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
6
|
Bonabal S, Darfeuille F. Preventing toxicity in toxin-antitoxin systems: An overview of regulatory mechanisms. Biochimie 2024; 217:95-105. [PMID: 37473832 DOI: 10.1016/j.biochi.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Toxin-antitoxin systems (TAs) are generally two-component genetic modules present in almost every prokaryotic genome. The production of the free and active toxin is able to disrupt key cellular processes leading to the growth inhibition or death of its host organism in absence of its cognate antitoxin. The functions attributed to TAs rely on this lethal phenotype ranging from mobile genetic elements stabilization to phage defense. Their abundance in prokaryotic genomes as well as their lethal potential make them attractive targets for new antibacterial strategies. The hijacking of TAs requires a deep understanding of their regulation to be able to design such approach. In this review, we summarize the accumulated knowledge on how bacteria cope with these toxic genes in their genome. The characterized TAs can be grouped based on the way they prevent toxicity. Some systems rely on a tight control of the expression to prevent the production of the toxin while others control the activity of the toxin at the post-translational level.
Collapse
Affiliation(s)
- Simon Bonabal
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33000, Bordeaux, France
| | - Fabien Darfeuille
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33000, Bordeaux, France.
| |
Collapse
|
7
|
Ruan S, Tu CH, Bourne CR. Friend or Foe: Protein Inhibitors of DNA Gyrase. BIOLOGY 2024; 13:84. [PMID: 38392303 PMCID: PMC10886550 DOI: 10.3390/biology13020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
DNA gyrase is essential for the successful replication of circular chromosomes, such as those found in most bacterial species, by relieving topological stressors associated with unwinding the double-stranded genetic material. This critical central role makes gyrase a valued target for antibacterial approaches, as exemplified by the highly successful fluoroquinolone class of antibiotics. It is reasonable that the activity of gyrase could be intrinsically regulated within cells, thereby helping to coordinate DNA replication with doubling times. Numerous proteins have been identified to exert inhibitory effects on DNA gyrase, although at lower doses, it can appear readily reversible and therefore may have regulatory value. Some of these, such as the small protein toxins found in plasmid-borne addiction modules, can promote cell death by inducing damage to DNA, resulting in an analogous outcome as quinolone antibiotics. Others, however, appear to transiently impact gyrase in a readily reversible and non-damaging mechanism, such as the plasmid-derived Qnr family of DNA-mimetic proteins. The current review examines the origins and known activities of protein inhibitors of gyrase and highlights opportunities to further exert control over bacterial growth by targeting this validated antibacterial target with novel molecular mechanisms. Furthermore, we are gaining new insights into fundamental regulatory strategies of gyrase that may prove important for understanding diverse growth strategies among different bacteria.
Collapse
Affiliation(s)
- Shengfeng Ruan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Chih-Han Tu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
8
|
Garcia-Rodriguez G, Girardin Y, Kumar Singh R, Volkov AN, Van Dyck J, Muruganandam G, Sobott F, Charlier D, Loris R. Toxin:antitoxin ratio sensing autoregulation of the Vibrio cholerae parDE2 module. SCIENCE ADVANCES 2024; 10:eadj2403. [PMID: 38181072 PMCID: PMC10776004 DOI: 10.1126/sciadv.adj2403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
The parDE family of toxin-antitoxin (TA) operons is ubiquitous in bacterial genomes and, in Vibrio cholerae, is an essential component to maintain the presence of chromosome II. Here, we show that transcription of the V. cholerae parDE2 (VcparDE) operon is regulated in a toxin:antitoxin ratio-dependent manner using a molecular mechanism distinct from other type II TA systems. The repressor of the operon is identified as an assembly with a 6:2 stoichiometry with three interacting ParD2 dimers bridged by two ParE2 monomers. This assembly docks to a three-site operator containing 5'- GGTA-3' motifs. Saturation of this TA complex with ParE2 toxin results in disruption of the interface between ParD2 dimers and the formation of a TA complex of 2:2 stoichiometry. The latter is operator binding-incompetent as it is incompatible with the required spacing of the ParD2 dimers on the operator.
Collapse
Affiliation(s)
- Gabriela Garcia-Rodriguez
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Yana Girardin
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Alexander N. Volkov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Jeroen Van Dyck
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, Antwerpen 2020, Belgium
| | - Gopinath Muruganandam
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
9
|
Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M. Type II bacterial toxin-antitoxins: hypotheses, facts, and the newfound plethora of the PezAT system. FEMS Microbiol Rev 2023; 47:fuad052. [PMID: 37715317 PMCID: PMC10532202 DOI: 10.1093/femsre/fuad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, C/Albert Einstein 22, PCTCAN, 39011 Santander, Spain
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine
, Universiti Sultan Zainal Abidin, Jalan Sultan Mahumd, 20400 Kuala Terengganu, Malaysia
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
10
|
Berne C, Zappa S, Brun YV. eDNA-stimulated cell dispersion from Caulobacter crescentus biofilms upon oxygen limitation is dependent on a toxin-antitoxin system. eLife 2023; 12:e80808. [PMID: 36475544 PMCID: PMC9851616 DOI: 10.7554/elife.80808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
In their natural environment, most bacteria preferentially live as complex surface-attached multicellular colonies called biofilms. Biofilms begin with a few cells adhering to a surface, where they multiply to form a mature colony. When conditions deteriorate, cells can leave the biofilm. This dispersion is thought to be an important process that modifies the overall biofilm architecture and that promotes colonization of new environments. In Caulobacter crescentus biofilms, extracellular DNA (eDNA) is released upon cell death and prevents newborn cells from joining the established biofilm. Thus, eDNA promotes the dispersal of newborn cells and the subsequent colonization of new environments. These observations suggest that eDNA is a cue for sensing detrimental environmental conditions in the biofilm. Here, we show that the toxin-antitoxin system (TAS) ParDE4 stimulates cell death in areas of a biofilm with decreased O2 availability. In conditions where O2 availability is low, eDNA concentration is correlated with cell death. Cell dispersal away from biofilms is decreased when parDE4 is deleted, probably due to the lower local eDNA concentration. Expression of parDE4 is positively regulated by O2 and the expression of this operon is decreased in biofilms where O2 availability is low. Thus, a programmed cell death mechanism using an O2-regulated TAS stimulates dispersal away from areas of a biofilm with decreased O2 availability and favors colonization of a new, more hospitable environment.
Collapse
Affiliation(s)
- Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| |
Collapse
|
11
|
Snead KJ, Moore LL, Bourne CR. ParD Antitoxin Hotspot Alters a Disorder-to-Order Transition upon Binding to Its Cognate ParE Toxin, Lessening Its Interaction Affinity and Increasing Its Protease Degradation Kinetics. Biochemistry 2022; 61:34-45. [PMID: 34914378 PMCID: PMC9805813 DOI: 10.1021/acs.biochem.1c00584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Type-II toxin-antitoxin (TA) systems are comprised of two tightly interacting proteins, and operons encoding these systems have been identified throughout the genomes of bacteria. In contrast to secretion system effector-immunity pairs, TA systems must remain paired to protect the host cell from toxicity. Continual depletion of the antitoxin results in a shorter half-life than that of the toxin, though it is unclear if antitoxins can be effectively degraded when complexed with toxins. The current work probed the protein-protein interface of the PaParDE1 TA system, guided by an X-ray crystal structure, to determine contributions of antitoxin amino acids to interaction kinetics and affinity. These studies identified a "hotspot" position that alters the binding mode and resulting affinity (KD) from 152 pM for a 1:1 model for wild type to 25.5 and 626 nM for a 2:1 model with mutated antitoxin. This correlates with an altered induced secondary structure upon complexation with PaParE1 and increased kinetics of Lon protease digestion of the antitoxin despite the toxin presence. However, the decreased affinity at this hotspot was essentially reversed when the antitoxin dimerization region was deleted, yielding insights into complex interactions involved in the tight association. Removal of the antitoxin C-terminal seven amino acids, corresponding to the site of a disorder-to-order transition, completely prevents association. These studies combine to provide a model for the initiation of the TA interaction and highlight how manipulation of the sequence can impact the antitoxin disorder-to-order transition, weakening the affinity and resulting in increased antitoxin susceptibility to degradation.
Collapse
Affiliation(s)
- Kevin J. Snead
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Landon L. Moore
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States; Present Address: Department of Internal Medicine, Digestive Diseases and Nutrition Section, The University of Oklahoma Health Science Center, 800 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
| | - Christina R. Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
12
|
Abstract
Toxin-antitoxin systems are widespread in bacterial genomes. They are usually composed of two elements: a toxin that inhibits an essential cellular process and an antitoxin that counteracts its cognate toxin. In the past decade, a number of new toxin-antitoxin systems have been described, bringing new growth inhibition mechanisms to light as well as novel modes of antitoxicity. However, recent advances in the field profoundly questioned the role of these systems in bacterial physiology, stress response and antimicrobial persistence. This shifted the paradigm of the functions of toxin-antitoxin systems to roles related to interactions between hosts and their mobile genetic elements, such as viral defence or plasmid stability. In this Review, we summarize the recent progress in understanding the biology and evolution of these small genetic elements, and discuss how genomic conflicts could shape the diversification of toxin-antitoxin systems.
Collapse
|
13
|
Bistable Expression of a Toxin-Antitoxin System Located in a Cryptic Prophage of Escherichia coli O157:H7. mBio 2021; 12:e0294721. [PMID: 34844426 PMCID: PMC8630535 DOI: 10.1128/mbio.02947-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are classically composed of two genes that encode a toxic protein and a cognate antitoxin protein. Both genes are organized in an operon whose expression is autoregulated at the level of transcription by the antitoxin-toxin complex, which binds operator DNA through the antitoxin’s DNA-binding domain. Here, we investigated the transcriptional regulation of a particular TA system located in the immunity region of a cryptic lambdoid prophage in the Escherichia coli O157:H7 EDL933 strain. This noncanonical paaA2-parE2 TA operon contains a third gene, paaR2, that encodes a transcriptional regulator that was previously shown to control expression of the TA. We provide direct evidence that the PaaR2 is a transcriptional regulator which shares functional similarities to the lambda CI repressor. Expression of the paaA2-parE2 TA operon is regulated by two other transcriptional regulators, YdaS and YdaT, encoded within the same region. We argue that YdaS and YdaT are analogous to lambda Cro and CII and that they do not constitute a TA system, as previously debated. We show that PaaR2 primarily represses the expression of YdaS and YdaT, which in turn controls the expression of paaR2-paaA2-parE2 operon. Overall, our results show that the paaA2-parE2 TA is embedded in an intricate lambdoid prophage-like regulation network. Using single-cell analysis, we observed that the entire locus exhibits bistability, which generates diversity of expression in the population. Moreover, we confirmed that paaA2-parE2 is addictive and propose that it could limit genomic rearrangements within the immunity region of the CP-933P cryptic prophage.
Collapse
|
14
|
Insights into the Neutralization and DNA Binding of Toxin-Antitoxin System ParE SO-CopA SO by Structure-Function Studies. Microorganisms 2021; 9:microorganisms9122506. [PMID: 34946107 PMCID: PMC8706911 DOI: 10.3390/microorganisms9122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/03/2022] Open
Abstract
ParESO-CopASO is a new type II toxin–antitoxin (TA) system in prophage CP4So that plays an essential role in circular CP4So maintenance after the excision in Shewanella oneidensis. The toxin ParESO severely inhibits cell growth, while CopASO functions as an antitoxin to neutralize ParESO toxicity through direct interactions. However, the molecular mechanism of the neutralization and autoregulation of the TA operon transcription remains elusive. In this study, we determined the crystal structure of a ParESO-CopASO complex that adopted an open V-shaped heterotetramer with the organization of ParESO-(CopASO)2-ParESO. The structure showed that upon ParESO binding, the intrinsically disordered C-terminal domain of CopASO was induced to fold into a partially ordered conformation that bound into a positively charged and hydrophobic groove of ParESO. Thermodynamics analysis showed the DNA-binding affinity of CopASO was remarkably higher than that of the purified TA complex, accompanied by the enthalpy change reversion from an exothermic reaction to an endothermic reaction. These results suggested ParESO acts as a de-repressor of the TA operon transcription at the toxin:antitoxin level of 1:1. Site-directed mutagenesis of ParESO identified His91 as the essential residue for its toxicity by cell toxicity assays. Our structure-function studies therefore elucidated the transcriptional regulation mechanism of the ParESO-CopASO pair, and may help to understand the regulation of CP4So maintenance in S. oneidensis.
Collapse
|
15
|
De Bruyn P, Prolič-Kalinšek M, Vandervelde A, Malfait M, Sterckx YGJ, Sobott F, Hadži S, Pardon E, Steyaert J, Loris R. Nanobody-aided crystallization of the transcription regulator PaaR2 from Escherichia coli O157:H7. Acta Crystallogr F Struct Biol Commun 2021; 77:374-384. [PMID: 34605442 PMCID: PMC8488858 DOI: 10.1107/s2053230x21009006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
paaR2-paaA2-parE2 is a three-component toxin-antitoxin module found in prophage CP-993P of Escherichia coli O157:H7. Transcription regulation of this module occurs via the 123-amino-acid regulator PaaR2, which forms a large oligomeric structure. Despite appearing to be well folded, PaaR2 withstands crystallization, as does its N-terminal DNA-binding domain. Native mass spectrometry was used to screen for nanobodies that form a unique complex and stabilize the octameric structure of PaaR2. One such nanobody, Nb33, allowed crystallization of the protein. The resulting crystals belong to space group F432, with unit-cell parameter a = 317 Å, diffract to 4.0 Å resolution and are likely to contain four PaaR2 monomers and four nanobody monomers in the asymmetric unit. Crystals of two truncates containing the N-terminal helix-turn-helix domain also interact with Nb33, and the corresponding co-crystals diffracted to 1.6 and 1.75 Å resolution.
Collapse
Affiliation(s)
- Pieter De Bruyn
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Maruša Prolič-Kalinšek
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexandra Vandervelde
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Milan Malfait
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Yann G.-J. Sterckx
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
16
|
Garcia-Rodriguez G, Girardin Y, Volkov AN, Singh RK, Muruganandam G, Van Dyck J, Sobott F, Versées W, Charlier D, Loris R. Entropic pressure controls the oligomerization of the Vibrio cholerae ParD2 antitoxin. Acta Crystallogr D Struct Biol 2021; 77:904-920. [PMID: 34196617 PMCID: PMC8251345 DOI: 10.1107/s2059798321004873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
ParD2 is the antitoxin component of the parDE2 toxin-antitoxin module from Vibrio cholerae and consists of an ordered DNA-binding domain followed by an intrinsically disordered ParE-neutralizing domain. In the absence of the C-terminal intrinsically disordered protein (IDP) domain, V. cholerae ParD2 (VcParD2) crystallizes as a doughnut-shaped hexadecamer formed by the association of eight dimers. This assembly is stabilized via hydrogen bonds and salt bridges rather than by hydrophobic contacts. In solution, oligomerization of the full-length protein is restricted to a stable, open decamer or dodecamer, which is likely to be a consequence of entropic pressure from the IDP tails. The relative positioning of successive VcParD2 dimers mimics the arrangement of Streptococcus agalactiae CopG dimers on their operator and allows an extended operator to wrap around the VcParD2 oligomer.
Collapse
Affiliation(s)
- Gabriela Garcia-Rodriguez
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Yana Girardin
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexander N. Volkov
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Jean Jeener NMR Center, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gopinath Muruganandam
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jeroen Van Dyck
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Frank Sobott
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
17
|
De Bruyn P, Girardin Y, Loris R. Prokaryote toxin-antitoxin modules: Complex regulation of an unclear function. Protein Sci 2021; 30:1103-1113. [PMID: 33786944 PMCID: PMC8138530 DOI: 10.1002/pro.4071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022]
Abstract
Toxin–antitoxin (TA) modules are small operons in bacteria and archaea that encode a metabolic inhibitor (toxin) and a matching regulatory protein (antitoxin). While their biochemical activities are often well defined, their biological functions remain unclear. In Type II TA modules, the most common class, both toxin and antitoxin are proteins, and the antitoxin inhibits the biochemical activity of the toxin via complex formation with the toxin. The different TA modules vary significantly regarding structure and biochemical activity. Both regulation of protein activity by the antitoxin and regulation of transcription can be highly complex and sometimes show striking parallels between otherwise unrelated TA modules. Interplay between the multiple levels of regulation in the broader context of the cell as a whole is most likely required for optimum fine‐tuning of these systems. Thus, TA modules can go through great lengths to prevent activation and to reverse accidental activation, in agreement with recent in vivo data. These complex mechanisms seem at odds with the lack of a clear biological function.
Collapse
Affiliation(s)
- Pieter De Bruyn
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Yana Girardin
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| |
Collapse
|
18
|
Klemenčič M, Halužan Vasle A, Dolinar M. The Cysteine Protease MaOC1, a Prokaryotic Caspase Homolog, Cleaves the Antitoxin of a Type II Toxin-Antitoxin System. Front Microbiol 2021; 12:635684. [PMID: 33679669 PMCID: PMC7935541 DOI: 10.3389/fmicb.2021.635684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 01/26/2023] Open
Abstract
The bloom-forming cyanobacterium Microcystis aeruginosa is known for its global distribution and for the production of toxic compounds. In the genome of M. aeruginosa PCC 7806, we discovered that the gene coding for MaOC1, a caspase homolog protease, is followed by a toxin-antitoxin module, flanked on each side by a direct repeat. We therefore investigated their possible interaction at the protein level. Our results suggest that this module belongs to the ParE/ParD-like superfamily of type II toxin-antitoxin systems. In solution, the antitoxin is predominantly alpha-helical and dimeric. When coexpressed with its cognate toxin and isolated from Escherichia coli, it forms a complex, as revealed by light scattering and affinity purification. The active site of the toxin is restricted to the C-terminus of the molecule. Its truncation led to normal cell growth, while the wild-type form prevented bacterial growth in liquid medium. The orthocaspase MaOC1 was able to cleave the antitoxin so that it could no longer block the toxin activity. The most likely target of the protease was the C-terminus of the antitoxin with two sections of basic amino acid residues. E. coli cells in which MaOC1 was expressed simultaneously with the toxin-antitoxin pair were unable to grow. In contrast, no effect on cell growth was found when using a proteolytically inactive MaOC1 mutant. We thus present the first case of a cysteine protease that regulates the activity of a toxin-antitoxin module, since all currently known activating proteases are of the serine type.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Halužan Vasle
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Toxins (Basel) 2020; 12:toxins12060422. [PMID: 32604745 PMCID: PMC7354431 DOI: 10.3390/toxins12060422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The diversity of Type-II toxin–antitoxin (TA) systems in bacterial genomes requires tightly controlled interaction specificity to ensure protection of the cell, and potentially to limit cross-talk between toxin–antitoxin pairs of the same family of TA systems. Further, there is a redundant use of toxin folds for different cellular targets and complexation with different classes of antitoxins, increasing the apparent requirement for the insulation of interactions. The presence of Type II TA systems has remained enigmatic with respect to potential benefits imparted to the host cells. In some cases, they play clear roles in survival associated with unfavorable growth conditions. More generally, they can also serve as a “cure” against acquisition of highly similar TA systems such as those found on plasmids or invading genetic elements that frequently carry virulence and resistance genes. The latter model is predicated on the ability of these highly specific cognate antitoxin–toxin interactions to form cross-reactions between chromosomal antitoxins and invading toxins. This review summarizes advances in the Type II TA system models with an emphasis on antitoxin cross-reactivity, including with invading genetic elements and cases where toxin proteins share a common fold yet interact with different families of antitoxins.
Collapse
|
20
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
21
|
Prolič-Kalinšek M, De Bruyn P, Jurėnas D, Van Melderen L, Loris R, Volkov AN. 1H, 13C, and 15N backbone and side chain chemical shift assignment of YdaS, a monomeric member of the HigA family. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:25-30. [PMID: 31625047 DOI: 10.1007/s12104-019-09915-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The cryptic prophage CP-933P in Escherichia coli O157:H7 contains a parDE-like toxin-antitoxin module, the operator region of which is recognized by two flanking transcription regulators: PaaR2 (ParE associated Regulator), which forms part of the paaR2-paaA2-parE2 toxin-antitoxin operon and YdaS (COG4197), which is encoded in the opposite direction but shares the operator. Here we report the 1H, 15N and 13C backbone and side chain chemical shift assignments of YdaS from Escherichia coli O157:H7 in its free state. YdaS is a distinct relative to HigA antitoxins but behaves as a monomer in solution. The BMRB Accession Number is 27917.
Collapse
Affiliation(s)
- Maruša Prolič-Kalinšek
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Pieter De Bruyn
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Dukas Jurėnas
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Brussels, Belgium.
- VIB-VUB Center for Structural Biology, Brussels, Belgium.
| | - Alexander N Volkov
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Demerdash O, Shrestha UR, Petridis L, Smith JC, Mitchell JC, Ramanathan A. Using Small-Angle Scattering Data and Parametric Machine Learning to Optimize Force Field Parameters for Intrinsically Disordered Proteins. Front Mol Biosci 2019; 6:64. [PMID: 31475155 PMCID: PMC6705226 DOI: 10.3389/fmolb.2019.00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) play important roles in many aspects of normal cell physiology, such as signal transduction and transcription, as well as pathological states, including Alzheimer's, Parkinson's, and Huntington's disease. Unlike their globular counterparts that are defined by a few structures and free energy minima, IDP/IDR comprise a large ensemble of rapidly interconverting structures and a corresponding free energy landscape characterized by multiple minima. This aspect has precluded the use of structural biological techniques, such as X-ray crystallography and nuclear magnetic resonance (NMR) for resolving their structures. Instead, low-resolution techniques, such as small-angle X-ray or neutron scattering (SAXS/SANS), have become a mainstay in characterizing coarse features of the ensemble of structures. These are typically complemented with NMR data if possible or computational techniques, such as atomistic molecular dynamics, to further resolve the underlying ensemble of structures. However, over the past 10–15 years, it has become evident that the classical, pairwise-additive force fields that have enjoyed a high degree of success for globular proteins have been somewhat limited in modeling IDP/IDR structures that agree with experiment. There has thus been a significant effort to rehabilitate these models to obtain better agreement with experiment, typically done by optimizing parameters in a piecewise fashion. In this work, we take a different approach by optimizing a set of force field parameters simultaneously, using machine learning to adapt force field parameters to experimental SAXS scattering profiles. We demonstrate our approach in modeling three biologically IDP ensembles based on experimental SAXS profiles and show that our optimization approach significantly improve force field parameters that generate ensembles in better agreement with experiment.
Collapse
Affiliation(s)
- Omar Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Utsab R Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Loukas Petridis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Jeremy C Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Arvind Ramanathan
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
23
|
Ames JR, Muthuramalingam M, Murphy T, Najar FZ, Bourne CR. Expression of different ParE toxins results in conserved phenotypes with distinguishable classes of toxicity. Microbiologyopen 2019; 8:e902. [PMID: 31309747 PMCID: PMC6813445 DOI: 10.1002/mbo3.902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023] Open
Abstract
Toxin–antitoxin (TA) systems are found on both chromosomes and plasmids. These systems are unique in that they can confer both fatal and protective effects on bacterial cells—a quality that could potentially be harnessed given further understanding of these TA mechanisms. The current work focuses on the ParE subfamily, which is found throughout proteobacteria and has a sequence identity on average of approximately 12% (similarity at 30%–80%). Our aim is to evaluate the equivalency of chromosomally derived ParE toxin activity depending on its bacterial species of origin. Nine ParE toxins were analyzed, originating from six different bacterial species. Based on the resulting toxicity, three categories can be established: ParE toxins that do not exert toxicity under the experimental conditions, toxins that exert toxicity within the first four hours, and those that exert toxicity only after 10–12 hr of exposure. All tested ParE toxins produce a cellular morphologic change from rods to filaments, consistent with disruption of DNA topology. Analysis of the distribution of filamented cells within a population reveals a correlation between the extent of filamentation and toxicity. No membrane septation is visible along the length of the cell filaments, whereas aberrant lipid blebs are evident. Potent ParE‐mediated toxicity is also correlated with a hallmark signature of abortive DNA replication, consistent with the inhibition of DNA gyrase.
Collapse
Affiliation(s)
- Jessica R Ames
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | | | - Tamiko Murphy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Fares Z Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
24
|
De Bruyn P, Hadži S, Vandervelde A, Konijnenberg A, Prolič-Kalinšek M, Sterckx YGJ, Sobott F, Lah J, Van Melderen L, Loris R. Thermodynamic Stability of the Transcription Regulator PaaR2 from Escherichia coli O157:H7. Biophys J 2019; 116:1420-1431. [PMID: 30979547 DOI: 10.1016/j.bpj.2019.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
PaaR2 is a putative transcription regulator encoded by a three-component parDE-like toxin-antitoxin module from Escherichia coli O157:H7. Although this module's toxin, antitoxin, and toxin-antitoxin complex have been more thoroughly investigated, little remains known about its transcription regulator PaaR2. Using a wide range of biophysical techniques (circular dichroism spectroscopy, size-exclusion chromatography-multiangle laser light scattering, dynamic light scattering, small-angle x-ray scattering, and native mass spectrometry), we demonstrate that PaaR2 mainly consists of α-helices and displays a concentration-dependent octameric build-up in solution and that this octamer contains a global shape that is significantly nonspherical. Thermal unfolding of PaaR2 is reversible and displays several transitions, suggesting a complex unfolding mechanism. The unfolding data obtained from spectroscopic and calorimetric methods were combined into a unifying thermodynamic model, which suggests a five-state unfolding trajectory. Furthermore, the model allows the calculation of a stability phase diagram, which shows that, under physiological conditions, PaaR2 mainly exists as a dimer that can swiftly oligomerize into an octamer depending on local protein concentrations. These findings, based on a thorough biophysical and thermodynamic analysis of PaaR2, may provide important insights into biological function such as DNA binding and transcriptional regulation.
Collapse
Affiliation(s)
- Pieter De Bruyn
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexandra Vandervelde
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Albert Konijnenberg
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium
| | - Maruša Prolič-Kalinšek
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Yann G-J Sterckx
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Laboratory of Medical Biochemistry, University of Antwerp, Campus Drie Eiken, Wilrijk, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium; Astbury Centre for Structural Molecular Biology, Leeds, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.
| |
Collapse
|
25
|
Muthuramalingam M, White JC, Murphy T, Ames JR, Bourne CR. The toxin from a ParDE toxin-antitoxin system found in Pseudomonas aeruginosa offers protection to cells challenged with anti-gyrase antibiotics. Mol Microbiol 2019; 111:441-454. [PMID: 30427086 PMCID: PMC6368863 DOI: 10.1111/mmi.14165] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Toxin-antitoxin systems are mediators of diverse activities in bacterial physiology. For the ParE-type toxins, their reported role of gyrase inhibition utilized during plasmid-segregation killing indicates they are toxic. However, their location throughout chromosomes leads to questions about function, including potential non-toxic outcomes. The current study has characterized a ParDE system from the opportunistic human pathogen Pseudomonas aeruginosa (Pa). We identified a protective function for this ParE toxin, PaParE, against effects of quinolone and other antibiotics. However, higher concentrations of PaParE are themselves toxic to cells, indicating the phenotypic outcome can vary based on its concentration. Our assays confirmed PaParE inhibition of gyrase-mediated supercoiling of DNA with an IC50 value in the low micromolar range, a species-specificity that resulted in more efficacious inhibition of Escherichia coli derived gyrase versus Pa gyrase, and overexpression in the absence of antitoxin yielded an expected filamentous morphology with multi-foci nucleic acid material. Additional data revealed that the PaParE toxin is monomeric and interacts with dimeric PaParD antitoxin with a KD in the lower picomolar range, yielding a heterotetramer. This work provides novel insights into chromosome-encoded ParE function, whereby its expression can impart partial protection to cultures from selected antibiotics.
Collapse
Affiliation(s)
- Meenakumari Muthuramalingam
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
- Present address:
Department of Pharmaceutical ChemistryUniversity of KansasLawrence66047 KSUSA
| | - John C. White
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Tamiko Murphy
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Jessica R. Ames
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| | - Christina R. Bourne
- The University of Oklahoma, Department of Chemistry and BiochemistryNorman73019OKUSA
| |
Collapse
|
26
|
Wu H, Wolynes PG, Papoian GA. AWSEM-IDP: A Coarse-Grained Force Field for Intrinsically Disordered Proteins. J Phys Chem B 2018; 122:11115-11125. [PMID: 30091924 PMCID: PMC6713210 DOI: 10.1021/acs.jpcb.8b05791] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The associative memory, water-mediated, structure and energy model (AWSEM) has been successfully used to study protein folding, binding, and aggregation problems. In this work, we introduce AWSEM-IDP, a new AWSEM branch for simulating intrinsically disordered proteins (IDPs), where the weights of the potentials determining secondary structure formation have been finely tuned, and a novel potential is introduced that helps to precisely control both the average extent of protein chain collapse and the chain's fluctuations in size. AWSEM-IDP can efficiently sample large conformational spaces, while retaining sufficient molecular accuracy to realistically model proteins. We applied this new model to two IDPs, demonstrating that AWSEM-IDP can reasonably well reproduce higher-resolution reference data, thus providing the foundation for a transferable IDP force field. Finally, we used thermodynamic perturbation theory to show that, in general, the conformational ensembles of IDPs are highly sensitive to fine-tuning of force field parameters.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Peter G. Wolynes
- Departments of Chemistry and Physics and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Garegin A. Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
27
|
Armalytė J, Jurėnas D, Krasauskas R, Čepauskas A, Sužiedėlienė E. The higBA Toxin-Antitoxin Module From the Opportunistic Pathogen Acinetobacter baumannii - Regulation, Activity, and Evolution. Front Microbiol 2018; 9:732. [PMID: 29706946 PMCID: PMC5906591 DOI: 10.3389/fmicb.2018.00732] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/28/2018] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is one of the major causes of hard to treat multidrug-resistant hospital infections. A. baumannii features contributing to its spread and persistence in clinical environment are only beginning to be explored. Bacterial toxin-antitoxin (TA) systems are genetic loci shown to be involved in plasmid maintenance and proposed to function as components of stress response networks. Here we present a thorough characterization of type II system of A. baumannii, which is the most ubiquitous TA module present in A. baumannii plasmids. higBA of A. baumannii is a reverse TA (the toxin gene is the first in the operon) and shows little homology to other TA systems of RelE superfamily. It is represented by two variants, which both are functional albeit exhibit strong difference in sequence conservation. The higBA2 operon is found on ubiquitous 11 Kb pAB120 plasmid, conferring carbapenem resistance to clinical A. baumannii isolates and represents a higBA variant that can be found with multiple sequence variations. We show here that higBA2 is capable to confer maintenance of unstable plasmid in Acinetobacter species. HigB2 toxin functions as a ribonuclease and its activity is neutralized by HigA2 antitoxin through formation of an unusually large heterooligomeric complex. Based on the in vivo expression analysis of gfp reporter gene we propose that HigA2 antitoxin and HigBA2 protein complex bind the higBA2 promoter region to downregulate its transcription. We also demonstrate that higBA2 is a stress responsive locus, whose transcription changes in conditions encountered by A. baumannii in clinical environment and within the host. We show elevated expression of higBA2 during stationary phase, under iron deficiency and downregulated expression after antibiotic (rifampicin) treatment.
Collapse
Affiliation(s)
- Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dukas Jurėnas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Albinas Čepauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
28
|
New Shuttle Vectors for Gene Cloning and Expression in Multidrug-Resistant Acinetobacter Species. Antimicrob Agents Chemother 2018; 62:AAC.02480-17. [PMID: 29339383 DOI: 10.1128/aac.02480-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Understanding bacterial pathogenesis requires adequate genetic tools to assess the role of individual virulence determinants by mutagenesis and complementation assays, as well as for homologous and heterologous expression of cloned genes. Our knowledge of Acinetobacter baumannii pathogenesis has so far been limited by the scarcity of genetic tools to manipulate multidrug-resistant (MDR) epidemic strains, which are responsible for most infections. Here, we report on the construction of new multipurpose shuttle plasmids, namely, pVRL1 and pVRL2, which can efficiently replicate in Acinetobacter spp. and in Escherichia coli The pVRL1 plasmid has been constructed by combining (i) the cryptic plasmid pWH1277 from Acinetobacter calcoaceticus, which provides an origin of replication for Acinetobacter spp.; (ii) a ColE1-like origin of replication; (iii) the gentamicin or zeocin resistance cassette for antibiotic selection; and (iv) a multilinker containing several unique restriction sites. Modification of pVRL1 led to the generation of the pVRL2 plasmid, which allows arabinose-inducible gene transcription with an undetectable basal expression level of cloned genes under uninduced conditions and a high dynamic range of responsiveness to the inducer. Both pVRL1 and pVRL2 can easily be selected in MDR A. baumannii, have a narrow host range and a high copy number, are stably maintained in Acinetobacter spp., and appear to be compatible with indigenous plasmids carried by epidemic strains. Plasmid maintenance is guaranteed by the presence of a toxin-antitoxin system, providing more insights into the mechanism of plasmid stability in Acinetobacter spp.
Collapse
|
29
|
Hadži S, Garcia-Pino A, Haesaerts S, Jurenas D, Gerdes K, Lah J, Loris R. Ribosome-dependent Vibrio cholerae mRNAse HigB2 is regulated by a β-strand sliding mechanism. Nucleic Acids Res 2017; 45:4972-4983. [PMID: 28334932 PMCID: PMC5416850 DOI: 10.1093/nar/gkx138] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 02/25/2017] [Indexed: 11/12/2022] Open
Abstract
Toxin–antitoxin (TA) modules are small operons involved in bacterial stress response and persistence. higBA operons form a family of TA modules with an inverted gene organization and a toxin belonging to the RelE/ParE superfamily. Here, we present the crystal structures of chromosomally encoded Vibrio cholerae antitoxin (VcHigA2), toxin (VcHigB2) and their complex, which show significant differences in structure and mechanisms of function compared to the higBA module from plasmid Rts1, the defining member of the family. The VcHigB2 is more closely related to Escherichia coli RelE both in terms of overall structure and the organization of its active site. VcHigB2 is neutralized by VcHigA2, a modular protein with an N-terminal intrinsically disordered toxin-neutralizing segment followed by a C-terminal helix-turn-helix dimerization and DNA binding domain. VcHigA2 binds VcHigB2 with picomolar affinity, which is mainly a consequence of entropically favorable de-solvation of a large hydrophobic binding interface and enthalpically favorable folding of the N-terminal domain into an α-helix followed by a β-strand. This interaction displaces helix α3 of VcHigB2 and at the same time induces a one-residue shift in the register of β-strand β3, thereby flipping the catalytically important Arg64 out of the active site.
Collapse
Affiliation(s)
- San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Molecular Recognition Unit, Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium.,Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Biologie Structurale et Biophysique, IBMM-DBM, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Sarah Haesaerts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Molecular Recognition Unit, Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Dukas Jurenas
- Biologie Structurale et Biophysique, IBMM-DBM, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Kenn Gerdes
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.,Molecular Recognition Unit, Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| |
Collapse
|
30
|
Zhang J, Ito H, Hino M, Kimura M. A RelE/ParE superfamily toxin in Vibrio parahaemolyticus has DNA nicking endonuclease activity. Biochem Biophys Res Commun 2017; 489:29-34. [PMID: 28533087 DOI: 10.1016/j.bbrc.2017.05.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
Type II toxins in toxin-antitoxin (TA) systems fold into a similar fold and belong to the RelE/ParE superfamily. However, they display two distinct biochemical activities: RelE toxins are mRNA interferases, while ParE toxins are DNA gyrase (Gyr) inhibitors. Previously, we found a TA system, vp1842/vp1843, on the Vibrio parahaemolyticus genome whose toxin Vp1843 belongs to the RelE/ParE toxin superfamily. Vp1843, unlike RelE toxins, has neither protein synthesis inhibitory activity nor ribonuclease activity. In this study, we examined the inhibitory potency of Vp1843 with Escherichia coli Gyr. The result showed that Vp1843, unlike other ParE toxins, had little Gyr inhibitory activity, but rather converted supercoiled DNA to open-circular DNA. Analysis showed further that Vp1843 cleaves a single strand in DNA, and that the antitoxin Vp1842 neutralized the nicking endonuclease activity of Vp1843. Mutations of Lys37 and Pro45 in Vp1843 abolished its nicking activity, suggesting that they play a crucial role in nicking endonuclease activity. To our knowledge, Vp1843 is the first toxin with DNA nicking endonuclease activity among the RelE/ParE toxin superfamily.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Hironori Ito
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Madoka Hino
- Department of Health and Nutrition Sciences, Faculty of Health and Social Welfare Science, Nishikyushu University, 4490-9 Ozaki, Kanzaki-machi, Kanzaki-shi, Saga 842-8585, Japan
| | - Makoto Kimura
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan; Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan.
| |
Collapse
|
31
|
Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria. Toxins (Basel) 2016; 8:toxins8100305. [PMID: 27782085 PMCID: PMC5086665 DOI: 10.3390/toxins8100305] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Bacterial toxin–antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein–protein interactions. Accumulating knowledge about the structure–function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems.
Collapse
|